TY - JOUR A1 - Beygi Narsabadi, Hossein A1 - Vafaeenezhad, H. A1 - Klotz, U.E. A1 - Tiberto, D. A1 - Hosseinabadi, F. A1 - Mishurova, Tatiana A1 - Bruno, Giovanni A1 - Skrotzki, Birgit T1 - XCT-assisted micromechanical modeling of the effect of pores on the plastic deformation and mechanical characteristics of PBF-LB/M-produced copper alloys N2 - Due to the low absorption of fiber laser by copper particles, the laser-based powder bed fusion (PBF-LB/M) processing of copper components is accompanied by the development of different types of porosities within the printed samples. This research aims to assess the consequences of various process-induced pores on the me chanical characteristics and deformation of PBF-LB/M-produced copper alloys. Several copper alloys were processed using metal-coated particles and varied laser intensities, yielding samples with different types and amounts of porosities. For instance, CuCrZr alloys processed at 325 J/mm³ and 257 J/mm³ had 0.009 % and 1.117 % porosities, dominated by keyhole and lack-of-fusion pores, respectively. Moreover, PBF-LB/M pro cessing of Cr- and Nb-coated CuNi3SiCr particles accompanied by the generation of 0.004 % and 1.861 % porosities within the samples, predominantly featuring metallurgical and oxidation pores, respectively. Compression and nanoindentation tests revealed that the CuNi3SiCr alloy exhibited superior mechanical properties compared to the CuCrZr sample (nanoindentation hardness values 2.2 GPa and 1.4 GPa, respectively), while the presence of lack-of-fusion pores notably diminished their mechanical performance. X-ray computed tomography (XCT) reconstruction slices and scanning electron microscopy (SEM) images were then used for developing the representative volume elements (RVEs) based micromechanical models. The micromechanical simulations established a structure-property correlation that can simulate the compressive deformation and mechanical characteristics of PBF-LB/M-produced copper alloys as a function of their incorporated pore characteristics. Due to the closure of the pores at the first stages of deformation, samples with minimal keyhole and metallurgical porosities exhibited homogeneous plastic deformation. On the other side, based on the JohnsonCook model, strain concentration and crack propagation around the lack-of-fusion pores lead to damage initi ation in the printed samples at a strain level of 5 % KW - X-ray Computed tomography KW - Defects KW - Copper alloys KW - PBF-LB/M KW - Micromechanics PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-624004 DO - https://doi.org/10.1016/j.msea.2025.147836 SN - 0921-5093 VL - 924 PB - Elsevier B.V. AN - OPUS4-62400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chakraborty, P. A1 - Mouton, I. A1 - Gault, B. A1 - Tehranchi, Ali A1 - Neugebauer, J. A1 - Hickel, Tilmann T1 - Effect of Sn on stacking fault energies in zirconium and its hydrides N2 - Hydrogen embrittlement in Zr-alloy fuel cladding is a primary safety concern for water-based nuclear reactors. Here we investigated the stabilization of planar defects within the forming hydrides by Sn, the primary alloying element of Zircaloy-4 used in the cladding. In order to explain the formation of hydrides and planar defects observed in our experiments, we performed atomic-scale ab initio calculations focusing on the solute interactions with generalized stacking faults in hcp 𝛼-Zr and fcc zirconium hydrides. Our calculations showed that an increase in Sn concentration leads to a stabilization of stacking faults in both the 𝛼-Zr and hydride phases. However, the solution enthalpy of Sn is lower in the 𝛼-Zr as compared to the other hydride phases, indicative of two competing processes of Sn depletion/enrichment at the Zr hydride/matrix interface. This is corroborated by experimental findings, where Sn is less soluble in hydrides and is mostly found trapped at interfaces and planar defects, indicative of stacking faults inside the hydride phases. Our systematic investigation enables us to understand the presence and distribution of solutes in the hydride phases, which provides a deeper insight into the microstructural evolution of such alloy's properties during its service lifetime. KW - Defects KW - First-principles calculations KW - Interface and surface thermodynamics KW - Microstructure KW - Hydrides KW - Structural properties PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-618044 DO - https://doi.org/10.1103/PhysRevMaterials.8.033605 SN - 2475-9953 VL - 8 IS - 3 SP - 1 EP - 9 PB - APS AN - OPUS4-61804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Coniglio, Nicolas A1 - Cross, Carl Edward T1 - Characterization of solidification path for Aluminium 6060 weld metal with variable 4043 filler dilution N2 - Aluminium alloy 6060 is typical of a family of Al-Mg-Si extrusion alloys, which are considered weldable only when using an appropriate filler alloy such as 4043 (Al-5Si) or 5356 (Al-5Mg). This study concerns the thermal analysis and solidification path determination of aluminium alloy 6060 diluted with variable amounts of 4043. Casting of controlled mixtures of alloys 6060 and 4043 was used to simulate different weld dilutions in order to facilitate thermal analysis. Thermal analysis and metallography were applied in order to reveal solidification reactions and phases, and allow calculation of solid fraction versus temperature curves. Although the liquidus temperature was little affected, different phases formed with increased 4043 dilution, with a trend toward lower temperature reactions and a larger fraction interdendritic constituent. KW - Aluminium alloys KW - Light metals KW - Solidification cracking KW - Cracking KW - Defects KW - Hot cracking KW - Analysis techniques KW - Cooling KW - Cooling rate KW - Temperature KW - Practical investigations KW - Microstructure KW - Dilution KW - Reference lists PY - 2006 UR - http://www.iiw-iis.org/ SN - 0043-2288 SN - 1878-6669 VL - 50 IS - 11/12 SP - 14 EP - 23 PB - Springer CY - Oxford AN - OPUS4-14219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cotic, Patricia A1 - Jaglicic, Z. A1 - Niederleithinger, Ernst A1 - Stoppel, Markus A1 - Bosiljkov, V. T1 - Image fusion for improved detection of near-surface defects in NDT-CE using unsupervised clustering methods N2 - The capabilities of non-destructive testing (NDT) methods for defect detection in civil engineering are characterized by their different penetration depth, resolution and sensitivity to material properties. Therefore, in many cases multi-sensor NDT has to be performed, producing large data sets that require an efficient data evaluation framework. In this work an image fusion methodology is proposed based on unsupervised clustering methods. Their performance is evaluated on ground penetrating radar and infrared thermography data from laboratory concrete specimens with different simulated near-surface defects. It is shown that clustering could effectively partition the data for further feature level-based data fusion by improving the detectability of defects simulating delamination, voids and localized water. A comparison with supervised symbol level fusion shows that clustering-based fusion outperforms this, especially in situations with very limited knowledge about the material properties and depths of the defects. Additionally, clustering is successfully applied in a case study where a multi-sensor NDT data set was automatically collected by a self-navigating mobile robot system. KW - Non-destructive testing KW - Concrete KW - Defect detection KW - Data fusion KW - Cluster analysis KW - Image fusion KW - Thermography KW - Radar KW - Ultrasonics KW - Defects PY - 2014 DO - https://doi.org/10.1007/s10921-014-0232-1 SN - 0195-9298 SN - 1573-4862 VL - 33 IS - 3 SP - 384 EP - 397 PB - Plenum Press CY - New York, NY AN - OPUS4-33831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cross, Carl Edward A1 - Böllinghaus, Thomas T1 - The Effect of Restraint on weld Solidification Cracking in Aluminium KW - Aluminium alloys KW - Light metals KW - Solidification cracking KW - Cracking KW - Defects KW - Hot cracking KW - Crack initiation KW - Strain KW - Restraint PY - 2006 SN - 0043-2288 SN - 1878-6669 VL - 50 IS - 11/12 SP - 51 EP - 54 PB - Springer CY - Oxford AN - OPUS4-14220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ermilova, Elena A1 - Weise, Matthias A1 - Hertwig, Andreas T1 - Application of imaging ellipsometry and white light interference microscopy for detection of defects in epitaxially grown 4H-SiC layers N2 - Critical defects, also known as device killers, in wide bandgap semiconductors significantly affect the performance of power electronic devices. We used the methods imaging ellipsometry (IE) and white light interference microscopy (WLIM) in a hybrid optical metrology study for fast and non-destructive detection, classification, and characterisation of defects in 4H–SiC homoepitaxial layers on 4H–SiC substrates. Ellipsometry measurement results are confirmed by WLIM. They can be successfully applied for wafer characterisation already during production of SiC epilayers and for subsequent industrial quality control. T2 - EOS Annual Meeting (EOSAM 2022) CY - Porto DA - 12.09.2022 KW - Imaging ellipsometry KW - White light interference microscopy KW - 4H–SiC KW - Defects PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574209 DO - https://doi.org/10.1051/jeos/2023018 SN - 1990-2573 VL - 19 IS - 1 SP - 1 EP - 8 PB - EDP Sciences AN - OPUS4-57420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gaul, Holger A1 - Brauser, Stephan A1 - Weber, Gert A1 - Rethmeier, Michael T1 - Methods to obtain weld discontinuities in spot-welded joints made of advanced high-strength steels N2 - Resistance spot welding is the major joining technique in mass car production. This applies in particular to high-strength steel and advanced high-strength steel (AHSS) joining of thin sheet steel components for lightweight body shell structures. Joining of AHSS in mass production might lead to weld discontinuities under certain circumstances. Those discontinuities in form of cracks might be an initial start of cracking in the spot-welded joints regarding fatigue loads. It is of great interest to figure out, if, in comparison to specimens without weld discontinuities, the crack initiating point changes and if the fatigue resistance might be reduced by the discontinuities. In this contribution, an overview of potential discontinuities is given. Their possible causes are discussed and means for their detection are highlighted. Among the possible causes of weld discontinuities, two major groups are distinguished: the welding parameters as primary influences in the welding process, and the production-specific influences as secondary ones. With emphasis on major cracks penetrating the weld nugget, these influences are analysed. Finally, a combination of extreme welding parameters with production-specific influences is chosen in order to establish a method which enables the preparation of fatigue test specimens with reproducible major cracks in different locations of the spot-welded joints. This method is than applied in order to prepare spot weld specimens for fatigue tests. KW - Cracking KW - Defects KW - Fatigue loading KW - High strength steels KW - Resistance spot welding PY - 2011 SN - 0043-2288 SN - 1878-6669 VL - 55 IS - 11/12 SP - 99 EP - 106 PB - Springer CY - Oxford AN - OPUS4-25026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hickel, Tilmann A1 - Divinski, S. A1 - Starikov, S. A1 - Soisson, F. A1 - Mény, C. A1 - Hegde, O. A1 - Gerlitz, M. A1 - Magnifouet, G. A1 - Schneider, A. A1 - Barreteau, C. A1 - Mirebeau, I. A1 - Tran, V.T. A1 - Förster, G. A1 - Front, A. A1 - Egorov, A. A1 - Wilde, G. A1 - Amara, H. A1 - Hammerschmidt, T. A1 - Mrovec, M. A1 - Pierron-Bohnes, V. A1 - Drautz, R. A1 - Fu, C. T1 - Magnetism in iron alloys: methodological advances for thermodynamics, defects, and kinetics N2 - Steels are among the technologically and economically most relevant materials. Key innovations in important sectors of human society such as mobility, energy and safety, are currently based on alloying of Fe with other transition-metal elements such as Mn, Cr, or Co. Due to strong impacts and conceptual challenges related to magnetism, however, the fundamental understanding and the ability to computationally design these steels in high-throughput approaches lags behind other classes of alloys. In this article, we will provide a substantial review of the role of magnetism, magnetic excitations and transformations for alloy thermodynamics, point defects, interfaces and kinetics. This will be achieved by combining insights from different methods: Ab initio simulations have the advantage that the magnetic ground state is intrinsic part of the electronic minimization. Due to the coarsening of the many-electron structures and therewith magnetic interactions, tight-binding methods can handle larger system sizes. Effective interaction models provide the freedom to exploit more sophisticated magnetic interactions. The performance of these methods in terms of magnetic properties of Fe alloys will be evaluated by providing state-of-the-art results for their sensitivity to magnetism. Furthermore, dedicated experiments will be discussed to complete the understanding of magnetic effects in Fe alloys and to validate the modeling strategy. KW - Magnetic excitations KW - Defects KW - Diffusion KW - Density functional theory KW - Tight-binding KW - Effective interaction models PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634530 DO - https://doi.org/10.1515/ijmr-2023-0225 SN - 1862-5282 VL - 60 IS - 99 SP - 1 EP - 14761 PB - Walter de Gruyter GmbH AN - OPUS4-63453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Simone A1 - Schulze, Rolf-Dieter A1 - Brademann-Jock, Kerstin A1 - Swaraj, Sufal A1 - Friedrich, Jörg Florian T1 - Characterisation of plasma polymers by thermoluminescence N2 - Thin plasma polymer films were deposited using the pulsed plasma mode. These plasma polymers should possess a more regular structure than those produced by the conventional continuous-wave (cw) mode, because of lower monomer fragmentation caused by the plasma pulses and the chemical chain propagation during the plasmaless (free!) periods. The thermoluminescence method was applied to functional groups carrying plasma polymer layers which are used in medical technology. Examples are formation of biocompatible, biosensoric and bioactive coatings or in metal polymer composites such as adhesion-promoting interlayers. In addition to the use of the conventional X-ray Photoelectron Spectroscopy for thin film characterization, the new method of thermoluminescence was applied to characterize undesired defects and structural specifics produced in the polymer films by pp or cw plasma mode. The main areas of focus were oxygen-containing groups produced by post-plasma oxygen introduction via auto-oxidation, oxidation of implemented unsaturations and trapped radical sites known as typical irregular structures in plasma polymers. KW - Plasma polymers KW - Thermoluminescence KW - Structure KW - Defects KW - Pulsed plasma KW - Continuous-wave plasma PY - 2006 DO - https://doi.org/10.1016/j.surfcoat.2005.12.003 SN - 0257-8972 VL - 201 IS - 3-4 SP - 543 EP - 552 PB - Elsevier Science CY - Lausanne AN - OPUS4-12818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lapenna, Michela A1 - Faglioni, Francesco A1 - Chand, Keerthana A1 - Hejazi, Bardia A1 - Fioresi, Rita A1 - Bruno, Giovanni T1 - Chamfer distance for non-linear registration of Triply Periodic Minimal Surface lattices N2 - We present a 3D image registration technique for non-linear deformation estimation in Additive Manufacturing processes. The methodology involves comparing X-ray Computed Tomography (XCT) data with Computer Aided Design (CAD) models for Triply Periodic Minimal Surface (TPMS) lattices and employs the Chamfer distance to refine mesh non-linear deformations. KW - X-ray Computed tomography KW - Defects KW - Machine Learning KW - Digital Twin KW - Registration PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-637367 DO - https://doi.org/10.1016/j.addlet.2025.100299 SN - 2772-3690 VL - 14 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-63736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, M. A1 - Diercks, P. A1 - Manzoni, Anna Maria A1 - Čížek, J. A1 - Ramamurty, U. A1 - Banhart, J. T1 - Positron annihilation investigation of thermal cycling induced martensitic transformation in NiTi shape memory alloy N2 - Thermal cycling of a Ni-excess NiTi alloy was conducted between 50 °C and liquid nitrogen temperature to induce martensitic transformations and to reverse them after. The starting point was an annealed and slowly cooled state, the end point a sample thermally cycled 1500 times. Positron annihilation lifetime spectra and Coincidence Doppler Broadening profiles were obtained in various states and at various tem- peratures. It was found that the initial state was low in defects with positron lifetimes close to that of bulk NiTi. Cycling lead to a continuous build-up of a defect structure up to 20 0 −50 0 cycles after which saturation was reached. Two types of defects created during cycling were identified, namely pure dislo- cations and vacancies attached to dislocations. KW - Shape memory alloy KW - Thermal Cycling KW - Defects KW - Positron annihilation spectroscopy KW - Austenite-to-martensite phase transformation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533641 DO - https://doi.org/10.1016/j.actamat.2021.117298 VL - 220 SP - 117298 PB - Elsevier Ltd. AN - OPUS4-53364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mai, H. L. A1 - Cui, X.-Y, A1 - Hickel, Tilmann A1 - Neugebauer, J. A1 - Ringer, S. P. T1 - A high-throughput ab initio study of elemental segregation and cohesion at ferritic-iron grain boundaries N2 - Segregation of alloying elements and impurities at grain boundaries (GBs) critically influences material behaviour by affecting cohesion. In this study, we present an ab initio high-throughput evaluation of segregation energies and cohesive effects for all elements up to Z=92 in the periodic table (Z = 1–92, H–U) across the substitutional sites in six model ferritic iron GBs using density functional theory (DFT). From these data, we construct comprehensive elemental maps for solute segregation tendencies and cohesion at GBs, providing guidance for segregation engineering. We systematically assess the cohesive effects of different elements in all segregating positions along multiple fracture paths with a quantum-chemistry bond-order method as well as a modified Rice–Thomson–Wang theory of interfacial cohesion. The effects of segregants on the cohesion of GBs are shown to vary drastically as a function of site character, and hence their induced cohesive effects must be considered as a thermodynamic average over the spectral energy distribution. Thus, models that overlook these aspects may fail to accurately predict the impacts of varying alloying concentrations, thermal processing conditions, or GB types. The insights presented here, along with our accompanying dataset, are expected to advance our understanding of GB segregation in steels and other materials. KW - Defects PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-638397 DO - https://doi.org/10.1016/j.actamat.2025.121288 SN - 1359-6454 VL - 297 SP - 1 EP - 16 PB - Elsevier Inc. AN - OPUS4-63839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nellesen, J. A1 - Laquai, René A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Hentschel, M. P. A1 - Anar, N. B. A1 - Soppa, E. A1 - Tillmann, W. A1 - Bruno, Giovanni T1 - In situ analysis of damage evolution in an Al/Al2O3 MMC under tensile load by synchrotron X-ray refraction imaging N2 - The in situ analysis of the damage evolution in a metal Matrix composite (MMC) using synchrotron X-ray refraction radiography (SXRR) is presented. The investigated material is an Al alloy (6061)/10 vol% Al2O3 MMC after T6 heat treatment. In an interrupted tensile test the gauge section of dog bone-shaped specimens is imaged in different states of tensile loading. On the basis of the SXRR images, the relative change of the specific surface (proportional to the amount of damage) in the course of tensile loading was analyzed. It could be shown that the damage can be detected by SXRR already at a stage of tensile loading, in which no Observation of damage is possible with radiographic absorption-based imaging methods. Moreover, the quantitative analysis of the SXRR images reveals that the amount of damage increases homogeneously by an average of 25% with respect to the Initial state. To corroborate the experimental findings, the damage distribution was imaged in 3D after the final tensile loading by synchrotron X-ray refraction computed tomography (SXRCT) and absorption-based synchrotron X-ray computed tomography (SXCT). It could be evidenced that defects and damages cause pronounced indications in the SXRCT images. KW - Composite materials KW - Defects KW - Micro analysis PY - 2018 DO - https://doi.org/10.1007/s10853-017-1957-x SN - 0022-2461 SN - 1573-4803 VL - 53 IS - 8 SP - 6021 EP - 6032 PB - Springer US AN - OPUS4-44241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabe, Torsten A1 - Mücke, Udo A1 - Rudert, Rainer A1 - Uematsu, K. T1 - Characterization of defects in dry-pressed green bodies T2 - 7th Euro Ceramics - Conference and Exhibition of the European Ceramic Society (ECerS) CY - Brugge, Belgium DA - 2001-09-09 KW - Green body characterization KW - Dry pressing KW - Defects KW - Microstructure KW - Computer tomography PY - 2002 UR - http://www.scientific.net/1013-9826/authors/27601 SN - 1013-9826 VL - 206-213 SP - 649 EP - 652 PB - Trans Tech Publ. CY - Aedermannsdorf AN - OPUS4-1024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Regina A1 - Maierhofer, Christiane A1 - Kreutzbruck, Marc T1 - Numerical method of active thermography for the reconstruction of back wall geometry N2 - The paper presents a numerical method to detect and characterise defects and inhomogeneities by means of active thermography. The objective was to determine the wall thickness of structure elements with an inaccessible back wall, e.g., elements of pipes or containers. As test specimens we used PVC samples with the thickness of about 2 cm that had spatial variations in the back wall geometry. Flash lamps provided the heating. To measure the thickness of the wall, we employed the Levenberg–Marquardt method, which we applied here to experimental thermographic data for non-destructive testing. We started the inversion procedure by making a rough first estimation of the back wall geometry following the echo defect shape method, and then we calculated the thickness of the back wall. We found reasonable reconstruction results which differed from the real value significantly below 1 mm at the defect centre, whereas the error wais increased at the edge of the defect, depending on its shape and depth. KW - Pulse thermography KW - Wall thickness KW - Inverse problems KW - Reconstruction KW - Defects KW - Rekonstruktion KW - Inverse Probleme KW - Defekte PY - 2013 DO - https://doi.org/10.1016/j.ndteint.2012.10.010 SN - 0963-8695 VL - 54 SP - 189 EP - 197 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-28895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roveda, Ilaria A1 - Serrano-Munoz, Itziar A1 - Haubrich, Jan A1 - Requena, Guillermo A1 - Madia, Mauro T1 - Investigation on the fatigue strength of AlSi10Mg fabricated by PBF-LB/M and subjected to low temperature heat treatments N2 - This work provides an investigation of the influence of low temperature heat treatments on the fatigue behavior of a PBF-LB AlSi10Mg alloy. Fatigue specimens are produced in form of round bars on a build platform preheated at 200 ◦C. The specimens have been tested in three different conditions: as-built, and after heat treatments at 265 ◦C for 1 h and 300 ◦C for 2 h. Prior to the fatigue testing, the defect distribution is analyzed by means of micro computed tomography. Subsequently, the peak over threshold method is successfully applied to provide a prediction of the size of killer defect. The defect population was of gas porosity type. No clear improvement of the fatigue performance is observed after the heat treatments. The fatigue strength predicted using fracture mechanics-based approaches is in good agreement with the experimental data. Among the studied approaches, short crack models provided the most conservative predictions. KW - PBF-LB/M AlSi10Mg KW - Fatigue strength KW - Defects KW - Kitagawa-Takahashi Diagram KW - Short Crack Models PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607071 DO - https://doi.org/10.1016/j.matdes.2024.113170 SN - 0264-1275 VL - 244 SP - 1 EP - 12 PB - Elsevier Ltd. AN - OPUS4-60707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Staude, Andreas A1 - Bartscher, M. A1 - Ehrig, Karsten A1 - Goebbels, Jürgen A1 - Koch, M. A1 - Neuschaefer-Rube, U. A1 - Nötel, Jörg T1 - Quantification of the capability of micro-CT to detect defects in castings using a new test piece and a voxel-based comparison method N2 - We present a modified aluminium casting which is especially suited as test piece for measuring casting defects and the geometry by means of cone-beam micro-focus X-ray systems, and which may become a reference standard for dimensional measurements and defect detection. To obtain a test piece with inner geometries measured by tactile means, we divided a small aluminium cylinder head into four pieces in such a way that most inner surfaces can be reached with a tactile probe. Reference geometries (spheres and cylinders) were applied to define a coordinate system for aligning the measurements in the disassembled and re-assembled state. The four pieces were re-assembled after the tactile measurement. The test piece also contains casting defects. In order to be able to use the assembled cylinder head as reference sample for defect detection, measurements with higher spatial resolution and better signal-to-noise ratio were performed on the single parts. For improving the reliability of the reference measurements, CT measurements of each part were carried out in three different orientations, and the individual defect detections were combined to obtain a reference data set with a high probability of defect detection and a low rate of erroneous detections. A new method for comparing the defect detection in a CT measurement to a reference data set is demonstrated, which provides individual information on every detected flaw. We discuss the results of measurements in the assembled state with respect to the reference data for flaw detection. KW - X-ray tomography KW - Casting KW - Defects KW - Porosity PY - 2011 DO - https://doi.org/10.1016/j.ndteint.2011.05.006 SN - 0963-8695 VL - 44 IS - 6 SP - 531 EP - 536 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-24028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stephan, Christiane A1 - Greiner, D. A1 - Schorr, S. A1 - Kaufmann, Ch. T1 - The influence of sodium on the point defect characteristics in off stoichiometric CuInSe2 N2 - The device performance of polycrystalline chalcogenide thin film solar cells is strongly influenced by different kinds of defects within the material. The presence of sodium or other alkali metals like potassium during the deposition process is well known to influence the electronic properties of the solar cell and thus to improve the efficiency of the final device. Structural analysis of neutron powder diffraction data collected at low temperatures and subsequent profile analysis by the LeBail and Rietveld method demonstrates the impact of sodium on the point defect characteristics in off stoichiometric CuInSe2. The analyzed materials are powder and thin film solar absorber material with addition of NaF and free of sodium. It is illustrated, the so called “sodium effect” cannot be reduced to one single origin. A range of effects, the reduction of InCu donors with a followed increase of VCu acceptors is possible. The main effect is an increased ordered character of the chalcopyrite crystal structure at off stoichiometric composition, when containing sodium. KW - Semiconductors KW - Chalcogenides KW - Defects PY - 2016 DO - https://doi.org/10.1016/j.jpcs.2016.07.022 SN - 0022-3697 VL - 2016 IS - 98 SP - 309 EP - 315 PB - Elsevier Ltd. AN - OPUS4-38462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Syed, F. W. A1 - Saikia, Ujjal A1 - Sun, B. A1 - Kiranbabu, S. A1 - Tehranchi, Ali A1 - Hickel, Tilmann A1 - Zaefferer, S. A1 - Ponge, D. T1 - Interfacial segregation of carbon atoms: the competition between grain boundaries and phase boundaries N2 - The microstructure of a two-phase medium manganese steel is decorated by interfaces whose character is defined by crystallography and the misorientation between adjacent grains, which in turn influences elemental segregation and shapes the resulting decorations. This study investigates how adjacent grain and phase boundaries impact a boundary’s segregation behavior, with a focus on the competition for carbon (C) enrichment in a laminated ferrite (α)- austenite (γ) microstructure subjected to a series of heat treatments. It was found that semicoherent α-γ Kurdjumov-Sachs (KS) phase boundaries show less carbon segregation than general γ grain boundaries. Furthermore, when a γ grain boundary is present at a junction with the phase boundaries, it acts as an extracting agent for C. DFT calculations support these observations, demonstrating that carbon segregation is energetically more favorable at the γ grain boundary compared to the α/γ phase boundary, due to the more negative segregation energy at the former. KW - Defects PY - 2025 DO - https://doi.org/10.1016/j.scriptamat.2025.116842 SN - 1359-6462 VL - 268 SP - 1 EP - 6 PB - Elsevier Inc. AN - OPUS4-63840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sözen, H.I. A1 - Mendive-Tapia, E. A1 - Hickel, Tilmann A1 - Neugebauer, J. T1 - Ab initio investigations of point and complex defect structures in B2-FeAl N2 - We study single-site and two-site defect structures in B2-type Fe-Al alloys by means of density functional theory supercell calculations. The defect formation energies are calculated as functions of the chemical potential, which are used to obtain the dependence of the defect concentrations on Al content at different temperatures. We also examine the converging behavior of the formation energies with respect to the supercell size to study the corresponding limit of dilute defects. The effect of magnetism is investigated by considering nonmagnetic, ferromagnetic, and paramagnetic states, calculations for the latter showing that the magnitude of the local magnetic moments strongly impacts the defect formation energies. The methodological studies are used to provide explanations for the wide spread of defect formation energies reported by experiments and other theoretical investigations. Based on these insights, the stability of the B2-FeAl structure as a function of Al concentration is obtained and discussed. KW - Atomistic models KW - Defects KW - Thermodynamics PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546956 DO - https://doi.org/10.1103/PhysRevMaterials.6.023603 SN - 2475-9953 VL - 6 IS - 2 SP - 1 EP - 11 PB - APS CY - College Park, MD AN - OPUS4-54695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -