TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Yamamoto, K. A1 - Grulke, E. A. T1 - Size and shape distribution of bipyramidal TiO2 nanoparticles by transmission electron microscopy – an inter-laboratory comparison N2 - Extraction of true, 3D shape (and size) of non-spherical nanoparticles (NPs) is associated with errors by conventional 2D electron microscopy using projection images. Significant efforts within the ISO technical committee TC 229 ‘Nanotechnologies’ are aimed at establishing accurate TEM and SEM measurement of NP size and shape as robust, standard procedures. Study groups have been organizing inter-laboratory comparisons on well-selected NP systems according to the market needs, such as aggregated titania nano-powder for which size and shape distribution of primary crystallites of irregular shape must be measured accurately. To be noticed is e. g. the fact that the measurement procedure allows only manual selection of the particles clearly distinguishable for analysis as well as manual definition of the contour of the imaged NPs. An inter-laboratory exercise on titania NPs (pure anatase, grown by hydrothermal synthesis) of well-defined non-spherical shape, i.e. bipyramidal has been recently started within ISO/TC 229 under similar conditions as for the irregular shaped titania. Overlapped particles were allowed to be considered, as long as they are clearly distinguishable. One decisive NP selection criterion was to analyze only those NPs with a roundness value below 0.7, i.e. the NPs laying on the support foil and, hence, with projection areas clearly deviating from perfect circles (R=1). The overall evaluation (for 15 labs) of the size descriptors (area, Feret, minFeret, perimeter) and shape descriptors (aspect ratio, roundness, compactness, extent) by analysis of variance is just to be finished and included in ISO/WD 21363 Nanotechnologies -- Protocol for particle size distribution by transmission electron microscopy. KW - Nanoparticles KW - Electron microscopy KW - Titanium oxide KW - Particle size distribution PY - 2018 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/size-and-shape-distribution-of-bipyramidal-tich-nanoparticles-by-transmission-electron-microscopy-an-interlaboratory-comparison/9E2FA0C716DB5F881E3032D014DFD52B DO - https://doi.org/10.1017/S1431927618009017 SN - 1431-9276 SN - 1435-8115 VL - 24 IS - S1 (August 2018) SP - 1706 EP - 1707 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-46005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Crasselt, Claudia A1 - Schmidt, Wolfram A1 - Sturm, Heinz T1 - Influence of rheology modifying admixtures on hydration of cementitious suspensions N2 - The presence of polycarboxylate ether (PCE) based superplasticizers (SPs) has an enormous influence on the early hydration of cement. Therefore, the talk presents first experimental results about the influence of a delayed addition time of PCE SPs on the hydration of cement and tricalcium aluminate (C3A) pastes, investigated by isothermal heat flow calorimetry and in-situ XRD. T2 - 38th Cement and Concrete Science Conference CY - Coventry, UK DA - 10.09.2018 KW - Cement hydration KW - Polycarboxylate ether KW - C3A hydration PY - 2018 AN - OPUS4-45996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Crasselt, Claudia A1 - Schmidt, Wolfram A1 - Sturm, Heinz ED - M. Tyrer, ED - E. Ganjian, ED - West, A. T1 - Influence of rheology modifying admixtures on hydration of cementitious suspensions N2 - The presence of polycarboxylate ether (PCE) based superplasticizers (SPs) has an enormous influence on the early hydration of cement. The hydration is retarded and the timing of formation and the morphology of hydrates is affected. This short paper presents experimental results about the influence of delayed Addition time of PCE SPs on hydration of cement and tricalcium aluminate (C3A) pastes, investigated by isothermal heat flow calorimetry. For cement pastes the hydration is retarded with SP, whereby the high charge PCE has a stronger retarding effect than the low charge PCE. With delayed PCE addition the cement shows a less retarded setting than with simultaneous addition. The alteration caused by PCE is much more pronounced for C3A and gypsum mixes than for cement. If the SP is added simultaneous, the exothermic peak of C3A is retarded. However, with delayed addition of SP the hydration is shortened, the gypsum depletion is fastened and the exothermic peak occurs less retarded or even accelerated compared to simultaneous addition. It is obvious that for C3A pastes there is less retardation the later the Addition of SP. Furthermore, the PCE alter the hydration of C3A when added delayed and exhibit changes in kinetics and hydration rates. The rate of reaction in the second stage is lower, discernible in decreased slopes and broader peaks. Besides this, a distinct ramp in the C3A heat flow curves within the first stage of C3A hydration occurs for all pastes with delayed addition of SP, which suggests an accelerated ettringite formation. T2 - 38th Cement and Concrete Science Conference CY - Coventry, UK DA - 10.09.2018 KW - Cement hydration KW - Polycarboxylate ether KW - C3A hydration PY - 2018 SN - 978-1-84600-088-1 SP - 64 EP - 67 CY - Coventry, UK AN - OPUS4-45995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Leinitz, Sarah A1 - Schmidt, Wolfram A1 - Mota, Berta A1 - Crasselt, Claudia T1 - Einfluss der wässrigen Phase von Zementleim und Polycarboxylatethern auf die Rheologie und die frühe Hydratation von Zement N2 - Die Rheologie von fließfähigen zementären Systemen mit Fließmitteln wird durch eine Vielzahl parallel stattfindender Effekte beeinflusst. Zu diesen Effekten zählen Wechselwirkungen zwischen den Polymeren und Ionen in der Porenlösung, frühe Phasenbildung, zeitabhängige und kompetitive Adsorption zwischen anionischen Polymeren und Sulfationen, Bildung von Phasen in der Porenlösung sowie Morphologieänderungen an Partikeloberflächen. Die frühe Hydratation von Zement, die durch Lösungs- und Fällungsprozesse angetrieben wird, beeinflusst diese Effekte erheblich. Das permanente Ungleichgewicht der Porenlösung führt zu Veränderungen der Partikeloberflächen, welches widerum zur Folge hat, dass rheometrische Messungen dieser Zementleime anfällig für Streuungen sind. Um die Einflüsse aus der Zementhydratation zu minimieren, wurden die rheometrischen Untersuchungen mit Zement in Wasser, wässriger Phase von Zementleim bzw. mit vorhydratisiertem Zement durchgeführt. Zusätzlich wurden die gleichen Systeme mit Zugabe von Polycarboxylatethern untersucht. Die Ergebnisse zeigen, dass die Leime mit Wasser niedrigere Werte für Fließgrenze und plastische Viskosität aufweisen, als die Systeme mit der wässrigen Phase von Zementleim. Während die Polymere eine Verminderung der Fließgrenze zur Folge hatte, war die Wirkung von Polymeren auf die plastische Viskosität vernachlässigbar. Zusätzlich wurde die frühe Hydratation unter Verwendung von Wärmeflusskalorimetrie, Rasterelektronenmikroskopie und Nadeleindringtiefe beobachtet. T2 - 20. Internationale Baustofftagung CY - Weimar, Germany DA - 12.09.2018 KW - Rheologie KW - Polycarboxylatether KW - Zementleim KW - Fließmittel PY - 2018 AN - OPUS4-45974 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Leinitz, Sarah A1 - Schmidt, Wolfram A1 - Mota, Berta A1 - Crasselt, Claudia ED - Ludwig, H.-M. T1 - Einfluss der wässrigen Phase von Zementleim und Polycarboxylatethern auf die Rheologie und die frühe Hydratation von Zement N2 - Die Rheologie von fließfähigen zementären Systemen mit Fließmitteln wird durch eine Vielzahl parallel stattfindender Effekte beeinflusst. Zu diesen Effekten zählen Wechselwirkungen zwischen den Polymeren und Ionen in der Porenlösung, frühe Phasenbildung, zeitabhängige und kompetitive Adsorption zwischen anionischen Polymeren und Sulfationen, Bildung von Phasen in der Porenlösung sowie Morphologieänderungen an Partikeloberflächen. Die frühe Hydratation von Zement, die durch Lösungs- und Fällungsprozesse angetrieben wird, beeinflusst diese Effekte erheblich. Das permanente Ungleichgewicht der Porenlösung führt zu Veränderungen der Partikeloberflächen, welches widerum zur Folge hat, dass rheometrische Messungen dieser Zementleime anfällig für Streuungen sind. Um die Einflüsse aus der Zementhydratation zu minimieren, wurden die rheometrischen Untersuchungen mit Zement in Porenlösung durchgeführt. Die Experimente wurden mit verschiedenen Feststoffvolumenfraktionen durchgeführt und mit den Ergebnissen identischer Systeme mit Wasser anstelle von Porenlösung verglichen. Zusätzlich wurden die gleichen Systeme mit Zugabe von Polycarboxylatethern untersucht. Die Ergebnisse zeigen, dass die Leime mit Wasser niedrigere Werte für Fließgrenze und plastische Viskosität aufweisen, als die Systeme mit Porenlösung. Während die Polymere eine Verminderung der Fließgrenze zur Folge hatte, war die Wirkung von Polymeren auf die plastische Viskosität vernachlässigbar. Zusätzlich wurde die frühe Hydratation unter Verwendung von Wärmeflusskalorimetrie, Rasterelektronenmikroskopie und Nadeleindringtiefe beobachtet. T2 - 20. Internationale Baustofftagung CY - Weimar, Germany DA - 12.09.2018 KW - Rheologie KW - Polycarboxylatether KW - Zementleim KW - Fließmittel PY - 2018 SN - 978-3-00-059950-7 VL - 20 SP - 744 EP - 751 PB - F.A. Finger-Institut für Baustoffkunde CY - Weimar AN - OPUS4-45973 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Kim, K. J. T1 - Measurement of Elemental Composition of FeNi and SiGe Thin Films by Electron Probe Microanalysis with Stratagem Software N2 - The present study repeats electron probe microanalysis (EPMA) measurements with the thin film analysis software Stratagem on an Fe-Ni thin films on silicon and reports - for the first-time – results of analysis on Si-Ge thin films deposited on a non-conductive aluminium oxide substrate. If the very good EPMA/Stratagem results for the FeNi system were expected due to previous studies [2], the data obtained for the SiGe films are particularly valuable, because of the challenging insulator substrate of Al2O3. The conductivity of the Si1-xGex surface necessary for charging-free analysis was ensured by applying conductive copper tape onto film surface down to sample stage. Four accelerating voltages, 15, 20, 25 and 30 kV, have been applied, so that the Ge Kα X-ray line at 9.87 keV could be excited. KW - thin film analysis KW - X-ray spectroscopy KW - Fe-Ni KW - Si-Ge KW - Stratagem KW - Electron probe microanalysis (EPMA) PY - 2018 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/measurement-of-elemental-composition-of-feni-and-sige-thin-films-by-electron-probe-microanalysis-with-stratagem-software/D4CF5D45B11FCF0DEC8155A89EDACF25 DO - https://doi.org/10.1017/S1431927618004282 VL - 24 IS - S1 (August) SP - 758 EP - 759 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-45950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Hertwig, Andreas A1 - Kraehnert, R. A1 - Hodoroaba, Vasile-Dan T1 - Analysis of mesoporous iridium oxide thin films by the combined methodical approach SEM/EDS/STRATAGem N2 - For the determination of porosity of Ir oxide thin films, electron probe microanalysis (EPMA) can be used as part of a combined SEM/EDS/STRATAGem analysis. The mass deposition (in μg cm-2) of films was calculated with the analysis software STRATAGem via k-values measured with EDS. The average density of coated films was obtained from the mass deposition and the film thickness as measured by the cross-section SEM. The porosity was calculated by dividing the average film density by the bulk (theoretical) density of the film material. Film porosities were counterchecked by spectroscopic ellipsometry (SE) using the Bruggeman effective medium approximation (BEMA). The results obtained by both analytical approaches/methods used, SEM/EDS/STRATAGem and SE were in good agreement. KW - Porous thin films KW - Iridium oxide KW - Electron probe microanalysis (EPMA) KW - Spectroscopic ellipsometry PY - 2018 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/analysis-of-mesoporous-iridium-oxide-thin-films-by-the-combined-methodical-approach-semedsstratagem/7607018338B542D8B8C4D944392781EF DO - https://doi.org/10.1017/S1431927618004300 SN - 1431-9276 SN - 1435-8115 VL - 24 IS - S1 (August) SP - 762 EP - 763 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-45951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Donėlienė, J. A1 - Rudzikas, M. A1 - Rades, Steffi A1 - Dörfel, Ilona A1 - Peplinski, Burkhard A1 - Sahre, Mario A1 - Pellegrino, F. A1 - Maurino, V. A1 - Ulbikas, J. A1 - Galdikas, A. A1 - Hodoroaba, Vasile-Dan T1 - Electron Microscopy and X-Ray Diffraction Analysis of Titanium Oxide Nanoparticles Synthesized by Pulsed Laser Ablation in Liquid N2 - A femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated by XRD(two instruments operated in different geometries) and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation. KW - Laser ablation in liquid KW - Nanoparticles KW - Titanium oxide KW - Particle morphology PY - 2018 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/electron-microscopy-and-xray-diffraction-analysis-of-titanium-oxide-nanoparticles-synthesized-by-pulsed-laser-ablation-in-liquid/AE368446FAC70E08C514F9AEABFD131B DO - https://doi.org/10.1017/S1431927618009030 VL - 24 IS - S1 (August) SP - 1710 EP - 1711 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-45949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lee, Jun-Seob A1 - Radnik, Jörg A1 - Bäßler, Ralph T1 - Passivity of alloy 31 in green-death solution N2 - The passivation behavior of alloy 31 was investigated as a function of passivation potential in a green-death solution at 40 °C. The alloy 31 surface is in a stable passive state during cyclic potentiodynamic polarization. In potentiostatic polarization of alloy 31, passive current density increases with an increase in the passivation potential. Electrochemical impedance spectroscopy (EIS) and Mott–Schottky (M–S) analysis showed that a more defective n-type semiconductive passive film forms as the potential increases. X-ray photoelectron spectroscopy (XPS) revealed that passive film consists of mainly chromium and minor iron and nickel oxides. The increase of the applied potential is considered to be a reason for the change in passive film stability. KW - Passive film KW - Steel KW - Alloy 31 KW - X-ray photoelectron spectroscopy PY - 2018 DO - https://doi.org/10.1002/maco.201709996 SN - 0947-5117 SN - 1521-4176 VL - 69 IS - 9 SP - 1218 EP - 1226 PB - Wiley-VCH CY - Weinheim AN - OPUS4-45938 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kleinbub, Sherin A1 - An, Biwen Annie A1 - Özcan Sandikcioglu, Özlem A1 - Dommisch, H. A1 - Koerdt, Andrea T1 - The impact of methanogenic Archaea on material, environment and health N2 - Microbiologically influence corrosion (MIC) has become a big concern due the increased usage of different metals by our society. Microorganisms can use metal as an electron donor, causing unpredictable but serious damages. Nowadays it is known that besides sulfate reducing bacteria (SRB), other microorganisms including acetogens, iron oxidizers and methanogens can also induce MIC. Current studies related to methanogen-induced MIC (MI-MIC) mainly focused on environmental isolates from the oil and gas industry (e.g. Methanococcus maripaludis) with industrial materials e.g. iron. However, MI-MIC can occur in many other environments as well, including the oral cavity. Methanobrevibacter oralis is a methanogen isolated from the human oral cavity and was found more frequently in patients suffering from peri-implantitis/periodontitis. Titanium-implants removed from those patients have also showed clear signs of corrosion. The aim of our study is to establish and analyze corrosion potentials of dental metals (e.g. titanium) by oral methanogens. Periodontal pockets samples from patients suffering from periodontitis/peri-implantitis were taken for methanogenic and SRB enrichments. Stainless steel, pure titanium or Ti-6Al-4V alloy was used for corrosion studies. Corrosion rates and methane production were measured using weight-loss method and gas chromatography, respectively. Metal surfaces were visualized with scanning electron microscopy. Microbial communities in the dental pockets of healthy people and patients will be compared using 16S rRNA amplicon sequencing. Overall, this is the first study investigating the susceptibility of different dental implant materials to corrosion using human-related Archaea. The outcomes of this study can be further explored for a variety of clinical applications. T2 - ISME 17th International Symposium on Microbial Ecology CY - Leipzig, Germany DA - 12.08.2018 KW - Methanogens KW - Corrosion KW - Biofilm PY - 2018 AN - OPUS4-45932 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yildirim, Arda A1 - Sentker, Kathrin A1 - Huber, Patrick A1 - Schönhals, Andreas T1 - Collective Orientational Order and Phase Behavior of a Discotic Liquid Crystal under Confinement N2 - Discotic liquid crystals (DLCs) are a promising class of soft matter for electronic applications. This is due to their ability to self-organize into columns in a hexagonal columnar mesophase, driven by the overlapping of the π orbitals of their aromatic cores. This leads to a high charge-carrier mobility along the column axis. Embedding liquid crystals into nanopores of anodic aluminum oxide (AAO) results in a 2D nanoconfinement of these materials. This confinement affects their properties, compared to the bulk, such as phase transition temperatures and enthalpies, molecular mobility, and crystallization. In this study, 2,3,6,7,10,11 hexakis[hexyloxy] triphenylene (HAT6) was confined into parallel aligned cylindrical nanopores of AAO membranes by melt infiltration. The membrane as confining hosts used have varying pore diameters, from 10 nm to 160 nm, covering a broad pore size range, thus, a better understanding of the confinement effect on phase behavior and molecular configuration in the pores. Furthermore, it is aimed to obtain axial ordering or to increase degree of axial ordering by chemically modifying the surfaces of the pores. Therefore, the pore surfaces the membranes were chemically modified, resulting in a more hydrophobic pore surface than the unmodified ones. The phase behavior was explored by a power-compensated DSC allowing the detecting of small changes in the phase behavior. In the literature, dielectric spectroscopy was demonstrated as a method to monitor molecular order inside the pores. Here, we also investigate the collective orientational order, corresponding to dominating molecular ordering, by dielectric spectroscopy. T2 - 10th Conference on Broadband Dielectric Spectroscopy and its Applications CY - Brussles, Belgium DA - 26.08.2018 KW - Confined Columnar Liquid Crystals PY - 2018 AN - OPUS4-45916 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Madkour, Sherif A1 - Schönhals, Andreas T1 - Molecular dynamics of an asymmetric PVME/PS Blend investigated by broadband dielectric and specific heat spectroscopy N2 - Over the past decades research on the molecular dynamics of miscible polymer blends are of topical interest in the literature, in an attempt to understand the segmental mobilty of individual components, as it is affected by blending. In general, miscible polymer blends exhibit a complex behavior of the molecular mobility. For an A/B blend the relaxation times of component A and component B are affected by the spatial local compositional heterogeneity, present in binary systems on a microscopic level, regardless of the macroscopic homogeneity. Here, a combination of broadband dielectric and specific heat spectroscopy was employed to study the dynamically asymmetric PVME/PS blend with seven different compositions, focusing on samples with high PS contents. Considering that PS is dielectrically invisible, BDS is a powerful technique to study the response of PVME, as it is affected by PS segments. In this work the well-known binary relaxation times distribution of PVME in a blend, originating from the spatial local heterogeneity, was studied over ten decades in frequency, for the first time in literature. Secondly, one of the detected processes, α’-relaxation, shows a crossover from high-temperature behavior (system in equilibrium) towards a low temperature regime, where PS undergoes the thermal glass transition, resulting in confined segmental dynamics of PVME within a frozen network of PS. Here, we introduce a precise mathematical tool to distinguish between the temperature dependency regimes of the process, and examine the composition dependence of the crossover temperature, detected by dielectric spectroscopy. Moreover, the dielectric data was compared in detail with results obtained by specific heat spectroscopy. This comparison provides new insights in the dynamics and dynamic heterogeneity of the PVME/PS blend system. T2 - 10th Conference on Broadband Dielectric Spectroscopy and its Applications CY - Brussels, Belgium DA - 26.08.2018 KW - Polymer blends KW - Dielectric spectroscopy KW - Specific heat spectroscopy PY - 2018 AN - OPUS4-45917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Schönhals, Andreas T1 - Rigid Amorphous Phase in Polymer Nanocomposites as Revealed by Relaxation Spectroscopy N2 - In inorganic/polymer nanocomposites the polymer matrix region near a filler surface, termed as the interphase, is of topical interest due to its possible influence on the macroscopic properties of the material. The segmental dynamics of this interphase is expected to be altered, as compared to the pure matrix, which might percolate into the entire system. It was found that a so-called Rigid Amorphous Phase (RAF) is formed in the interfacial region by adsorption of the polymer segments onto the nanoparticles, yielding in their immobilization. Here, we employed a combination of two relaxation spectroscopy techniques (Broadband Dielectric Spectroscopy (BDS) and Specific Heat Spectroscopy (SHS) in a form of Temperature Modulated DSC (TMDSC)) to investigate the structure and molecular mobility of Epoxy/Inorganic nanofiller composites with different nanoparticles geometries and contents. The two techniques show different perspectives on the glassy dynamics; BDS is sensitive to dipole fluctuations, whereas SHS senses entropy fluctuations. First, our dielectric relaxation investigations proved an existence of an additional process in nanocomposites, which is not present in the pure material. Due to the increasing intensity of the process with increasing filler content it was assigned as the α-process related to the segmental dynamics of polymer chains adsorbed onto the nanoparticles. Considering the expected high conductivity effects of the material, the dielectric data were analyzed by fitting a derivative of the HN function to a “conduction-free” loss spectra: ε''deriv=-(∂ε'/∂logω). Second, TMDSC measurements were used to study the specific heat capacity of nanocomposites in its nanofiller content dependence. Assuming that RAF is proportional to the decrease of the specific heat capacity step (Δcp) in the glass transition region of the nanocomposites, comparing to the pure material, the inorganic/polymer interphase was quantitatively analyzed and the amount of RAF estimated. T2 - 10th Conference on Broadband Dielectric Spectroscopy and its Applications CY - Brussels, Belgium DA - 26.08.2018 KW - Boehmite KW - Nanocomposites KW - Rigid amorphous fraction KW - BDS KW - TMDSC PY - 2018 AN - OPUS4-45915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yildirim, Arda A1 - Sentker, Kathrin A1 - Bühlmeyer, Andrea A1 - Laschat, Sabine A1 - Huber, Patrick A1 - Schönhals, Andreas T1 - Molecular dynamics of dipole functionalized triphenylene-based discotics N2 - Since discovery of discotic liquid crystals (DLCs), consisting of a disklike rigid aromatic core and flexible alkyl chains attached to the core, dating back to Chandrasekhar’s work in 1977, they have been extensively investigated to reveal their fundamental properties and potential for applications. The researches on DLCs in last decades showed that DLCs can be considered as promising materials for organic electronic applications since they exhibit one dimensional high charge mobility along the column axis in a columnar mesophase. The mobilies of the rigid aromatic core and the flexible alkyl chains can influence their application properites, e.g. the charge carrier mobility, therefore, it needs to be explored in detailed. In this study, a series of dipole functionalized triphenylene-based discotics, forming a columnar mesophase, were investigated to reveal the influence of the functionalization on phase behavior, molecular dynamics and as well as conductivity. The molecular mobility of the discotics was probed by broadband dielectric spectroscopy (BDS). In addition to conductivity and localized dynamics, glassy dynamics were also observed. The phase behavior of the material was explored by a power-compansated differential scanning calorimetry (DSC). Beside the phase transition temperatures and enthalpies, thermal glass transitions were found for all the materials. Moreover, the glassy dynamics were further investigated by Flash DSC, which is a chip-based calorimetry technique allows fast heating and cooling rates as high as 10000K/s. T2 - 10th Conference on Broadband Dielectric Spectroscopy and its Applications CY - Brussles, Belgium DA - 26.08.2018 KW - Columnar liquid crystals PY - 2018 AN - OPUS4-45918 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yildirim, Arda A1 - Szymoniak, Paulina A1 - Sentker, Kathrin A1 - Huber, Patrick A1 - Schönhals, Andreas T1 - Molecular Mobility and Ionic Conductivity of Ionic Liquid Crystals Forming a Hexagonal Columnar Mesophase N2 - For the first time, the molecular mobility of two linear-shaped tetramethylated guanidinium triflates ionic liquid crystals (ILCs) having different length of alkyl chains was investigated by a combination of broadband dielectric spectroscopy (BDS) and specific heat spectroscopy (SHS). By self-assembly, these ILCs can form a hexagonal ordered mesophase besides plastic crystalline phases and the isotropic state. SHS was carried out by differential AC-chip calorimetry at higher frequencies and temperature modulated DSC at lower frequencies. Two relaxation processes were found by BDS for both samples. At low temperatures, a γ-processes is observed which is assigned to specific localized fluctuations. At higher temperatures, α1-processes take place. α2 processes were also detected by SHS but with a completely different temperature dependence of the relaxation times. Different molecular assignments of α1- and α2-processes are suggested. At even higher temperatures, conductivity was detected by BDS. An increase in the DC conductivity by four orders of magnitude at the phase transition from the plastic crystalline to the hexagonal columnar mesophase is found. This result is traced to a change in the charge transport mechanism from a delocalized electron hopping in the stacked aromatic systems (in the plastic phase) to one dominated by an ionic conduction in the quasi-1D ion channels formed along the supermolecular columns in the ILC hexagonal mesophases. T2 - 10th Conference on Broadband Dielectric Spectroscopy and its Applications CY - Brussles, Belgium DA - 26.08.2018 KW - Ionic Liquid Crystals PY - 2018 AN - OPUS4-45914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Madkour, Sherif A1 - Schönhals, Andreas T1 - Dynamics of nanoscopically confined PVME in thin films of an asymmetric miscible PVME/PS blend N2 - In recent years, substantial efforts have been devoted to investigating nanoscopic confinement of polymers, and its effect on glassy dynamics. Broadband Dielectric Spectroscopy (BDS) was used to study the dynamics of ultra-thin films of PVME/PS 50/50 wt% blend, employing a novel nano-structured capacitor sample arrangement. The investigated system shows a complex dynamic behavior. First, an α-relaxation, related to a bulk-like layer was found. Second, an α’-relaxation was observed, characteristic for dynamically asymmetric blends, where the out of equilibrium dynamics is attributed to weakly-cooperative PVME segments relaxing within a frozen environment of PS segments. Third, for thinnest films, an Arrhenius-like process was dominant in the dielectric spectra, indicating localized fluctuations of the segments. Relaxation rates of this process resembled that of the degenerated α-relaxation of the adsorbed layer, found for pure PVME [1], thus it was assigned accordingly. For thinnest films, this process undergoes a further confinement, due to the topological constraints, introduced by PS. Such multiple confinement effect has not been reported for ultra-thin films of polymer blends, before this study [2]. [1] Madkour, S. et al. ACS Appl. Mater. Interfaces 2017, 9, 7535. [2] Madkour, S. et al. ACS Appl. Mater. Interfaces 2017, 9, 37289. T2 - 10th Conference on Broadband Dielectric Spectroscopy and its Applications CY - Brussels, Belgium DA - 26.08.2018 KW - Polymer blends KW - Thin polymer films KW - Dielectric spectroscopy KW - Specific heat spectroscopy PY - 2018 AN - OPUS4-45919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Santos de Freitas, M. A1 - Araghi, R. R. A1 - Brandenburg, E. A1 - Leiterer, Jork A1 - Emmerling, Franziska A1 - Folmert, K. A1 - Gerling-Driessen, U. I. M. A1 - Bardiaux, B. A1 - Böttcher, C. A1 - Pagel, K. A1 - Diehl, A. A1 - v. Berlepsch, H. A1 - Oschkinat, H. A1 - Koksch, B. T1 - The protofilament architecture of a de novo designed coiled coil-based amyloidogenic peptide N2 - Amyloid fibrils are polymers formed by proteins under specific conditions and in many cases they are related to pathogenesis, such as Parkinson’s and Alzheimer’s diseases. Their hallmark is the presence of a β-sheet structure. High resolution structural data on these systems as well as information gathered from multiple complementary analytical techniques is needed, from both a fundamental and a pharmaceutical perspective. Here, a previously reported de novo designed, pH-switchable coiled coil-based peptide that undergoes structural transitions resulting in fibril formation under physiological conditions has been exhaustively characterized by transmission electron microscopy (TEM), cryo-TEM, atomic force microscopy (AFM), wide-angle X-ray scattering (WAXS) and solid-state NMR (ssNMR). Overall, a unique 2-dimensional carpet-like assembly composed of large coexisiting ribbon-like, tubular and funnel-like structures with a clearly resolved protofilament substructure is observed. Whereas electron microscopy and scattering data point somewhat more to a hairpin model of β-fibrils, ssNMR data obtained from samples with selectively labelled peptides are in agreement with both, hairpin structures and linear arrangements. KW - Amyloid KW - Elektronenmikroskopie PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-458713 UR - https://www.sciencedirect.com/science/article/pii/S1047847718301333 DO - https://doi.org/10.1016/j.jsb.2018.05.009 SN - 1047-8477 VL - 203 IS - 3 SP - 263 EP - 272 PB - Elsevier AN - OPUS4-45871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saatz, Jessica A1 - Grunert, Bianca A1 - Jakubowski, Norbert A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Emmerling, Franziska T1 - Tagging reagents for imaging mass cytometry N2 - In der klinischen Diagnostik werden für zytometrische Messverfahren bereits eine Reihe von Reagenzien eingesetzt zur Markierung von Antikörper eingesetzt, um die Detektion von Biomarkern mittels Fluoreszenz- oder Flugzeitmassenspektrometrie zu ermöglichen. Seit kurzem ist auch eine Imaging Mass Cytometry Kombination direkt erhältlich, wodurch der Nachweis von Biomarkern in Gewebeschnitten erreicht werden kann. Dazu wird eine Kopplung von Laser Ablation und induktiv gekoppeltem Plasma Massenspektrometrie eingesetzt, wobei ähnlich der Massenzytometrie, zuvor Antikörper mit Metallen markiert, und im Anschluss mit dem Gewebeschnitt inkubiert werden. Durch die hohe Ortsauflösung können die Biomarker lokalisiert, und zukünftig vielleicht auch quantifiziert werden. Insbesondere Lanthanide eignen sich als Markierungsmetalle, da sie einen niedrigen Untergrund und chemisch ähnliches Verhalten zueinander aufweisen. Allein durch diese Elemente können bereits etwa 15 Parameter unterschieden werden, was durch isotopenreine Standards weiter gesteigert werden kann. Vom Markierungsgrad abhängig werden unterschiedlich viele Metalle am Antikörper gebunden, und beeinflussen so die Sichtbarkeit im ICP-MS. Nanopartikel könnten daher eine deutliche Steigerung der Sensitivität bewirken. GdVO4 Nanokristalle scheinen bisher sehr vielversprechend und bieten neben multiparametrischen Anwendungen auch Multimodalität. Die Synthese der Nanokristalle zeigte hohe Homogenität und Reproduzierbarkeit in Partikelgröße in der Zusammensetzung. Ein erstes Experiment mit einer Zellkultur konnte bereits die effiziente Markierung der Zellen unter Beweis stellen, wobei durch hohe Signalstärke auch subzelluläre Auflösung in der LA-ICP-MS erreicht werden konnte. T2 - ICPMS Anwendertreffen 2018 CY - Berlin, Germany DA - 03.09.2018 KW - LA-ICP-MS KW - Immuno assay KW - Bioimaging KW - Nanocrystal KW - Lanthanide KW - Metal-tag PY - 2018 AN - OPUS4-45866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griepentrog, Michael T1 - Towards the standardization of dynamic instrumented indentation testing N2 - Nowadays the Instrumented Indentation Testing (IIT) is one of the most commonly used methods to determine the mechanical properties of materials in the nano range. This method is already extensive standardized in EN ISO 14577 part 1-4. Because of the great interest of researchers and industries in investigations of time depending material behavior mostly all suppliers of IIT equipment are offering the possibility of dynamic testing. Realizing this development ISO/TC 164/SC3 Hardness Testing has proposed to start the new standardization project “Linear elastic dynamic instrumented indentation testing DIIT”. The development of this standard is accompanied by the first international intercomparing exercise comparing results of dynamic instrumented indentation testing from testing machines using different hardware solutions and different models for data evaluation. The draft of part 5 of ISO 14577 “Linear elastic dynamic instrumented indentation testing DIIT” specifies verification and calibration of testing machines for carrying out the measurement of the dynamic material response when an oscillatory force or displacement, with amplitudes small in comparison to the prescribed target values, is imparted to the indenter while the indenter is continuously loaded to a prescribed target load or target depth or while the load or displacement is held constant at a prescribed target value. In case of a material showing plastic-elastic behavior, the measured dynamic response is used for continuous evaluation of the dynamic stiffness of the contact as a function of depth and frequency. Using the dynamic stiffness of the contact a reduced dynamic modulus will be calculated. In case of a material showing visco-elastic behavior from the measured dynamic response also the dynamic contact damping coefficient as function of depth and frequency is evaluated continuously. Using dynamic contact stiffness and dynamic contact damping coefficient reduced lost and storage modulus for visco-elastic materials will be calculated. The main normative requirements of the draft will be presented and discussed in the light of the first results of the intercomparing excise. T2 - IIW6, International Indentation Workshop 6 CY - Sapporo, Japan DA - 02.07.2018 KW - ISO 14577 KW - Instrumented indentation testing KW - Nanoindentation KW - IIT KW - Mechanical properties KW - Dynamic testing KW - Visco-elastic KW - Loss module KW - Storage module PY - 2018 AN - OPUS4-45850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas A1 - Madkour, Sherif A1 - Gawek, Marcel A1 - Szymoniak, Paulina A1 - Hertwig, Andreas T1 - Growth kinetics and molecular mobility of irreversibly adsorbed layers in thin polymer films N2 - In well-annealed thin polymer films, with non-repulsive polymer/substrate interactions, an irreversibly adsorbed layer is expected to from. These adsorbed layers have shown greate potential for technological applications. However, their growth kinetics and molecular dynamics are still not fully understood. This is partly due to the hard accessibility of these layers in thin films. Here, the irreversibly adsorbed layers of homopolymer thin films are revealed by solvent-leaching experiments. First, the growth kinetics of these layers is investigated as a function of annealing time, annealing temperature, leaching time and the original filme thickness. The film thickness, topography and the quality of the adsorbed layer is controlled by Atomic Force Microscopy (AFM). Secondly, the molecular mobility of the adsorbed layer is investigated by Broadband Dielectric Spectroscopy (BDS). A recently developed nanostructured capacitor arrangement is employed to measure the layer with a free surface. The results are quantitatively compared and discussed with respect to recently published work. T2 - 10th Conference on Broadband Dielectric Spectroscopy and its Applications CY - Brussles, Belgium DA - 26.08.2018 KW - Thin polymer films PY - 2018 AN - OPUS4-45837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -