TY - JOUR A1 - Swaraj, Sufal A1 - Oran, Umut A1 - Lippitz, Andreas A1 - Schulze, Rolf-Dieter A1 - Friedrich, Jörg Florian A1 - Unger, Wolfgang T1 - Surface Analysis of Plasma-Deposited Polymer Films, 4 - In situ Characterization of Plasma-Deposited Ethylene Films by XPS and NEXAFS N2 - XPS and NEXAFS spectroscopy were used for the chemical characterization of pulsed plasma-deposited ethylene films before and after exposure to ambient air. The influence of external plasma parameters on the spectroscopic results was investigated. Information on the chemical character of the plasma-polymerized films, such as the regularity of the primary structure, the amount of long-living radicals, and branching or cross-linking or both was derived from this data. Irregularity and radical concentration for post-plasma reactions of the plasma-deposited films increased with the duty cycle or power. A decreased level of monomer fragmentation and, consequently, an increase in regularity is partially concluded from the experimental data when the monomer pressure is increased. The concentration of surface radicals available for post-plasma reactions also increased with monomer pressure. The correlation found between the degree of the post-plasma oxygen incorporation and the variation of the various external parameters agreed with earlier ToF-SSIMS findings. KW - ESCA/XPS KW - NEXAFS KW - Plasma polymerization KW - Polyethylene (PE) KW - Thin films PY - 2005 DO - https://doi.org/10.1002/ppap.200400070 SN - 1612-8850 SN - 1612-8869 VL - 2 IS - 4 SP - 310 EP - 318 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-11940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Procop, Mathias A1 - Radtke, Martin A1 - Krumrey, M. A1 - Hasche, K. A1 - Schädlich, S. A1 - Frank, W. T1 - Electron probe microanalysis (EPMA) measurement of thin-film thickness in the nanometre range N2 - The thickness of thin films of platinum and nickel on fused silica and silicon substrates has been determined by EPMA using the commercial software STRATAGEM for calculation of film thickness. Film thickness ranged in the order 10 nm. An attempt was made to estimate the confidence range of the method by comparison with results from other methods of analysis. The data show that in addition to the uncertainty of the spectral intensity measurement and the complicated fitting routine, systematic deviation caused by the underlying model should be added. The scattering in the results from other methods does not enable specification of a range of uncertainty, but deviations from the real thickness are estimated to be less than 20%. KW - Electron probe microanalysis KW - EPMA KW - Thin films KW - Thickness measurement KW - X-rays PY - 2002 DO - https://doi.org/10.1007/s00216-002-1514-5 SN - 1618-2642 SN - 1618-2650 VL - 374 SP - 631 EP - 634 PB - Springer CY - Berlin AN - OPUS4-7090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hübert, Thomas A1 - Shimamura, Aki A1 - Klyszcz, Andreas T1 - Electrical Properties of Carbon Black and Ruthenium Dioxide Embedded Silica Films N2 - The electrical properties of sol–gel-derived films can be tailored by embedding conductive particles of ruthenium dioxide or carbon black in an insulating amorphous SiO2 silica matrix. The preparation process included an acid hydrolysis of tetraethoxysilane and methyltrimethoxysilane. Then alcohol solutions of ruthenium chloride or carbon black were added. Films of filler concentration up to 60 vol.% were prepared by dip coating and then dried and heat-treated at various temperatures up to 600_°C. The D.C. resistance of the films can be varied within the range of 109 to 10–2 OHgr sdot cm. A non-linear dependence on filler composition in the films was observed for both systems, which is explained by a modified percolation theory. A percolation threshold of 5.5 vol.% for SiO2-RuO2 or 50 vol.% for SiO2-C films, whereby the resistance drastically decreases, was determined. Moreover the temperature dependency of resistance and the current-voltage characteristics of the films can also be explained by this geometric model. KW - Sol-gel KW - Thin films KW - Carbon black KW - Ruthenium dioxide KW - Percolation phenomena PY - 2004 DO - https://doi.org/10.1007/s10971-004-5777-5 SN - 0928-0707 SN - 1573-4846 VL - 32 SP - 131 EP - 135 PB - Kluwer Academic Publ. CY - Dordrecht AN - OPUS4-6909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Seah, M.P. A1 - Spencer, S.J. A1 - Bensebaa, F. A1 - Vickridge, I. A1 - Danzebrink, H. A1 - Krumrey, M. A1 - Gross, Thomas A1 - Österle, Werner A1 - Wendler, E. A1 - Rheinländer, B. A1 - Azuma, Y. A1 - Kojima, I. A1 - Suzuki, N. A1 - Suzuki, M. A1 - Tanuma, S. A1 - Moon, D.W. A1 - Lee, H.J. A1 - Cho, H.M. A1 - Chen, H.Y. A1 - Wee, A. T. S. A1 - Osipowicz, T. A1 - Pan, J.S. A1 - Jordaan, W.A. A1 - Hauert, R. A1 - Klotz, U. A1 - van der Marel, C. A1 - Verheijen, M. A1 - Tamminga, Y. A1 - Jeynes, C. A1 - Bailey, P. A1 - Biswas, S. A1 - Falke, U. A1 - Nguyen, N.V. A1 - Chandler-Horowitz, D. A1 - Ehrstein, J.R. A1 - Muller, D. A1 - Dura, J.A. T1 - Ultra-thin SiO2 on Si, Part V: Results of a CCQM Pilot Study of Thickness Measurements KW - SiO2 KW - Thin films KW - Thickness KW - XPS KW - Ellipsometry KW - TEM PY - 2003 SN - 1473-2734 SP - 57 pages AN - OPUS4-4118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -