TY - JOUR A1 - Wu, Dejian A1 - Zhu, Z. A1 - Bao, Z. T1 - Optimization of the content distribution of expanded natural graphite in a multilayer metal hydride bed for thermochemical heat storage N2 - The poor thermal conductivity of MH beds limits hydrogen absorption in metal hydride (MH) reactors for thermochemical heat storage. The compaction of MH powder with expanded natural graphite (ENG) is an efficient and cost-effective approach for the heat transfer enhancement of MH beds. However, the addition of ENG reduces the hydrogen storage density of the compacted composites. How to optimize the allocation of a limited amount of ENG in the MH bed has not been studied. In this study, a multilayer MH bed configuration with an ENG grade content was adopted to improve the heat transfer performance of an MH reactor for thermochemical heat storage. The effect of the ENG content gradient on the performance of the MH reactor was investigated using a mathematical model of the MH reactor. Furthermore, an optimization method based on the entransy dissipation extremum principle (EDEP) was proposed to optimize the ENG distribution in magnesium hydride (MgH2)-ENG compacts. The results showed that a larger ENG content gradient resulted in faster hydrogen absorption and better heat-discharge performance. Compared with a configuration with a uniform ENG content, the optimized configuration based on the EDEP exhibited a shorter reaction time, more uniform bed temperature distribution, and 15.33% higher gravimetric exergy-output rate. In addition, the number of optimization iterations had little effect on the optimal results, which could be obtained by implementing only one optimization iteration. The optimization results showed that more ENG should be allocated to the internal layer of the MgH2-ENG compact. The compacts were divided into three layers, and the ENG content of each layer was calculated according to the optimized configuration based on the EDEP. The optimization method proposed in this study can be applied to optimize KW - Metal hydride reactor KW - Expanded natural graphite KW - Multilayer bed KW - Entransy dissipation exremum principle KW - Thermochemical heat storage PY - 2022 U6 - https://doi.org/10.1016/j.applthermaleng.2022.119115 SN - 1359-4311 VL - 216 SP - 1 EP - 10 PB - Elsevier Ltd. AN - OPUS4-55890 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lin, R. A1 - Li, X. A1 - Krajnc, A. A1 - Li, Z. A1 - Li, M. A1 - Wang, W. A1 - Zhuang, L. A1 - Smart, S. A1 - Zhu, Z. A1 - Appadoo, D. A1 - Harmer, J. R. A1 - Wang, Z. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Beyer, S. A1 - Wang, L. A1 - Mali, G. A1 - Bennett, T. D. A1 - Chen, V. A1 - Hou, J. T1 - Mechanochemically Synthesised Flexible Electrodes Based on Bimetallic Metal–Organic Framework Glasses for the Oxygen Evolution Reaction N2 - The melting behaviour of metal–organic frameworks (MOFs) has aroused significant research interest in the areas of materials science, condensed matter physics and chemical engineering. This work first introduces a novel method to fabricate a bimetallic MOF glass, through meltquenching of the cobalt-based zeolitic imidazolate Framework (ZIF) [ZIF-62(Co)] with an adsorbed ferric coordination complex. The high-temperature chemically reactive ZIF-62-(Co) liquid facilitates the formation of coordinative bonds between Fe and imidazolate ligands, incorporating Fe nodes into the framework after quenching. The resultant Co–Fe bimetallic MOF glass therefore shows a significantly enhanced oxygen evolution reaction performance. The novel bimetallic MOF glass, when combined with the facile and scalable mechanochemical synthesis technique for both discrete powders and surface coatings on flexible substrates, enables significant opportunities for catalytic device Assembly KW - Electrodes KW - MOF KW - OER KW - XANES KW - XAS KW - Bimetallic frameworks PY - 2022 U6 - https://doi.org/10.1002/anie.202112880 VL - 61 IS - 4 SP - e202112880 PB - Wiley AN - OPUS4-54018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tu, Z. A1 - Donskyi, Ievgen A1 - Qiao, H. A1 - Zhu, Z. A1 - Unger, Wolfgang A1 - Hackenberger, C. P. R. A1 - Chen, W. A1 - Adeli, M. A1 - Haag, R. T1 - Graphene Oxide-Cyclic R10 Peptide Nuclear Translocation Nanoplatforms for the Surmounting of Multiple-Drug Resistance N2 - Multidrug resistance resulting from a variety of defensive pathways in Cancer has become a global concern with a considerable impact on the mortality associated with the failure of traditional chemotherapy. Therefore, further research and new therapies are required to overcome this challenge. In this work, a cyclic R10 peptide (cR10) is conjugated to polyglycerol-covered nanographene oxide to engineer a nanoplatform for the surmounting of multidrug resistance. The nuclear translocation of the nanoplatform, facilitated by cR10 peptide, and subsequently, a laser-triggered release of the loaded doxorubicin result in efficient anticancer activity confirmed by both in vitro and in vivo experiments. The synthesized nanoplatform with a combination of different features, including active nucleus-targeting, highloading capacity, controlled release of cargo, and photothermal property, provides a new strategy for circumventing multidrug resistant cancers. KW - Graphen Oxide KW - Nanoplatform KW - Cancer PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-510061 VL - 30 IS - 35 SP - 2000933 PB - Wiley VCH AN - OPUS4-51006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -