TY - JOUR A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Epple, Niklas A1 - Aligholizadeh, M. T1 - Die Ultraschall-Echomethode – von der Messung zur bautechnischen Kenngröße T1 - Ultrasonic Echo Method - Deriving structural parameters from measured values JF - Beton- und Stahlbetonbau N2 - Zerstörungsfreie Prüfverfahren liefern wichtige Informationen zur Beurteilung von Bauwerken. Mit ihnen können Materialeigenschaften bestimmt oder die innere Struktur von Bauteilen beschrieben werden. Für letzteres werden in der Regel Volumenverfahren angewandt. Einen besonderen Stellenwert haben in der Praxis die Radar- und die Ultraschall-Echoverfahren. Ihre Anwendung erfordert lediglich eine einseitige Zugänglichkeit zum Bauteil. Zudem lassen sich zahlreiche unterschiedliche Prüfaufgaben lösen. Zum Stand der Technik gehören beispielsweise die Ortung von Bewehrung und Spannkanälen, die Bestimmung der Dicke von Bauteilen oder die Fehlerlokalisierung. In diesem Beitrag wird gezeigt, wie mithilfe von Ultraschall-Echomessungen gesammelte Messwerte in ein quantitatives Messergebnis überführt werden können, das wiederum in ingenieurtechnische Berechnungen einfließen kann. Einleitend werden die Prüfmethode und die Messtechnik erläutert. Anschließend wird das Vorgehen von der Auswertung der Messergebnisse bis zur Bestimmung der bautechnischen Kenngröße – Bauteildicke – gezeigt. Abschließend wird die Methodik an einem Referenzprüfkörper aus Polyamid demonstriert und den Ergebnissen von Messungen an Beton gegenübergestellt. KW - Zerstörungsfreie Prüfung KW - Ultraschall-Echoverfahren KW - Messunsicherheit KW - Bildgebende Darstellung KW - Schallgeschwindigkeit PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521113 DO - https://doi.org/10.1002/best.202000091 VL - 116 IS - 3 SP - 200 EP - 211 PB - Ernst & Sohn AN - OPUS4-52111 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zoëga, Andreas T1 - Spannungsabhängigkeit elastischer Wellen in Beton JF - Beton- und Stahlbetonbau KW - Beton KW - Spannungsabhängigkeit KW - Schallgeschwindigkeit KW - Oberflächenwellen KW - Richtungsabhängigkeit PY - 2013 SN - 0005-9900 SN - 1437-1006 VL - 108 IS - 7 SP - 508 EP - 510 PB - Ernst CY - Berlin AN - OPUS4-30905 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Straet, T. A1 - Bayerl, H. A1 - Stark, Wolfgang A1 - Döring, Joachim A1 - Kürten, Ch. T1 - Ultrasonic Measurements on Thermoset Moulding Compounds JF - Kunststoffe : bilingual edition, German + English KW - Ultraschall KW - Fertigungskontrolle KW - Schallgeschwindigkeit KW - Vernetzungsreaktion KW - Qualitätssicherung PY - 2005 SN - 0945-0084 VL - 95 IS - 7 SP - 1 EP - 5 PB - Hanser CY - München AN - OPUS4-10304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Stark, Wolfgang A1 - Döring, Joachim A1 - Kelm, Jürgen A1 - Fritsch, Sebastian T1 - Kontrolle der Kautschukvulkanisation im Werkzeug mit Ultraschall T2 - ZfP in Anwendung, Entwicklung und Forschung - Jahrestagung 2002 N2 - Zusammenfassung In diesem Beitrag wird zunächst die für die on-line Prozesskontrolle an duroplastischen Formmassen entwickelte Ultraschallmesstechnik vorgestellt. Die Methode basiert auf der Durchschallung des vernetzenden Materials mit Hilfe von in das Werkzeug integrierten druck- und temperaturfesten 4 MHz-Ultraschallsensoren. Die Auswertung von Schalllaufzeit und Signalamplitude erfolgt vollautomatisch und dient der Berechnung von Schallgeschwindigkeit und -dämpfung. Beide Größen repräsentieren die änderung der mechanischen Eigenschaften infolge der Vernetzungsreaktion. Durch Anwendung auf vulkanisierende Materialien sollte die Anwendbarkeit der bewährten Methode erweitert werden. Im Ergebnis wird gezeigt, dass die Größe des Messeffekts von der Menge an Vernetzer (Schwefelkonzentration) abhängt. Bei ausreichend hohem Vernetzungsgrad zeigt die Ultraschallgeschwindigkeit signifikante, gut auswertbare Resultate, die den Ablauf der Vulkanisation on-line zu verfolgen gestatten. Ein Vergleich mit Vulkameterkurven zeigt große ähnlichkeiten und berechtigt zu der Hoffnung, dass die Methode industriellen Einsatz finden kann. T2 - Jahrestagung Zerstörungsfreie Materialprüfung 2002 CY - Weimar, Deutschland DA - 2002-05-06 KW - Prozesskontrolle KW - Vulkanisation KW - Vulkameter KW - Ultraschall KW - Schallgeschwindigkeit PY - 2002 UR - http://www.ndt.net/article/dgzfp02/papers/p21/p21.htm SN - 3-931381-39-0 N1 - Serientitel: Berichtsband / Deutsche Gesellschaft für zerstörungsfreie Prüfung e. V. – Series title: Berichtsband / Deutsche Gesellschaft für zerstörungsfreie Prüfung e. V. IS - 80-CD PB - DGZfP CY - Berlin AN - OPUS4-1857 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Zoëga, Andreas T1 - Spannungsabhängigkeit elastischer Wellen in Beton N2 - Beton, einer der vielseitigsten und meist-verbreitetsten Baustoffe, verdankt diese Popularität seiner hohen Druckfestigkeit bei gleichzeitig geringen Kosten auf der einen Seite sowie seiner hohen Flexibilität durch die Möglichkeit der fast beliebigen Formgebung von lastabtragenden Elementen und Bauteilen auf der anderen Seite. Die weltweit verbreiteten Betonbauwerke altern und drängen die zerstörungsfreie Prüfung dazu, Prüfmethoden für eine effektive Zustandsbewertung von im Betrieb befindlichen Betonbauwerken zur Verfügung zu stellen. Für viele in anderen zerstörungsfreien Prüfbereichen alltägliche Anwendungen stellt Beton aufgrund der Heterogenität des Verbundwerkstoffs mit seinem nichtlinearen Spannungs-Dehnungs-Verhalten eine Herausforderung dar. Mit steigender Spannung nehmen die nichtlinearen Eigenschaften noch zu und können - z. B. durch die sich in Abhängigkeit von der Belastungsrichtung bildenden Mikrorisse - zu einer anisotropen Ausbildung von Eigenschaften führen, welche u. a. mit elastischen Wellen in Wechselwirkung treten. Bisherige Prüfaufgaben an Beton beschränken sich auf Bereiche, bei denen die elastischen Wellen ein lineares Verhalten aufweisen und sind daher nicht uneingeschränkt anwendbar. Gerade der Zusammenhang von Spannungszustand und Anisotropie zeigt eindeutige nichtlineare Effekte auf die Eigenschaften elastischer Wellen. Diese Eigenschaftsänderungen von elastischen Wellen sollen in dieser Arbeit anhand der Schallgeschwindigkeit erörtert werden. Neben einer Beobachtung und Dokumentation der auftretenden Effekte werden die Ursachen und Wirkmechanismen, die zu einer Schallgeschwindigkeitsänderung unter einer Druckbelastung führen, untersucht. In einem Vorversuch wurden Wellen unterschiedlichen Typs, Frequenz, Polarisation und Ausbreitungsrichtung auf ihre Sensitivität gegenüber einer Belastung miteinander verglichen. Hierbei stellte sich die Oberflächenwelle als die belastungsempfindlichste heraus und wird in dieser Arbeit für die Beschreibung der spannungsabhängigen Eigenschaftsänderungen von elastischen Wellen bevorzugt verwendet. Die für diese Versuchsserie erstellten Versuchsaufbauten und die verwendeten Oberflächenwellen erlaubten eine beliebige Orientierung der Messrichtung in Bezug zur Lastrichtung. Die Änderung der Schallgeschwindigkeit konnte damit in Richtungsabhängigkeit verfolgt und anisotropes Verhalten beobachtet werden. Ultraschallwellen sind für Untersuchungen an Beton die am häufigsten verwendeten; infolgedessen wurde zum Vergleich parallel mit Ultraschallwellen unterschiedlicher Frequenzen gemessen. Als Ergebnis aus der Versuchsserie konnte der Auslastungs- und Schädigungsgrad des Betons nachvollzogen und damit die Änderung der Schallgeschwindigkeit in Abhängigkeit von der aufgebrachten Last für eine sichere Bruchvorhersage verwendet werden. Mit wachsender Belastung stieg dabei die Schallgeschwindigkeit an, dieser Anstieg verlangsamte sich und ging im Bereich zwischen 50-80 % der Bruchlast in eine zunehmende Schallgeschwindigkeitsreduktion über. Der größte Schallgeschwindigkeitszuwachs konnte zu Beginn in Lastrichtung beobachtet werden, während die größte Schallgeschwindigkeitsreduktion in orthogonaler Richtung kurz vor dem Bruch stattfand. Der bei geringer Belastung (linear-elastischer Bereich) besonders deutliche Schallgeschwindigkeitsanstieg kann mithilfe der Akustoelastizität erklärt werden. Der sich vermindernde Anstieg und die Schallgeschwindigkeitsreduktion ließen sich experimentell auf die Mikrorissentstehung und das Mikrorisswachstum innerhalb des Betons zurückführen. Des Weiteren konnte gezeigt werden, dass sich die Schallgeschwindigkeit bei einer Wiederbelastung von der bei einer Erstbelastung unterscheidet, dieser Unterschied sich bei einer höheren Vorbelastung vergrößert, die Anzahl der vorangegangenen Belastungen einen Einfluss hat und eine Überlastung sich besonders deutlich in einer Schallgeschwindigkeitsminderung niederschlägt. Bei den Schallgeschwindigkeitsänderungen konnte ebenso eine zeitabhängige Komponente beobachtet werden. Die typischen Kurvenverläufe der Schallgeschwindigkeit über der Spannung konnten ebenso an Probekörpern mit anderen Betonrezepturen sowie an bewehrten Probekörpern aufgezeichnet werden. Die spannungsabhängige Änderung der Geschwindigkeit von elastischen Wellen in Beton ist ein nicht zu vernachlässigender Effekt, welcher für Prüfverfahren zur Inspektion von bestehenden Gebäuden in Betracht gezogen werden kann. Ein Verständnis für die Ursachen der belastungs- bzw. zerstörungsgradabhängigen Geschwindigkeitsänderung der elastischen Wellen in Beton ebnet den Weg zur Entwicklung und Etablierung neuer Prüfmethoden, mit deren Hilfe vor Ort und zerstörungsfrei der Auslastungs- und Schädigungsgrad einer Betonstruktur bestimmt werden kann. N2 - Concrete is one of the most widely used construction materials. Concrete owes this popularity to its high compressive strength, low costs and the flexibility of being cast in the form of customized structural elements and load-bearing members. The many concrete structures around the world are aging, urging the NDT community to develop testing tools for effective inspection of in-service concrete structures. Concrete poses a challenge to the application of standard NDT techniques. Concrete is a multi-phase heterogeneous material with a nonlinear stress-strain behavior. Loading and the resulting damage (i.e., microcracking) increase the non-linearity and may induce anisotropy in concrete. As a result, many of the common wave propagation-based NDT methods relying on linear elastic theory are no longer applicable. The main objective of this study is to investigate the stress-induced changes in the velocity of elastic waves in concrete under uniaxial compression. The underlying mechanisms of the observed effects have been also investigated here. A preliminary experiment was conducted to study the influence of the type, frequency, polarization, and propagation direction of elastic waves on the stress-induced velocity changes. The velocity of sonic surface waves (Rayleigh waves) demonstrated the highest sensitivity and therefore, much of this work is focused on the stress-induced changes in surface wave propagation characteristics. The test setup allowed measuring the surface wave velocities along various directions with respect to the loading direction and therefore, the direction-dependency of the surface wave velocity measurements was also investigated. Standard ultrasonic testing of various frequencies was also conducted and the results were compared to those from sonic surface wave measurements. Sonic surface wave velocities were found to be highly stress- and damage-dependent. Application of stress results in an initial sharp increase in surface wave velocity. Increasing the stress, the wave velocities continue to increase, however, the rate of increase decreases for stress levels between 50% and 80% of the failure stress, after which the velocities start rapidly to decrease. The sharpest increase was recorded in the direction of the loading, while the velocities decreased the fastest in the perpendicular direction. The sharp initial increase in wave velocities (within the elastic region) can be explained by acoustoelastic effects. The initiation and development of microcracks within concrete result in the observed velocitystress relationship beyond the elastic region. The test specimens were generally loaded in several load cycles and wave velocities were measured during both loading and unloading phases. It was found that the load history has a major effect on the velocity measurements. For previously loaded specimens, a notable difference between the velocity measurements during unloading and reloading was recorded. The higher the maximum previous load, the larger was the difference. Also, overloading the specimens resulted in a very large loss in surface wave velocities. Similar qualitative velocitystress relationships were obtained for a number of different concrete mixes as well as the reinforced concrete. Stress-dependency of elastic wave velocities in concrete is an important effect, which needs to be taken into account for in-situ measurements of in-service structural elements. Understanding and establishing the stress- and –damage dependency of wave velocities in concrete paves the way for developing new NDT techniques, which can be used to nondestructively estimate the in-situ stress and damage state of concrete. T3 - BAM Dissertationsreihe - 76 KW - Beton KW - Mikrorisse KW - Oberflächenwellen KW - Schallgeschwindigkeit KW - Spannungsabhängigkeit KW - Akustoelastizität KW - Richtungsabhängigkeit KW - elastische Wellen KW - Belastung PY - 2011 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-820 SN - 978-3-9814281-6-2 SN - 1613-4249 VL - 76 SP - 1 EP - 175 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-82 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -