TY - JOUR A1 - Hewel, M. A1 - Siemann, U. A1 - Smarsly, B. A1 - Stribeck, A. A1 - Thünemann, Andreas T1 - Nachruf auf Wilhelm Ruland N2 - Mit Prof. Dr. Wilhelm Ruland starb am 3. Februar 2021 einer der letzten großen Wissenschaftler, welche die Streutheorie nach dem Zweiten Weltkrieg vorangetrieben haben. Sein zentrales Thema war die Streuung an weicher Materie. Hier lieferte er bis ins hohe Alter grundlegende Beiträge, die den Stellenwert seines Leitspruchs demonstrieren: Nichts ist praktischer als eine gute Theorie. KW - SAXS PY - 2021 VL - 20 IS - 4 SP - 50 EP - 50 PB - Wiley AN - OPUS4-52413 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Nanocarriers – Challenges Imposed by Material Characterization N2 - A brief perspective of BAM on nanocarriers is presented including examples with special emphasis on the characterization of such materials and underlying challenges. In this respect, also ongoing activities at BAM on different types of core/shell nanomaterials and related systems are briefly summarized. T2 - Kolloquium BfR CY - Online meeting DA - 18.03.2021 KW - Nanomaterial KW - Nanocarrier KW - Size KW - Surface chemistry KW - Release kinetics KW - Chemical composition KW - Core/shell nanoparticle KW - Quantum dot KW - Spectroscopy KW - Fluorescence PY - 2021 AN - OPUS4-52412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Influence of Surface Chemistry and Size on the Stability of β-NaYF4:Yb,Er Nanocrystals in Various Environments N2 - The use of inorganic lanthanide-doped upconversion nanoparticles (UCNP) in bioimaging and cellular studies requires biocompatible particles. One possible cause of UCNP toxicity is the release of potentially harmful fluoride and lanthanide ions as revealed by dilution studies in aqueous environments, particularly under high dilution conditions. To address this issue, suitable surface coatings preventing such effects in combination with fast screening methods suited for online monitoring and in situ analyses are desired. Here we present systematic studies of differently sized β-NaYF4:Yb,Er UCNP stabilized with different surface coatings and hydrophilic ligands varying in binding strength to the particle surface in various aqueous environments at different temperatures and UCNP concentrations. The concentration of the fluoride and lanthanide ions released upon particle dissolution was quantified electrochemically with a fluoride ion-sensitive electrode and inductively coupled plasma optical emission spectrometry (ICP-OES) and monitored fluorometrically, thereby exploiting the sensitivity of the upconversion luminescence to changes in size and surface chemistry. Moreover, changes in surface chemistry were determined with X-Ray photoelectron spectroscopy (XPS). Based upon our results, we could derive optimum screening parameters for UCNP stability studies and determine conditions and coating procedures and ligands for enhancing UCNP stability in aqueous environments. T2 - UPCON2021 CY - Online meeting DA - 06.04.2021 KW - Fluorescence KW - Lifetime KW - Method KW - Quantification KW - Stability KW - Coating KW - Surface chemistry KW - Lanthanide KW - Fluoride KW - Electrochemistry KW - ICP-OES KW - Upconversion KW - Nano KW - Particle KW - Aging KW - Quality assurance KW - Mass spectrometry KW - XPS PY - 2021 AN - OPUS4-52411 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knelles, J. A1 - Wanner, C. A1 - Schulz, F. A1 - Freund, M. A1 - Kolmangadi, Mohamed Aejaz A1 - Baro, A. A1 - Huber, P. A1 - Schönhals, Andreas A1 - Lachat, S. T1 - Liquid crystalline hydrazones revisited: dipolar interactions vs hydrogen bonding affecting mesomorphic properties N2 - In order to understand the role of dipolar interactions vs. H-bonding, a series of hydrazones were synthesised from 4-alkoxy-, 3,4-dialkoxy- or 3,4,5-trialkoxybenzaldehydes and phenyl, bromo- or nitrophenylhydrazine, respectively. Their mesomorphic properties were investigated by differential scanning calorimetry (DSC), polarising optical microscopy (POM), X-ray diffraction (WAXS, SAXS) and compared with known members. Only those hydrazones derived from 3,4,5-trisalkoxybenzaldehyde and either meta, meta-dinitro- or ortho, para-dinitrophenylhydrazine displayed hexagonal columnar mesophases. All other derivatives were non-mesomorphic, even when H-bonds were present. Dipole moments of the various nitro-substituted hydrazones were experimentally determined by dielectric measurements and supported by theoretical DFT calculations, which indicated that the mesophase formation is mostly governed by strong dipole moment and further enforced by intramolecular H-bonding. KW - Discotic liquid crystals PY - 2021 DO - https://doi.org/10.1080/02678292.2021.1873438 VL - 48 IS - 10 SP - 1382 EP - 1391 PB - Taylor & Francis AN - OPUS4-52409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Dietrich, P. M. A1 - Radnik, Jörg T1 - In situ monitoring of the influence of water on DNA radiation damage by near-ambient pressure X-ray photoelectron spectroscopy N2 - Ionizing radiation damage to DNA plays a fundamental role in cancer therapy. X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS xperiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. The results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further. KW - DNA KW - XPS KW - NAP-XPS KW - Radiation damage KW - Single-strand break (SSB) KW - Double-strand break (DSB) KW - Xray KW - OH radical KW - Hydroxyl radical KW - LEE KW - Low energy electrons KW - Dosimetry KW - Geant4 KW - Geant4-DNA KW - TOPAS KW - TOPAS-nbio KW - Microdosimetry KW - DNA radiation damage KW - Direct damage KW - Indirect damage KW - Quasi-direct damage KW - Hydration shell KW - Dry DNA KW - Hydrated DNA KW - ROS KW - Radical KW - Reactive oxygen species KW - Net-ionization reaction KW - Radiation therapy KW - Cancer therapy KW - Xray photo electron spectrocopy KW - Near ambient pressure xray photo electron spectroscopy KW - Base damage KW - Base loss KW - Dissociative electron transfer (DET) KW - Dissociative electron attachment (DEA) KW - Hydrated electron KW - Prehydrated electron KW - Ionization KW - PES PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524060 DO - https://doi.org/10.1038/s42004-021-00487-1 SN - 2399-3669 VL - 4 IS - 1 SP - 50 PB - Springer Nature CY - London AN - OPUS4-52406 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zänker, Steffen A1 - Scholz, G. A1 - Xu, W. A1 - Kemnitz, E. A1 - Emmerling, Franziska T1 - Structure and properties of fluorinated and non-fluorinated Ba-coordination polymers - the position of fluorine makes the difference N2 - As the most electronegative element, fluorine has a strong influence on material properties such as absorption behaviour or chemical and thermal stability. Fluorine can be easily integrated into coordination polymers (CPs) via a fluorinated acetate, here trifluoroacetate in Ba(CF3COO)2, or directly via a metal fluorine bond (BaF(CH3COO)). In the present study both possibilities of fluorine integration were tested and their effect on structure and properties of barium coordination polymers was investigated in comparison with the non-fluorinated barium acetate (Ba(CH3COO)2). In addition to the study of their thermal behaviour and their decomposition temperature, the CPs structures were tested for their application as possible anode materials in lithium ion batteries and for their sorption of water and ammonia. The properties of the CPs can be traced back to the individual structural motifs and could thus trigger new design ideas for CPs in LIBs and/or catalysis. KW - Alkaline earth metal coordination polymers KW - Lithium-ion battery KW - Water stability KW - Fluorine coordination PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524041 DO - https://doi.org/10.1002/zaac.202000360 SN - 0044-2313 VL - 647 IS - 9 SP - 1014 EP - 1024 PB - Wiley-VCH GmbH AN - OPUS4-52404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ihlenburg, R. B. J. A1 - Mai, T. A1 - Thünemann, Andreas A1 - Baerenwald, R. A1 - Saalwächter, K. A1 - Koetz, J. A1 - Taubert, A. T1 - Sulfobetaine Hydrogels with a Complex Multilength-Scale Hierarchical Structure N2 - Hydrogels with a hierarchical structure were prepared from a new highly water-soluble crosslinker N,N,N′,N′-tetramethyl-N,N′-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide and from the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The free radical polymerization of the two compounds is rapid and yields near-transparent hydrogels with sizes up to 5 cm in diameter. Rheology shows a clear correlation between the monomer-to-crosslinker ratio and the storage and loss moduli of the hydrogels. Cryo-scanning electron microscopy, low-field nuclear magnetic resonance (NMR) spectroscopy, and small-angle X-ray scattering show that the gels have a hierarchical structure with features spanning the nanometer to the sub-millimeter scale. The NMR study is challenged by the marked inhomogeneity of the gels and the complex chemical structure of the sulfobetaine monomer. NMR spectroscopy shows how these complications can be addressed via a novel fitting approach that considers the mobility gradient along the side chain of methacrylate-based monomers. KW - Small-angle X-ray scattering KW - SAXS KW - Gel PY - 2021 DO - https://doi.org/10.1021/acs.jpcb.0c10601 SN - 1520-6106 VL - 125 IS - 13 SP - 3398 EP - 3408 PB - American Chemical Society AN - OPUS4-52403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Hahn, Marc Benjamin A1 - Sturm, Heinz A1 - Bier, F A1 - Solomun, Tihomir T1 - Biologische Konsequenzen einer nanoskaligen Energiedeposition: Fokussierung auf die Rolle niederenergetischer Elektronen T1 - Biological Consequence of Nanoscale Energy Deposition: Focusing on the Role of Low-Energy Electrons N2 - Bei der Behandlung von Krebs mittels Strahlentherapie sollen Tumorzellen abgetötet werden ohne das umliegende gesunde Gewebe zu zerstören. Um Strahlentherapien für Patienten verträglicher zu machen, ist ein besseres Verständnis der zugrundeliegenden Prozesse auf der molekularen Ebene nötig. Dabei sind der Energieeintrag und die Streuprozesse der Strahlung in der Umgebung der DNA von besonderem Interesse. Durch Streuung von hochenergetischer Strahlung in Wasser werden besonders viele Sekundärelektronen mit niedriger Energie erzeugt. Zur Untersuchung der Schädigungseffizienz dieser Elektronen wurde ein Verfahren zur direkten Bestrahlung von Lösungen mittels Elektronen variabler Energien enwtickelt. Dies wurde durch einen neu entwickelten Probenhalter mit einer für Elektronen durchlässigen Nanomembran ermöglicht. Mit diesem können Bestrahlungen an DNA, Proteinen, und Zellen bei verschiedenen pH-Werten oder Salzkonzentrationen durchgeführt werden. Parallel dazu wurde der ortsabhängige Energieeintrag innerhalb des Wassers durch Elektronenstreusimulationen bestimmt. Diese neuartige Kombination von Experiment und Simulation ermöglicht die Bestimmung der Schaden-Dosis-Relation für Elektronenbestrahlung von biologischen Systemen unter realistischen physiologischen Bedingungen. So konnten für die genutzten Primärelektronen wie die mittlere letale Dosis, bei der 50 Prozent der DNA geschädigt sind, mit 1,7 Gy bestimmt. Ebenfalls wurde das für mikrodosimetrische Modellierungen und Betrachtungen der sogenannten Linear energy transfer (LET) Effekte, wichtige Verhältnis von DNA Einzelstrangbrüchen (SSB) zu Doppelstrangbrüchen (DSB) als SSB/DSB = 12/1 bestimmt. Mit Hilfe eines Modells für das Targetvolumen der DNA wurde der mittlere mikroskopische letale Energieeintrag berechnet als E1/2 = 6 ± 4 eV . Es wurde gefolgert, dass weniger als zwei Ionisationsprozesse im sensitiven Targetvolumen der DNA im Mittel zu einem Einzelstrangbruch führen. Diese Methode ist unabhängig von den Primärpartikel und geometrischen Bedingungen. Deshalb ermöglicht sie die Vergleichbarkeit experimenteller Systeme mit inhomogenen Energieverteilungen, welches sonst nicht gegeben ist. Des weiteren wurden die Strahlenschutzfunktionen des Zellschutzmoleküls Ectoines und sein Einfluss auf Wasser und Biomoleküle untersucht. Seine Schutzfunktion gegen ionisierende Strahlung wurde auf die Erhöhung des Streuquerschnitts niederenergetischer Elektronen und seine Eigenschaft als OH-Radikalfänger zurückgeführt. Aufbauend auf unseren Erkenntnissen finden in klinischen Arbeitsgruppen Untersuchungen zu Einsatzmöglichkeiten im Umfeld der Strahlentherapie statt. Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 245767821 N2 - To cure cancer radiation therapy is used to kill tumor cells. It is based on radiation induced damage to biomolecules. Here DNA damage is of key interest due to its central role in apoptosis and mutation. Because of the high amount of water in biological tissue, most of the damage is caused by the secondary particles produced by the inelastic scattering of ionizing radiation and water. A detailed understanding of the underlying molecular processes under physiological conditions is the prerequisite to develop more efficient the-rapies. Therefore irradiations have to be performed in liquid, under consideration of the chemical environment. To make it possible to irradiate liquids with electrons within scanning electron microscopes a new sample holder was constructed incorporating an electron transparent nanomembrane. It makes it possible to irradiate DNA, proteins or cells at different pH and salinity. The median lethal dose for a model system of plasmid DNA and water was determined by the combination of experimental data, particle scattering simulations (Geant4-DNA) and diffusion calculations as D1/2 = 1.7 ± 0.3 Gy. From the convolution of plasmid positions and the spatially resolved energy deposit, as determined by electron scattering simulations, the histogram of the energy deposit within the target volume of the plasmids and the microscopic median lethal energy deposit was calculated as E1/2 = 6 ± 4 eV . It could be deduced, that on average less than two ionization Events are sufficient to cause a single-strand-break. The relation of single-strand-breaks (SSB) to double-strand-breaks (DSB), which is of importance for microdosimetric modeling, was determined as SSB : DSB = 12 : 1. The presented method for the Determination of microscopic dose-damage relations was further extended to be applicable for General irradiation experiments. It is independent of the type of primary radiation used, the experimental geometry, and the diffusional properties of the molecules under investigation. This way different experimental systems with varying, inhomogeneous energy deposit characteristics become comparable with each other, which is not possible when only macroscopic averaged values are taken into account. In addition, the radiation protection properties of the compatible solute Ectoine was investigated. The protective properties of ectoine result from the increase of the inelastic scattering probabilities of low Energy electrons at the acoustic vibrational modes of water and its properties as OH-radical scavenger. Based on our results, further investigations are conducted to evaluate the application of Ectoine in the context of radiation therapy. Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 245767821 KW - Ectoin KW - Ectoine KW - DNS KW - DNA KW - Cancer therapy KW - DNA damage KW - DNA radiation damage KW - Dosimetry KW - DFG KW - Electron irradiation KW - Ectoine DNA interaction KW - Ectoine radiation protection KW - Hydroxyl radicals KW - OH radicals KW - LEE KW - Low energy electrons KW - Microdosimetry KW - Radiation KW - Geant4 KW - Geant4-DNA KW - Radiation therapy KW - LET PY - 2021 UR - https://gepris.dfg.de/gepris/projekt/245767821/ergebnisse?context=projekt&task=showDetail&id=245767821&selectedSubTab=2& SP - 1 EP - 14 AN - OPUS4-52389 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reed, B. P. A1 - Cant, D.J.H. A1 - Spencer, S.J. A1 - Carmona-Carmona, A. J. A1 - Bushell, A. A1 - Herrara-Gómez, A. A1 - Kurokawa, A. A1 - Thissen, A. A1 - Thomas, A.G. A1 - Britton, A.J. A1 - Bernasik, A. A1 - Fuchs, A. A1 - Baddorf, A.P. A1 - Bock, B. A1 - Thellacker, B. A1 - Cheng, B. A1 - Castner, D.G. A1 - Morgan, D.J. A1 - Valley, D. A1 - Willneff, E.A. A1 - Smith, E.P. A1 - Nolot, E. A1 - Xie, F. A1 - Zorn, G. A1 - Smith, G.C. A1 - Yasukufu, H. A1 - Fenton, J.L. A1 - Chen, J. A1 - Counsell, J.D.P. A1 - Radnik, Jörg A1 - Gaskell, K.J. A1 - Artyushkova, K. A1 - Yang, L. A1 - Zhang, L. A1 - Eguchi, M. A1 - Walker, M. A1 - Hajdyla, M. A1 - Marzec, M.M. A1 - Linford, M.R. A1 - Kubota, N. A1 - Cortazar-Martinez, O. A1 - Dietrich, P. A1 - Satoh, R. A1 - Schroeder, S.L.M. A1 - Avval, T.G. A1 - Nagatomi, T. A1 - Fernandez, V. A1 - Lake, W. A1 - Azuma, Y. A1 - Yoshikawa, Y. A1 - Compean-Gonzalez, C.L. A1 - Ceccone, G. A1 - Shard, A.G. T1 - ERRATUM: “Versailles project on advanced materials and standards interlaboratory study on intensity calibration for x-ray photoelectron spectroscopy instruments using low-density polyethylene” [J. Vac. Sci. Technol. A 38, 063208 (2020)] N2 - The lead authors failed to name two collaborators as co-authors. The authors listed should include: Miss Claudia L. Compean-Gonzalez (ORCID: 0000-0002-2367-8450) and Dr. Giacomo Ceccone (ORCID: 0000-0003-4637-0771). These co-authors participated in VAMAS project A27, provided data that were analyzed and presented in this publication (and supporting information), and reviewed the manuscript before submission. KW - X-ray photoelectron spectroscopy KW - Transmission function KW - Low-density polyethylene PY - 2021 DO - https://doi.org/10.1116/6.0000907 VL - 39 IS - 2 SP - 027001 PB - American Vacuum Society AN - OPUS4-52380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rühle, Bastian A1 - Krumrey, Julian Frederic A1 - Hodoroaba, Vasile-Dan T1 - Dataset accompanying the publication "Workflow towards automated segmentation of agglomerated, non-spherical particles from electron microscopy images using artificial neural networks" N2 - This dataset accompanies the following publication, first published in Scientific Reports (www.nature.com/articles/s41598-021-84287-6): B. Ruehle, J. Krumrey, V.-D. Hodoroaba, Scientific Reports, Workflow towards Automated Segmentation of Agglomerated, Non-Spherical Particles from Electron Microscopy Images using Artificial Neural Networks, DOI: 10.1038/s41598-021-84287-6 It contains electron microscopy micrographs of TiO2 particles, the corresponding segmentation masks, and their classifications into different categories depending on their visibility/occlusion. Please refer to the publication and its supporting information for more details on the acquisition and contents of the dataset, as well as the GitHub repository at https://github.com/BAMresearch/automatic-sem-image-segmentation KW - Electron microscopy KW - Neural networks KW - Image segmentation KW - Automated image analysis PY - 2021 DO - https://doi.org/10.5281/zenodo.4563942 PB - Zenodo CY - Geneva AN - OPUS4-52246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Florian, Camilo A1 - Fischer, Daniel A1 - Freiberg, K. A1 - Duwe, M. A1 - Sahre, Mario A1 - Schneider, S. A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Rettenmayr, M. A1 - Beck, Uwe A1 - Undisz, A. A1 - Bonse, Jörn T1 - Single Femtosecond Laser-Pulse-Induced Superficial Amorphization and Re-Crystallization of Silicon N2 - Superficial amorphization and re-crystallization of silicon in <111> and <100> orientation after irradiation by femtosecond laser pulses (790 nm, 30 fs) are studied using optical imaging and transmission electron microscopy. Spectroscopic imaging ellipsometry (SIE) allows fast data acquisition at multiple wavelengths and provides experimental data for calculating nanometric amorphous layer thickness profiles with micrometric lateral resolution based on a thin-film layer model. For a radially Gaussian laser beam and at moderate peak fluences above the melting and below the ablation thresholds, laterally parabolic amorphous layer profiles with maximum thicknesses of several tens of nanometers were quantitatively attained. The accuracy of the calculations is verified experimentally by high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (STEM-EDX). Along with topographic information obtained by atomic force microscopy (AFM), a comprehensive picture of the superficial re-solidification of silicon after local melting by femtosecond laser pulses is drawn. KW - Femtosecond laser KW - Silicon KW - Amorphization KW - Crystallization KW - Spectroscopic imaging ellipsometry PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523687 UR - https://www.mdpi.com/1996-1944/14/7/1651 DO - https://doi.org/10.3390/ma14071651 SN - 1996-1944 VL - 14 IS - 7 SP - 1651-1 EP - 1651-21 PB - MDPI AG CY - Basel, Switzerland AN - OPUS4-52368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - DNA based Reference Materials: In Biodosimetry and Pharmaceutical Quality Control N2 - Applications of plasmid DNA base reference materials in dosimetry and pharmaceutical research. T2 - Physical and Chemical Analysis of Polymers seminar CY - Online meeting DA - 29.03.2021 KW - Analytic KW - Certification KW - DNA KW - Dosimetry KW - Homogeneity KW - Quality testing KW - Reference material KW - Referenzmaterialien KW - Stability KW - Dose KW - Radiation KW - Pharmacy KW - Electrohpresis PY - 2021 AN - OPUS4-52361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Scheliga, F. A1 - Weidner, Steffen T1 - What does conversion mean in polymer science? N2 - The definition of the term “conversion” is discussed for a variety of polymer syntheses. It is demonstrated that in contrast to organic and inorganic chemistry several different definitions are needed in polymer science. The influence of increasing conversion on structure and topology of homo- and Copolymers is illustrated. Chain-growth polymerizations, such as radical polymerization or living anionic polymerizations of vinyl monomers, condensative chain polymerization, two and three-dimensional step-growth polymerizations, ring–ring or chain–chain equilibration and chemical modification of polymers are considered. KW - Polymers KW - Polymerization KW - Conversion KW - Polycondensation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523597 DO - https://doi.org/10.1002/macp.202100010 VL - 222 IS - 8 SP - 10 PB - Wiley VCH AN - OPUS4-52359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pu, Y. A1 - Celorrio, V. A1 - Stockmann, Jörg Manfred A1 - Sobol, Oded A1 - Sun, Z. A1 - Wang, W. A1 - Lawrence, M. J. A1 - Radnik, Jörg A1 - Russel, A. E. A1 - Hodoroaba, Vasile-Dan A1 - Huang, L. A1 - Rodriguez, P. T1 - Surface galvanic formation of Co-OH on Birnessite and its catalytic activity for the oxygen evolution reaction N2 - Low-cost, high-efficient catalysts for water splitting can be potentially fulfilled by developing earthabundant metal oxides. In this work, surface galvanic formation of Co-OH on K0.45MnO2 (KMO) was achieved via the redox reaction of hydrated Co2+ with crystalline Mn4+. The synthesis method takes place at ambient temperature without using any surfactant agent or organic solvent, providing a clean, green route for the design of highly efficient catalysts. The redox reaction resulted in the formation of ultrathin Co-OH nanoflakes with high electrochemical surface area. X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) analysis confirmed the changes in the oxidation state of the bulk and surface species on the Co-OH nanoflakes supported on the KMO. The effect of the anions, such as chloride, nitrate and sulfate, on the preparation of the catalyst was evaluated by electrochemical and spectrochemical means. XPS and Time of flight secondary ion mass spectrometry (ToF-SIMS) analysis demonstrated that the layer of CoOxHy deposited on the KMO and its electronic structure strongly depend on the anion of the precursor used during the synthesis of the catalyst. In particular, it was found that Cl- favors the formation of Co-OH, changing the rate-determining step of the reaction, which enhances the catalytic activity towards the OER, producing the most active OER catalyst in alkaline media. KW - Nanoparticles KW - Oxygen evolution reaction (OER) KW - Catalysis KW - ToF-SIMS KW - XPS KW - K-rich Birnessite (K0.45MnO2) PY - 2021 DO - https://doi.org/10.1016/j.jcat.2021.02.025 VL - 396 SP - 304 EP - 314 PB - Elsevier Inc. AN - OPUS4-52328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolmangadi, Mohamed Aejaz T1 - Glass transition, glassy dynamics and electrical conductivity of guanidinium based ILCS: Influcence of the cation headgroup configuration N2 - Molecular mobility and conductivity of four bent shaped tetramethylated guanidiniumbased ionic liquid crystals(ILCs) with varying head group configuration (cyclic or acyclic) and alkyl chain length is investigated by a combination of broadband dielectric spectroscopy (BDS) and specific heat spectroscopy (SHS). Two dielectrically active processes observed in the plastic crystalline phase at low and high temperatures are denoted as γ and α1 relaxation. The former is assigned to localized fluctuations of methyl groups including nitrogen atoms in the guanidinium head groups. SHS investigations reveal one calorimetrically active process termed as α2 Relaxation process. The temperature dependencies of the relaxation rates of α1 and α2 are similar for the cyclic ILCwhile for the acyclic counterpart they are different. Possible molecular assignments for the α1 and α2 relaxation are discussed in detail. Alongside relaxation processes, a significant conductivity contribution was observed for all ILCs, where the absolute value of DC conductivity increases by 4 orders of magnitude at the transition from the crystalline to the hexagonal columnar phase. The increase is traced to the change in the underlying conduction mechanism from the delocalized electrical conduction in the Cry phase to ionic conduction in the quasi 1D ion columns formed in the hexagonal columnar mesophase. T2 - DPG Online Spring Conference 2021 CY - Online meeting DA - 22.03.2021 KW - Fast Scanning Calorimetry KW - Glass transition KW - Conductivity KW - Dynamics PY - 2021 AN - OPUS4-52336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolmangadi, Mohamed Aejaz T1 - Molecular dynamics of Janus Polynorbornenes: Glass Transitions and Nanophase separation N2 - For the first time, dielectric and calorimetric investigations of a homologous series of Janus polynorbornenes with rigid main backbones and flexible −Si(OR)3 side groups of differing length alkyl chains (R = propyl, butyl, hexyl, octyl, and decyl) is reported. Generally, this class of polymers has some potential for applications in the field of gas separation membranes. Two dielectrically active processes are observed at low temperatures, denoted as β- and α-relaxation. The former can be assigned to localized fluctuations, while the latter is related to the glassy dynamics of the flexible −Si(OR)3 side groups, creating a nanophase separation in both the alkyl chain-rich and backbone-rich domains. This is confirmed through temperature-modulated differential scanning calorimetry (TMDSC) measurements and X-ray scattering experiments. The glass transition temperatures of the backbone rich domains, which are beyond or near to their degradation temperatures in terms of conventional DSC, are determined for the first time using fast scanning calorimetry employing both fast heating and cooling rates. This is complemented with scattering experiments that show how the size of the alkyl chain-rich domains increases with the side chain length. Alongside these results, a significant conductivity contribution was observed for all poly(tricyclononenes) with −Si(OR)3 side groups, which is interpreted in terms of a percolation model. T2 - DPG Online Spring Conference 2021 CY - Online meeting DA - 22.03.2021 KW - Dynamics KW - Glass transition KW - Conductivity PY - 2021 AN - OPUS4-52335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Zutta Villate, J. M. ED - Zutta Villate, J. M. T1 - Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement in cell organelles N2 - Dose enhancement by gold nanoparticles (AuNP) increases the biological effectiveness of Radiation damage in biomolecules and tissue. To apply them effectively during cancer therapy their influence on the locally delivered dose has to be determined. Hereby, the AuNP locations strongly influence the energy deposit in the nucleus, mitochondria, membrane and the cytosol of the targeted cells. To estimate these effects, particle scattering simulations are applied. In general, different approaches for modeling the AuNP and their distribution within the cell are possible. In this work, two newly developed continuous and discrete-geometric models for simulations of AuNP in cells are presented. These models are applicable to simulations of internal emitters and external radiation sources. Most of the current studies on AuNP focus on external beam therapy. In contrast, we apply the presented models in Monte-Carlo particle scattering simulations to characterize the energy deposit in cell organelles by radioactive 198AuNP. They emit beta and gamma rays and are therefore considered for applications with solid tumors. Differences in local dose enhancement between randomly distributed and nucleus targeted nanoparticles are compared. Hereby nucleus targeted nanoparticels showed a strong local dose enhancement in the radio sensitive nucleus. These results are the foundation for future experimental work which aims to obtain a mechanistic understanding of cell death induced by radioactive 198Au. KW - AuNP KW - Beta decay KW - Brachytherapy KW - Cancer treatment KW - DNA KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - LEE KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - Ectoine KW - OH radicals KW - Radiation damage KW - Radiationtherapy KW - Radioactive decay KW - Simulation KW - Beta particle KW - Clustered nanoparticles KW - Gamma ray KW - Low energy electrons KW - Particle scattering KW - Radiolysis KW - Livermore model KW - Penelope model KW - TOPAS KW - TOPAS-nbio PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523276 DO - https://doi.org/10.1038/s41598-021-85964-2 SN - 2045-2322 VL - 11 IS - 1 SP - 6721 PB - Springer Nature AN - OPUS4-52327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Michalchuk, Adam A1 - Boldyreva, E. A1 - Belenguer, A. M. A1 - Emmerling, Franziska A1 - Boldyrev, V. V. T1 - Tribochemistry, mechanical alloying, mechanochemistry: what is in a name? N2 - Over the decades, the application of mechanical force to influence chemical reactions has been called by various names: mechanochemistry, tribochemistry, mechanical alloying, to name but a few. The evolution of these terms has largely mirrored the understanding of the field. But what is meant by these terms, why have they evolved, and does it really matter how a process is called? Which parameters should be defined to describe unambiguously the experimental conditions such that others can reproduce the results, or to allow a meaningful comparison between processes explored under different conditions? Can the information on the process be encoded in a clear, concise, and self-explanatory way? We address these questions in this Opinion contribution, which we hope will spark timely and constructive discussion across the international mechanochemistry community. KW - Mechanochemistry KW - Tribochemistry KW - Mechanical alloying KW - Tribology KW - Mechanical activation KW - Nomenclature KW - Mechanochemical pictographs PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523291 DO - https://doi.org/10.3389/fchem.2021.685789 SN - 2296-2646 VL - 9 SP - 1 EP - 29 PB - Frontiers Media CY - Lausanne AN - OPUS4-52329 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altmann, Korinna A1 - Braun, U. A1 - Herper, D. A1 - Knefel, M. A1 - Bednarz, M. A1 - Bannick, C.-G. T1 - Smart filters for the analysis of microplastic in beverages filled in plastic bottles N2 - The occurrence of microplastic (MP) in food products, such as beverages in plastic bottles, is of high public concern. Existing analytical methods focus on the determination of particle numbers, requiring elaborate sampling tools, laboratory infrastructure and generally time-consuming imaging detection methods. A comprehensive routine analysis of MP in food products is still not possible. In the present work, we present the development of a smart filter crucible as sampling and detection tool. After filtration and drying of the filtered-off solids, a direct determination of the MP mass content from the crucible sample can be done by thermal extraction desorption gas chromatography mass spectroscopy (TED-GC/MS). The new filter crucible allows a filtration of MP down to particle sizes of 5 µm. We determined MP contents below 0.01 µg/L up to 2 µg/L, depending on beverages bottle type. This may be directly related to the bottle type, especially the quality of the plastic material of the screw cap. Dependent on the plastic material, particle formation increases due to opening and closing operations during the use phase. However, we have also found that some individual determinations of samples were subjected to high errors due to random events. A conclusive quantitative evaluation of the products is therefore not possible at present. KW - Microplastic KW - TED-GC/MS KW - Plastic bottles KW - Bbeverages KW - Filter crucible PY - 2021 DO - https://doi.org/10.1080/19440049.2021.1889042 SN - 1944-0057 VL - 38 IS - 4 SP - 691 EP - 700 PB - Taylor & Francis AN - OPUS4-52323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fahmy, Alaa A1 - El Sabbagh, M. A1 - Bedair, M. A1 - Gangan, A. A1 - El-Sabbah, M. A1 - El-Bahy, S. A1 - Friedrich, J. T1 - One-step plasma deposited thin SiOxCy films for corrosion resistance of low carbon steel N2 - Tetraethyl orthosilicate (TEOS) was used as a chemical precursor to deposit ultra-thin SiO x C y plasma polymer films onto mild steel surfaces for preventing the corrosion process. The structure–property relationships of the coatings were evaluated by X-ray Photo Spectroscopy (XPS), X-Ray Diffraction (XRD), Fourier Transform InfraRed spectroscopy (ATR-FTIR) and Energy Dispersive X-ray spectroscopy (EDX) completed with Scanning Electron Microscopy (SEM). The SEM micrographs confirmed a pinhole-free surface morphology of the low-pressure deposited plasma polymer films. The TEOS molecules become fragmented in the plasma by numerous collisions with energy-rich electrons and heavier particles. Recombination of fragments and condensation onto the steel substrate is responsible for the formation of organic SiO containing plasma polymer layers. Such thin layers consist of predominantly SiO x structures. Their properties are determined largely by the gap distance between the two samples used as electrodes in the plasma. The efficiency of the corrosion-protecting coating was compared with uncoated samples. The corrosion protection was determined by exposure of samples to 3.5% NaCl aqueous solutions. For this purpose, polarization and Electrochemical Impedance Spectroscopy (EIS) were used to monitor the corrosion. The optimal gap distance between the electrodes was determined for corrosion protection. The best protective efficiency reached more than 97% of the total protection as measured at room temperature. KW - Thin films KW - Corrosion resistance KW - Mild steel KW - Plasma treatments KW - Tetraethyl orthosilicate PY - 2020 DO - https://doi.org/10.1080/01694243.2020.1856539 VL - 35 IS - 16 SP - 1734 EP - 1751 PB - Taylor & Francis AN - OPUS4-52303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -