TY - CONF A1 - Gornushkin, Igor B. A1 - Sennikov, P. A1 - Kornev, R. A1 - Ermakov, A. A1 - Shkrunin, V. T1 - Laser Induced Plasma for Chemical Vapor Deposition: Theory and Experiment N2 - A possibility of deposition from laser-induced plasma (LIP) is investigated in search for an economic and simple method to obtain isotopic compounds from enriched gaseous precursors. A breakdown in mixtures of BCl3 and BCl3 with hydrogen, argon, and methane are studied both theoretically and experimentally. Calculations of expanding plasma of different composition are performed with the use of the fluid dynamic code coupled to the equilibrium chemistry solver. Condensed phases of boron, boron carbide, and graphite are predicted showing maximum concentrations in peripheral zones of the plasma. In experiment LIP is induced in mixtures BCl3, Н2+BCl3, H2+Ar+BCl3, H2+BCl3+CH4, BF3, Н2+BF3, H2+Ar+BF3, and H2+Ar+BF3. The gases are analyzed before, during, and after laser irradiation by optical and mass spectroscopic methods. The composition of reaction products is found to be close to that predicted theoretically. The conversion of precursor gases BCl3 and BF3 into gaseous and condensed products is 100% for BCl3 and 80% for BF3. Solid deposits of up to 30 mg are obtained from all the reaction mixtures. FTIR analysis of BCl3+H2+CH4 deposits points to a presence of condensed boron and boron carbide that are also predicted by the model. Both calculations and preliminary experimental results suggest the chemical vapor deposition by LIP is promising for conversion of gaseous enriched precursors into elemental isotopes and their isotopic compounds. T2 - International Online Meeting on Laser Induced Breakdown Spectroscopy (IIOMLIBS) CY - Online meeting DA - 06.07.2020 KW - Chemical vapor deposition KW - Laser induced plasma PY - 2020 AN - OPUS4-50994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Sennikov, P. A1 - Kornev, R. A1 - Ermakov, A. A1 - Shkrunin, V. T1 - Laser Induced Dielectric Breakdown for Chemical Vapor Deposition by Hydrogen Reduction of Volatile Boron Halides BCl3 and  BF3 N2 - A possibility of deposition from laser-induced plasma is investigated in search for an economic and simple method for obtaining isotopic compounds from enriched gaseous precursors although no isotopic compounds are used in this the proof-of-principle work. A breakdown in mixtures of BCl3 and BCl3 with hydrogen, argon, and methane are studied both theoretically and experimentally. Equilibrium chemistry calculations show the deposition of boron, boron carbide, and carbon is thermodynamically favorable in BCl3 systems and only carbon in BF3 systems. Dynamic calculation of expanding plasma is performed using fluid dynamics coupled with equilibrium chemistry. Condensed phases of boron, boron carbide, and graphite are predicted with maximum concentrations in peripheral zones of the plasma. In experiment, plasma is induced in mixtures BCl3, H2 + BCl3, H2 + Ar + BCl3, H2 + BCl3 + CH4, BF3, H2 + BF3, H2 + Ar + BF3, and H2 + Ar + BF3. The gases are analyzed before, during, and after laser irradiation by optical and mass spectrometry methods. The results show the composition of reaction products close to that predicted theoretically. The conversion of precursor gases BCl3 and BF3 into gaseous and condensed products is 100% for BCl3 and 80% for BF3. Solid deposits of up to 30 mg are obtained from all reaction mixtures. Due to technical reasons only FTIR characterization of the BCl3 + H2 + CH4 deposit is done. It points to presence of condensed boron and boron carbide predicted by the model. Overall, the calculations and preliminary experimental results imply the chemical vapor deposition with laser induced plasma is promising for conversion of gaseous enriched precursors into elemental isotopes and their isotopic compounds. KW - Boron halides KW - Chemical vapor deposition KW - Laser induced dielectric breakdown, Hydrogen reduction PY - 2020 DO - https://doi.org/10.1007/s11090-020-10096-w VL - 40 IS - 5 SP - 1145 EP - 1162 PB - Springer AN - OPUS4-50968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Galbacs, G. A1 - Keri, A. A1 - Kalomista, I. A1 - Kovacs-Szeles, E. A1 - Gornushkin, Igor B. T1 - Deuterium analysis by inductively coupled plasma mass spectrometry using polyatomic species: An experimental study supported by plasma chemistry modeling N2 - based on the use of the signal from hydrogen-containing polyatomic ions formed in the inductively coupled plasma. Prior to analytical experiments, a theoretical study was performed to assess the concentration of polyatomic species present in an equilibrium Ar-O-D-H plasma, as a function of temperature and stoichiometric composition. It was established that the highest sensitivity and linearity measurement of D concentration in a wide range can be achieved by monitoring the ions of D2 and ArD, at masses 4 and 42, respectively. Results of the calculations are in good agreement with the experiments. Signal stability, spectral interferences, as well as the effect of plasma parameters were also assessed. Under optimized conditions, the limit of detection (LOD) was found to be 3 ppm atom fraction for deuterium when measured as ArD (in calcium and potassium free water), or 78 ppm when measured as D2. The achieved LOD values and the 4 to 5 orders of magnitude dynamic range easily allow the measurement of deuterium concentrations at around or above the natural level, up to nearly 100% (or 1 Mio ppm) in a standard quadrupole ICP-MS instrument. An even better performance is expected from the method in high resolution ICP-MS instruments equipped with low dead volume sample introduction systems KW - ICP MS KW - Deuterium KW - Deuterium enriched water PY - 2020 DO - https://doi.org/10.1016/j.aca.2020.01.011 VL - 1104 SP - 28 EP - 37 PB - Elsevier B.V. AN - OPUS4-50777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zettner, Alina A1 - Gojani, Ardian A1 - Schmid, Thomas A1 - Gornushkin, Igor B. T1 - Evaluation of a Spatial Heterodyne Spectrometer for Raman Spectroscopy of Minerals N2 - Spatial heterodyne spectroscopy (SHS) is a novel spectral analysis technique that is being applied for Raman spectroscopy of minerals. This paper presents the theoretical basis of SHS and its application for Raman measurements of calcite, quartz and forsterite in marble, copper ore and nickel ore, respectively. The SHS measurements are done using a broadband (518–686 nm) and resolving power R ≈ 3000 instrument. The spectra obtained using SHS are compared to those obtained by benchtop and modular dispersive spectrometers. It is found that SHRS performance in terms of resolution is comparable to that of the benchtop spectrometer and better than the modular dispersive spectrometer, while the sensitivity of SHRS is worse than that of a benchtop spectrometer, but better than that of a modular dispersive spectrometer. When considered that SHS components are small and can be packaged into a handheld device, there is interest in developing an SHS-based Instrument for mobile Raman spectroscopy. This paper evaluates the possibility of such an application. KW - Forsterite KW - Spatial heterodyne spectrometer KW - Interferometric spectroscopy KW - Fourier transform spectroscopy KW - Raman spectroscopy KW - Calcite KW - Quartz PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504624 DO - https://doi.org/10.3390/min10020202 VL - 10 IS - 2 SP - 202 PB - MDPI CY - Basel, Switzerland AN - OPUS4-50462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Gaft, M. A1 - Nagli, L. A1 - Raichlin, Y. T1 - Laser-induced breakdown spectroscopy (LIBS) of BaF2-Tm3+ N2 - Our recent study was focused on the emission from Laser Induced Plasma (LIP) at the delay times of tenths of microseconds after the laser pulse. At these long delays, the spectrum is dominated by the broadband molecular emission and plasma induced luminescence (PIL) produced by a luminescent matrix; only solitary atomic emission lines can be seen. Barium fluoride BaF2 activated by thulium (Tm) is a famous scintillator that presents the promising object for LIP in terms of both the potential for BaF molecular emission and Tm3+ PIL. The detection of molecular and PIL bands presents a new opportunity for analysis of halogens and rare-earth elements, which are the difficult objects for LIBS. In this paper, we show that the UV, Green, Extreme Red, and Infrared molecular bands from BaF and blue luminescence from Tm3+ are present in the LIP emission spectra while the detection of atomic Emission from F I and Tm I was impossible with the same experimental setup. Thus, the detection of molecular emission and PIL can be more sensitive than the traditional detection of Emission from atoms and ions. KW - BaF KW - Laser-Induced Breakdown Spectroscopy (LIBS) KW - Rare-Earth elements (Tm3+) KW - Plasma-induced luminescence PY - 2020 DO - https://doi.org/10.1016/j.sab.2020.105767 VL - 164 SP - 105767 PB - Elsevier B.V. AN - OPUS4-50360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Plasma Fundamentals and Diagnostics N2 - This course will provide an introduction to plasma diagnostic techniques. The major focus of the course will be on the discussions of the practical procedures as well as the underlying physical principles for the measurements of plasma fundamental characteristics (e.g., temperatures, thermodynamic properties, and electron number density). Particular emphasis will be placed on inductively coupled plasma–atomic emission spectrometry, but other analytical plasmas will also be used as examples when appropriate. Selected examples on how one can manipulate the operating conditions of the plasma source, based on the results of plasma diagnostic measurements, to improve its performance used for spectrochemical analysis will also be covered. Topics to be covered include thermal equilibrium, line profiles, temperatures, electron densities, excitation processes, microreactions, pump and probe diagnostics, tomography, temporal and spatial resolution. Basis of plasma computer modeling will be presented. T2 - Winter Plasma Conference CY - Tucson, AZ, USA DA - 10.01.2020 KW - Plasma modeling KW - Thermal equilibrium KW - Plasma processes KW - Electron number density KW - Temperatures KW - Emission line profiles KW - Spatial information PY - 2020 AN - OPUS4-50324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gottlieb, Cassian A1 - Gojani, Ardian A1 - Völker, Tobias A1 - Günther, Tobias A1 - Gornushkin, Igor B. A1 - Wilsch, Gerd A1 - Günster, Jens T1 - Investigation of grain sizes in cement-based materials and their influence on laser-induced plasmas by shadowgraphy and plasma imaging N2 - The effect of particle grain sizes in different cement-based mixtures on the laser-induced plasma evolution is studied using two experimental methods: (i) temporal and spatial evolution of the laser-induced shock wave is investigated using shadowgraphy and two-dimensional plasma imaging, and (ii) temporal and spatial distribution of elements in the plasma is investigated using two-dimensional spectral imaging. This study is motivated by the interest in applying laser-induced breakdown spectroscopy (LIBS) for chemical analysis of concrete, and subsequently obtain information related to damage assessment of structures like bridges and parking decks. The distribution of grain sizes is of major interest in civil engineering as for making concrete different aggregate grain sizes defined by a sieving curve (64mm to 0.125 mm) are needed. Aggregates up to a size of 180 μm can be excluded from the data set, therefore only the amount of small aggregates with a grain size below 180 μm must be considered with LIBS. All components of the concrete with a grain size smaller than 0.125mm are related to the flour grain content. Tested samples consisted of dry and hardened cement paste (water-cement ratio w/z=0.5), which served as a reference. Aggregate mixtures were made by adding flour grains (size 40 μm) and silica fume (size 0.1 μm) in different ratios to cement: 10%, 30%, 50% and 60%, all combined to the remaining percentage of dry or hydrated cement. The visualization results show that a dependance in the evolution of the plasma as a function of sample grain size can be detected only in the initial stages of the plasma formation, that is, at the initial 3 μs of the plasma life. Spectral information reveals the elemental distribution of the silicon and calcium in plasma, in both neutral and ionized form. Here also, a significant effect is observed in the first 1 μs of the plasma lifetime. KW - LIBS KW - Cement-based materials KW - Particle size KW - Shadowgraphy KW - Plasma imaging PY - 2020 DO - https://doi.org/10.1016/j.sab.2020.105772 VL - 165 SP - 105772 PB - Elsevier B.V. AN - OPUS4-50319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Laser induced plasma as a chemical reactor: how feasible? N2 - A goal of this work is to apply the model, which was initially developed for laser induced plasmas, to plasmas used in chemical reactors, in particular, the inductively-coupled-RF discharge plasma. The model predicts equilibrium chemical compositions of reaction mixtures as functions of plasma temperature and stoichiometry of reactants. The mixtures investigated are BCl3/H2/Ar and BF3/H2/Ar where Ar serves as the plasma-forming gas and H2 as a binding agent which binds the active species Cl and F and Cl- and F-containing intermediates to produce gaseous B and its condensate. An additional goal is to obtain information about intermediate reaction products for different ratios of BCl3/H2 and BF3/H2 and at different temperatures and different Ar flow rates. Also, chemical reactions in laser induced plasmas (LIPs) created on calcium hydrate and calcium carbonate targets in argon are modeled. The results are compared with those obtained by means of the equilibrium model based on the minimization of Gibbs free energy. T2 - 1st workshop on Tandem LIBS/LA-ICP-MS CY - BAM, Berlin, Adlershof DA - 18.11.2019 KW - LIBS KW - Laser induced plasma KW - Plasma modeling KW - Plasma chemical reactor PY - 2019 AN - OPUS4-49776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. A1 - Völker, Tobias A1 - Kepes, Erik A1 - Wolsch, Gerd A1 - Baudelet, M. T1 - Molecule formation in calcium carbonate and calcium hydroxide libs plasmas: model and experiment N2 - Analysis of calcium hydrate and calcium carbonate samples and their mixtures is important for archeology, anthropology, and geology. Laser-induced plasma spectroscopy (LIBS) is a suitable tool for such the analysis as it allows for in- and on-line real time chemical assays. LIBS is inherently a technique for atomic analysis; however, since recently, it is also used for molecular analysis. The information attained by the latter is mainly related to “secondary” chemistry that deals with re-association of atoms and ions into molecules at long delay times (≥10 μs) after the initial breakdown. Even though the direct information about the initial molecular content in the target may be lost, the molecular analysis by LIBS can still be useful to assess the composition of samples. In this work, chemical reactions in laser induced plasmas (LIPs) created on calcium hydrate and calcium carbonate targets in argon are modeled and compared to experiment. The model is based on the assumption that all ionization processes and chemical reactions are at local thermodynamic equilibrium. A chemical composition of argon-calcium-oxygen and argon-calcium-hydrogen plasmas is studied as a function of plasma temperature and pressure. It is established that more than twenty simple and composite molecules and ions can be formed in the course of chemical reactions. The results are compared with those obtained by means of the equilibrium model based on the minimization of Gibbs free energy. T2 - SciX 2019 CY - Palm Springs, USA DA - 13.10.2019 KW - Plasma diagnostics KW - LIBS KW - Laser induced plasma KW - Plasma modeling PY - 2019 AN - OPUS4-49775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. A1 - Sennikov, P. T1 - Modeling equilibrium chemistry in laser induced plasmas and plasma chemical reactors N2 - A goal of this work is to apply the model, which was initially developed for laser induced plasmas, to plasmas used in chemical reactors, in particular, the inductively-coupled-RF discharge plasma. The model predicts equilibrium chemical compositions of reaction mixtures as functions of plasma temperature and stoichiometry of reactants. The mixtures investigated are BCl3/H2/Ar and BF3/H2/Ar where Ar serves as the plasma-forming gas and H2 as a binding agent which binds the active species Cl and F and Cl- and F-containing intermediates to produce gaseous B and its condensate. An additional goal is to obtain information about intermediate reaction products for different ratios of BCl3/H2 and BF3/H2 and at different temperatures and different Ar flow rates. Also, chemical reactions in laser induced plasmas (LIPs) created on calcium hydrate and calcium carbonate targets in argon are modeled. The results are compared with those obtained by means of the equilibrium model based on the minimization of Gibbs free energy. T2 - SciX 2019 CY - Palm Springs, USA DA - 13.10.2019 KW - LIBS KW - Laser induced plasma KW - Plasma modeling PY - 2019 AN - OPUS4-49774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Dell’Aglio, M. A1 - Motto-Ros, V. A1 - Pelascini, F. A1 - De Giacomo, A. T1 - Investigation on the material in the plasma phase by high temporally and spectrally resolved emission imaging during Pulsed Laser Ablation (PLAL) in Liquid for NPs production and consequent considerations on NPs formation N2 - In this paper experimental temperature and density maps of the laser induced plasma in water during Pulsed Laser ablation in Liquid (PLAL) for the production of metallic nanoparticles (NPs) has been determined. A detection system based on the simultaneous acquisition of two emission images at 515 and 410 nm has been constructed and the obtained images have been processed simultaneously by imaging software. The results of the data analysis show a variation of the temperature between 4000 and 7000 K over the plasma volume. Moreover, by the study of the temperature distribution and of the number densities along the plasma expansion axis it is possible to observe the condensation zone of the plasma where NPs can be formed. Finally, the time associated to the electron processes is estimated and the plasma charging effect on NPs is demonstrated. The set of observations retrieved from these experiments suggests the importance of the plasma phase for the growth of NPs and the necessity of considering the spatial distribution of plasma parameters for the understanding of one of the most important issues of the PLAL process, that is the source of solid material in the plasma phase. KW - LIBS KW - Laser induced plasma KW - Plasma modeling KW - Plasma diagnostics KW - Nanoparticle formation PY - 2019 DO - https://doi.org/10.1088/1361-6595/ab369b VL - 28 IS - 8 SP - Article Number: 085017 PB - IOP Publishing AN - OPUS4-48753 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huan, Y. A1 - Gojani, Ardian A1 - Gornushkin, Igor B. A1 - Wang, X. A1 - Liu, D. A1 - Rong, M. T1 - Dynamics of laser-induced plasma splitting N2 - The dynamics of laser-induced plasma plume splitting is investigated using spatiotemporal plasma imaging and spectrometry in this paper. Plasma plume splitting into fast and slow components is clearly observed using plasma optical emission as time evolves. The spatial resolved plasma spectra are used to investigate the plasma species distribution, which reveals that the charged copper ions, which radiate at wavelength range 485 nm - 504 nm, are merely present in the fast component. In order to further interpret the mechanism, the pressure-dependent and laser energy-dependent plume splitting are analyzed. Based on the results, the charge separation field is proposed to explain this phenomenon. This work can be of importance for such areas as laser induced breakdown spectroscopy, laser-induced ion source formation, pulse laser deposition, film growth, and nanoscale synthesis. KW - Spectroscopy KW - Laser induced plasma KW - Splitting KW - Imaging PY - 2020 DO - https://doi.org/10.1016/j.optlaseng.2019.105832 SN - 0143-8166 VL - 124 SP - 1 EP - 5 PB - Elsevier CY - Amsterdam AN - OPUS4-48746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gojani, Ardian A1 - Palásti, David J. A1 - Paul, Andrea A1 - Galbács, G. A1 - Gornushkin, Igor B. T1 - Analysis and classification of liquid samples by spatial heterodyne spectroscopy N2 - Spatial heterodyne spectroscopy (SHS) is used for quantitative analysis and classification of liquid samples. SHS is a version of a Michelson interferometer with no moving parts and with diffraction gratings in place of mirrors. The instrument converts frequency-resolved information into spatially resolved one and records it in the form of interferograms. The back-extraction of spectral information is done by the Fast Fourier transform. A SHS instrument is constructed with the resolving power 5000 and spectral range 522 - 593 nm. Two original technical solutions are used as compared to previous SHS instruments: the use of a high frequency diode pumped solid state (DPSS) laser for excitation of Raman spectra and a microscope-based collection system. Raman spectra are excited at 532 nm at the repetition rate 80 kHz. Raman shifts between 330 cm-1 and 1600 cm-1 are measured. A new application of SHS is demonstrated: for the first time it is used for quantitative Raman analysis to determine concentrations of cyclohexane in isopropanol and glycerol in water. Two calibration strategies are employed: univariate based on the construction of a calibration plot and multivariate based on partial least square regression (PLSR). The detection limits for both cyclohexane in isopropanol and glycerol in water are at a 0.5 mass% level. In addition to the Raman-SHS chemical analysis, classification of industrial oils (biodiesel, poly(1-decene), gasoline, heavy oil IFO380, polybutenes, and lubricant) is performed using their Raman-fluorescence spectra and principal component analysis (PCA). The oils are easily discriminated as they show distinct non-overlapping patterns in the space of principal components. KW - Spectroscopy KW - Atomic KW - Laser induced breakdown KW - Lasers PY - 2019 DO - https://doi.org/10.1177/0003702819863847 SN - 1943-3530 VL - 73 IS - 12 SP - 1409 EP - 1419 PB - Sage AN - OPUS4-48599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Calibration-free LIBS of steel samples N2 - An improved algorithm for calibration-free laser induced breakdown spectroscopy (CF LIBS) is presented which includes several novel features in comparison with previously proposed similar algorithms. In particular, it allows using spectral lines with arbitrary optical thickness for the construction of Saha-Boltzmann plots, retrieves the absorption path length (plasma diameter) directly from a spectrum, replaces the Lorentzian line profile function by the Voigt function, and allows for self-absorption correction using pre-calculated and tabulated data rather than approximating functions. The tabulated data embody the solutions of the radiative transfer equation for numerous combinations of optical thicknesses and line widths. The algorithm is used to analyze 100 low alloy steel spectra. T2 - 20.06.2019 LTB workshop on LIBS analysis of steel CY - Berlin, LTB, Germany DA - 20.06.2019 KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics KW - Chemical reactors PY - 2019 AN - OPUS4-48600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Kazakov, Alexander Ya. T1 - Model of stimulated emission in aluminum laser-induced plasma produced by resonance pumping N2 - Stimulated emission observed experimentally in aluminum laser induced plasma is modeled via a kinetic approach. The simulated emission at several cascade transitions is created by a pump laser guided through the plasma at several microseconds after its creation and tuned in resonance with the strong transition at 266 nm. A two-dimensional space-time collisional radiative plasma model explains the creation of the population inversion and lasing at wavelengths 2.1 μm and 396.1 nm. The population inversion for lasing at 2.1 μm is created by depopulation of the ground state and population of the upper state via absorption of resonant radiation at 266 nm. The population inversion for lasing at 396.1 nm occurs during the laser pulse via the decay of the population of the pumped upper state to the lasing state via cascade transitions driven optically and by collisions. The model predicts that the population inversion and corresponding gain may reach high values even at moderate pump energies of several μJ per pulse. The efficiency of lasing at 2.1 μm and 396.1 nm is estimated to be on the order of a percent of laser pump energy. The polarization effect that the pump radiation at 266 nm imposes on the stimulated emission at 396.1 nm is discussed. The calculated results are favorably compared to experiment. T2 - FLAMN, June 30- July 4 2019 CY - St. Petersburg, Russia DA - 30.06.2019 KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics PY - 2019 AN - OPUS4-48598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Several approaches to calibration-free LIBS: Advantages and pitfalls N2 - An overview of calibration-free laser induced breakdown spectroscopy (CF LIBS) methods is presented. Advantages and pitfalls of these methods are critically discussed. T2 - Workshop of the Spectrochemical Working Committee (SWC) of the Hungarian Academy of Sciences CY - Budapest, Hungary DA - 05.06.2019 KW - Calibration-free LIBS KW - CF LIBS algorithms PY - 2019 AN - OPUS4-48189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Laser induced Plasma: Modeling and diagnostics N2 - Laser-induced plasmas are widely used in many areas of science and technology; examples include spectrochemical analysis, thin film deposition, material processing, and even jet propulsion. Several topics will be addressed. First, general phenomenology of laser-induced plasmas will be discussed. Then, a chemical model will be presented based on a coupled solution of Navier-Stokes, state, radiative transfer, material transport, and chemical (Guldberg-Waage) equations. Results of computer simulations for several chemical systems will be shown and compared to experimental observations obtained by optical imaging, spectroscopy, and tomography. The latter diagnostic tools will also be briefly discussed. T2 - Lecture at the Dept of Chemistry of Czeged University (Hungary) on 31.05.2019 CY - Czeged, Hungary DA - 31.05.2019 KW - Plasma KW - LIBS KW - Plasma modeling PY - 2019 AN - OPUS4-48188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Palásti, David J. A1 - Veres, M. A1 - Rigó, I. A1 - Geretovszky, Z. A1 - Kovács-Széles, É. A1 - Gojani, Ardian A1 - Galbács, Gábor T1 - Optimization and detailed spectroscopic characterization of an improved SH-LIBS setup N2 - The spatial heterodyne detection principle has a great potential in spectroscopy. It has an optical setup similar to that of a Michelson interferometer, with the mirrors replaced by diffraction gratings positioned at fixed, equal distances from the beamsplitter and are slightly tilted. The resulting interference pattern is recorded by a digital camera and the spectrum is recovered by using Fourier transformation. Although SHS was initially developed for astronomical and satellite-based atmospheric measurements, but in recent years it has been started to be applied in other branches of spectroscopy too. Recently the area of laser-induced breakdown spectroscopy (LIBS) has also discovered the potential of SHS. The main appeal of SHS detection in LIBS includes the compactness and robustness of the setup (in view of field applications) and the flexibility to optimize the setup for either high sensitivity or for high resolution, which can be benficially exploited in applications like stand-off measurements, quantitative analysis with isotope resolution, etc. In the present work, we have improved and further optimized our initial LIBS-SHS setup described in a previous conference. By using optical simulations, we have modelled the light transmission efficiency, instrumental function and imaging properties of the system. We significantly improved and automated the spectral and image data processing sequence. The optimizations carried out resulted in an improved spectral resolution and repeatability, a lower spectral background and the elimination of the central line artifact originating from the Fourier transformation procedure. A detailed characterization of the LIBS spectroscopy performance (e.g. resolution, spectral coverage, tuning range, linearity, etc.), including a comparison with that of a LIBS setup based on a conventional dispersion CCD spectrometer was also performed. T2 - European Winter Conference on Plasma Spectrochemistry (EWSPS-2019) CY - Pau, France DA - 03.02.2019 KW - SHS KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Spatial heterodyne spectrometer PY - 2019 AN - OPUS4-48047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. A1 - Sennikov, P. G. T1 - Equilibrium Chemistry in BCl3–H2–Ar Plasma N2 - The approach, which was developed earlier for modeling chemical reactions in laser induced plasmas, is applied to radio-frequency discharge plasmas. The model is based on the assumption that all ionization processes and chemical reactions are at local thermodynamic equilibrium. A chemical composition of an argon-hydrogen plasma with an Addition of boron trichloride is studied as a function of plasma temperature and mole ratio H2∕BCl3. It is established that more than twenty simple and composite molecules and ions can be formed in the course of chemical reactions. The results are compared with those obtained earlier by means of another equilibrium model that uses ab-initio quantum chemical computations of thermochemical and kinetic data and a 0D thermochemical quilibrium solver. KW - Modeling chemical reactions KW - Plasma physics KW - Plasma enhanced chemical vapor deposition PY - 2019 DO - https://doi.org/10.1007/s11090-019-09985-6 VL - 39 IS - 4 SP - 1087 EP - 1102 PB - Springer AN - OPUS4-47817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. T1 - Modeling chemistry in laser-induced and other types of plasmas N2 - A goal of this work is to extend the model, which was initially developed for laser induced plasmas, to plasmas used in chemical reactors, in particular, the inductively-coupled-RF discharge plasma. The model predicts equilibrium chemical compositions of reaction mixtures as functions of plasma temperature and stoichiometry of reactants. The mixtures investigated are BCl3/H2/Ar and BF3/H2/Ar where Ar serves as the plasma-forming gas and H2 as a binding agent which binds the active species Cl and F and Cl- and F-containing intermediates to produce gaseous B and its condensate. An additional goal is to obtain information about intermediate reaction products for different ratios of BCl3/H2 and BF3/H2 and at different temperatures and different Ar flow rates. It is found that the desired components B and B2 appear at appreciable concentrations of >0.1% and ~0.01% respectively only at temperatures above 3000 K. It is also established that the effect of charged species on the reaction products is miniscule for temperatures below 5000 K. The expected yield of boron as a function of the original mole fraction H2/BCl3 and H2/BF3 is calculated. The mole fractions are varied in the range 0.1-1000 and the temperature in the range 1000-10000 K. It is shown that the yield of boron increases with increasing the molar ratio H2/BCl3 and H2/BF3 up to ~100 in the temperature range 2000-5000 K. At higher temperatures, T>5000 K, the boron concentration reaches its maximum and does not depend on the concentration of hydrogen; all molecules dissociate and chemical reactions proceed only between charged particles (mostly elemental ions) and electrons. The calculated plasma parameters and composition are compared with experimental data obtained by optical emission spectroscopy. The calculated plasma temperature and electron density are shown to be in good agreement with the measured ones. T2 - Workshop on Laser and Plasmas Applications CY - Bari, Italy DA - 04.03.2019 KW - Plasma KW - LIBS KW - Plasma modeling PY - 2019 AN - OPUS4-47545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Sergei, S. A1 - Kornev, R.A. A1 - Sennikov, P. G. T1 - Equilibrium chemistry of boron halides in plasma chemical reactors N2 - High purity halides of III-VI group elements, especially chloride and fluorides, are used in gas phase technologies for obtaining high purity materials and coatings. The reduction of halides in hydrogen-halide mixtures can be achieved in various discharge plasmas, e.g. inductively coupled, ark, and even laser-induced plasmas. Existing models of such plasmas are not sufficiently accurate to predict a yield of the targeted compounds and to describe the plasma processes involved in formation of these compounds. Besides, a construction of costly plasma-chemical reactors can be alleviated by the prior modeling of plasma processes that may occur in such reactors. A goal of this work is to extend the model, which was initially developed for laser induced Plasmas, to plasmas used in chemical reactors, in particular, the inductively-coupled-RF discharge Plasma. The model predicts equilibrium chemical compositions of reaction mixtures as functions of plasma temperature and stoichiometry of reactants. The mixtures investigated are BCl3/H2/Ar and BF3/H2/Ar where Ar serves as the plasma-forming gas and H2 as a binding agent which binds the active species Cl and F and Cl- and F-containing intermediates to produce gaseous B and its condensate. An additional goal is to obtain information about intermediate reaction products for different ratios of BCl3/H2 and BF3/H2 and at different temperatures and different Ar flow rates. It is found that the desired components B and B2 appear at appreciable concentrations of >0.1% and ~0.01% respectively only at temperatures above 3000 K. It is also established that the effect of charged species on the reaction products is miniscule for temperatures below 5000 K. The expected yield of boron as a function of the original mole fraction H2/BCl3 and H2/BF3 is calculated. The mole fractions are varied in the range 0.1-1000 and the temperature in the range 1000-10000 K. It is shown that the yield of boron increases with increasing the molar ratio H2/BCl3 and H2/BF3 up to ~100 in the temperature range 2000-5000 K. At higher temperatures, T>5000 K, the boron concentration reaches its maximum and does not depend on the concentration of hydrogen; all molecules dissociate and chemical reactions proceed only between charged particles (mostly elemental ions) and electrons. The calculated plasma parameters and composition are compared with experimental data obtained by optical emission spectroscopy. The calculated plasma temperature and electron density are shown to be in good agreement with the measured ones. T2 - European Winter Conference on Plasma Spectrochemistry (EWSPS-2019) CY - Pau, France DA - 03.02.2019 KW - Chemical reactors KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics PY - 2019 AN - OPUS4-47541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Völker, Tobias A1 - Kazakov, Alexander Ya. T1 - Improved algorithm for calibration-free laser induced breakdown spectroscopy N2 - An improved algorithm for calibration-free laser induced breakdown spectroscopy (CF LIBS) will be presented which includes several novel features in comparison with previously proposed similar algorithms. In particular, it allows using spectral lines with arbitrary optical thickness for the construction of Saha-Boltzmann plots, retrieves the absorption path length (plasma diameter) directly from a spectrum, replaces the Lorentzian line profile function by the Voigt function, and allows for self-absorption correction using pre-calculated and tabulated data rather than approximating functions. The tabulated data embody the solutions of the radiative transfer equation for numerous combinations of optical thicknesses and line widths. The algorithm is thoroughly verified using synthetic spectra. T2 - LIBS 2018 at SciX 2018 CY - Atlanta, GA, USA DA - 21.10.2018 KW - Plasma diagnostics KW - Laser induced plasma KW - LIBS KW - Plasma modeling PY - 2018 AN - OPUS4-46930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yuan, Huan A1 - Gojani, Ardian A1 - Gornushkin, Igor B. A1 - Wang, X. T1 - Investigation of laser-induced plasma at varying pressure and laser focusing N2 - Expansion dynamics of laser-induced plasma is studied for different focal positions of the ablation laser in the pressure range 10-2 - 105 Pa of the ambient air. The experimental results indicate that both the parameters significantly affect the plasma size, shape, intensity, reproducibility, and distance from the target surface. At pressures above 10 Pa, the plasma plume is confined by the ambient gas; the plumes are more compact and travel shorter distances from the target as compared to the analogous plume characteristics at pressures below 10 Pa. The pulse-to-pulse reproducibility of the integral emission intensity of the plasma is also different for different focal positions and pressures. It is found that the focal positions -1 cm and -2 cm below the target surface yield the most reproducible and intense emission signals as measured at the 600 ns delay time with the 100 ns gate. The information obtained can be of importance for pulsed laser deposition, laser welding, and analytical spectroscopy at reduced pressures. In general, a correct choice of the focal position and pressure of an ambient gas is very important for obtaining the strongest plasma emission, good reproducibility, and desired plasma plume shape. KW - Laser-induced plasma KW - Plasma expansion KW - Imaging PY - 2018 DO - https://doi.org/10.1016/j.sab.2018.10.005 SN - 0584-8547 VL - 150 SP - 33 EP - 37 PB - Elsevier AN - OPUS4-46207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. T1 - Chemistry in laser‑induced plasmas at local thermodynamic equilibrium N2 - The equation of state for plasmas containing negative and positive ions of elements and molecules formed by these elements is modeled under the assumption that all ionization processes and chemical reactions are at local thermal equilibrium and the Coulomb interaction in the plasma is described by the Debye–Hückel theory. The hierarchy problem for constants of molecular reactions is resolved by using three different algorithms for high, medium, and low temperatures: the contraction principle, the Newton–Raphson method, and a scaled Newton–Raphson method, respectively. These algorithms are shown to have overlapping temperature ranges in which they are stable. The latter allows one to use the developed method for calculating the equation of state in combination with numerical solvers of Navier–Stokes equations to simulate laser-induced Plasmas initiated in an atmosphere and to study formation of molecules and their ions in such plasmas. The method is applicable to a general chemical network. It is illustrated with examples of Ca–Cl and C–Si–N laser-induced plasmas. KW - Plasma KW - LIBS KW - Plasma modeling PY - 2018 DO - https://doi.org/10.1007/s00339-018-2129-9 SN - 1432-0630 SN - 0947-8396 VL - 124 IS - 10 SP - 716, 1 EP - 21 PB - Springer AN - OPUS4-46112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. T1 - Dynamical chemical model of laser induced plasma N2 - Laser induced plasma (LIP) is a highly dynamic, short living event which presents significant difficulty for both diagnostics and modeling. The former requires precise spatially- and time-resolved measurements on a micron-nanosecond scale while the latter needs numerous descriptive parameters; many of them can only be obtained from experiment. Diagnostics and modeling should always complement each other for obtaining a truthful picture of LIP. In this presentation, a newly developed collisional-dominated model will be presented. The model is based on the coupled Navier-Stokes, state, radiative transfer, material transport, and chemical equations. The model incorporates plasma chemistry through the equilibrium approach that relies on atomic and molecular partition functions. Several chemical systems are modeled including Si-C-Cl-N and B-H-Cl systems. The model is used to study the equilibrium states of the systems as functions of the concentrations of plasma species and plasma temperature. The model also predicts the evolution of number densities of atomic and molecular species in the expanding plasma plume. T2 - 18.09.2018, 9th International Conference on PLASMA PHYSICS AND PLASMA TECHNOLOGY (PPPT‐9) CY - Minsk, Belorussia DA - 17.09.2018 KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics PY - 2018 AN - OPUS4-46111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Plasma fundamentals and diagnostics N2 - This course will provide an introduction to plasma diagnostic techniques. The major focus of the course will be on the discussions of the practical procedures as well as the underlying physical principles for the measurements of plasma fundamental characteristics (e.g., temperatures, thermodynamic properties, and electron number density). Particular emphasis will be placed on inductively coupled plasma–atomic emission spectrometry, but other analytical plasmas will also be used as examples when appropriate. Selected examples on how one can manipulate the operating conditions of the plasma source, based on the results of plasma diagnostic measurements, to improve its performance used for spectrochemical analysis will also be covered. Topics to be covered include thermal equilibrium, line profiles, temperatures, electron densities, excitation processes, microreactions, pump and probe diagnostics, tomography, temporal and spatial resolution. Basics of plasma computer modeling will be presented. T2 - 03.-06. September 2018, 13 Symposium "Massenspektrometrische Verfahren der Elementspurenanalyze", BAM, Berlin, Adlershof CY - BAM, Berlin, Adlershof, Germany DA - 03.09.2018 KW - Thermal equilibrium KW - Plasma processes KW - Electron number density KW - Temperatures KW - Emission line profiles KW - Spatial information KW - Plasma modeling PY - 2018 AN - OPUS4-46108 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Improved algorithm for calibration-free laser induced breakdown spectroscopy N2 - An improved algorithm for calibration-free laser induced breakdown spectroscopy (CF LIBS) is presented which includes several novel features in comparison with previously proposed similar algorithms. In particular, it allows using spectral lines with arbitrary optical thickness for the construction of Saha-Boltzmann plots, retrieves the absorption path length (plasma diameter) directly from a spectrum, replaces the Lorentzian line profile function by the Voigt function, and allows for self-absorption correction using pre-calculated and tabulated data rather than approximating functions. The tabulated data embody the solutions of the radiative transfer equation for numerous combinations of optical thicknesses and line widths. The algorithm is thoroughly verified with synthetic spectra. T2 - 14TH European Workshop on Laser Ablation 2018 (EWLA2018) CY - Pau, France DA - June 26 - 29, 2018 KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics KW - Calibration free LIBS PY - 2018 AN - OPUS4-45343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Laser induced plasma: Modeling, diagnostics, and applications N2 - Laser-induced plasmas are widely used in many areas of science and technology; examples include spectrochemical analysis, thin film deposition, material processing, and even jet propulsion. Several topics will be addressed. First, general phenomenology of laser-induced plasmas will be discussed. Then, a chemical model will be presented based on a coupled solution of Navier-Stokes, state, radiative transfer, material transport, and chemical (Guldberg-Waage) equations. Results of computer simulations for several chemical systems will be shown and compared to experimental observations obtained by optical imaging, spectroscopy, and tomography. The latter diagnostic tools will also be briefly discussed. Finally, a prospective application of laser-induced plasma and plasma modeling will be illustrated on the example of calibration-free MC LIBS (Monte Carlo Laser Induced Breakdown Spectroscopy), in which concentrations of elements in materials are found by fitting model-generated and experimental spectra. T2 - Invited talk at Yeshiva University, New York, USA CY - Yeshiva University, New York, USA DA - 4.24.2018 KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics PY - 2018 AN - OPUS4-45344 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Völker, Tobias A1 - Kazakov, Alexander Ya. T1 - Extension and investigation by numerical simulations of algorithm for calibration-free laser induced breakdown spectroscopy N2 - Accuracy of calibration-free (CF) methods in laser-induced breakdown spectroscopy (LIBS) depends on experimental conditions and instrumental parameters that must match a CF LIBS model. Here, the numerical study is performed to investigate effects of various factors, such as the optical density, plasma uniformity, line overlap, noise, spectral resolution, electron density and path length on the results of CF-LIBS analyses. The effects are examined one-by-one using synthetic spectra of steel slag samples that fully comply with the mathematical model of the method. Also, the algorithm includes several new features in comparison with previously proposed CF algorithms. In particular, it removes limits on the optical thickness of spectral lines that are used for the construction of the Saha-Boltzmann plot; it retrieves the absorption path length (Plasma diameter) directly from spectral lines; it uses the more realistic Voigt line profile function instead of the Lorentzian function; and it employs the pre-calculated and tabulated thin-to-thick line ratios instead of approximating functions for selfabsorption correction. KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics KW - Calibration free LIBS PY - 2018 DO - https://doi.org/10.1016/j.sab.2018.06.011 SN - 0584-8547 VL - 147 SP - 149 EP - 163 PB - Elsevier B.V. AN - OPUS4-45340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yuan, Huan A1 - Gornushkin, Igor B. A1 - Gojani, Ardian A1 - Wang, X. H. A1 - Rong, Ming Zhe T1 - Laser-induced plasma imaging for low-pressure detection N2 - A novel technique based on laser induced plasma imaging is proposed to measure residual pressure in sealed containers with transparent walls, e.g. high voltage vacuum interrupter in this paper. The images of plasma plumes induced on a copper target at pressure of ambient air between 10−2Pa and 105Pa were acquired at delay times of 200ns, 400ns, 600ns and 800ns. All the plasma images at specific pressures and delay times showed a good repeatability. It was found that ambient gas pressure significantly affects plasma shape, plasma integral intensities and expansion dynamics. A subsection characteristic method was proposed to extract pressure values from plasma images. The method employed three metrics for identification of high, intermediate and low pressures: the distance between the target and plume center, the integral intensity of the plume, and the lateral size of the plume, correspondingly. The accuracy of the method was estimated to be within 15% of nominal values in the entire pressure range between 10−2Pa and 105Pa. The pressure values can be easily extracted from plasma images in the whole pressure range, thus making laser induced plasma imaging a promising technique for gauge-free pressure detection. KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics PY - 2018 DO - https://doi.org/10.1364/OE.26.015962 SN - 1094-4087 VL - 26 IS - 12 SP - 15962 EP - 15971 PB - Optical Society of America under the terms of the OSA Open Access Publishing Agreement AN - OPUS4-45219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. T1 - Modeling chemical reactions in laser-induced plasmas at local thermodynamic equilibrium N2 - Laser induced plasma (LIP) is a dynamic, short living event which presents significant difficulty for modeling. In this report, a collisional-dominated chemical model developed earlier* is expanded by the inclusion of a new method for calculation of chemical reactions. The model consists of the coupled Navier-Stokes, state, radiative transfer, material transport, and chemical equations. The latter are written in terms of atomic and molecular partition functions rather than reaction rates. Typically, a solution of such the system of chemical equations is difficult for the entire range of plasma temperatures and densities because reaction constants may vary by hundreds orders of magnitude owing to extreme plasma conditions. No numerical solver of non-linear systems of equations handles this situation with ease. We resolve the problem by using a hierarchical approach. First, we rank the reactions according to their ascendancy. Second, we exploit either the contraction or Newton-Raphson algorithms to solve the system of chemical equations. We illustrate the approach by performing a series of calculations for reacting species Si, C, N, Ca, Cl and their molecules in laser induced plasmas. T2 - Winter Plasma Conference CY - Amelia Island, FL, USA DA - 08.01.2018 KW - Plasma physics KW - Plasma diagnostics PY - 2018 AN - OPUS4-44499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Plasma Fundamentals and Diagnostics N2 - This course will provide an introduction to plasma diagnostic techniques. The major focus of the course will be on the discussions of the practical procedures as well as the underlying physical principles for the measurements of plasma fundamental characteristics (e.g., temperatures, thermodynamic properties, and electron number density). Particular emphasis will be placed on inductively coupled plasma–atomic emission spectrometry, but other analytical plasmas will also be used as examples when appropriate. Selected examples on how one can manipulate the operating conditions of the plasma source, based on the results of plasma diagnostic measurements, to improve its performance used for spectrochemical analysis will also be covered. Topics to be covered include thermal equilibrium, line profiles, temperatures, electron densities, excitation processes, microreactions, pump and probe diagnostics, tomography, temporal and spatial resolution. Basis of plasma computer modeling will be presented. T2 - Winter Plasma Conference CY - Amelia Island, FL, USA DA - 08.01.2018 KW - Plasma diagnostics KW - Plasma physics PY - 2018 AN - OPUS4-44497 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nagli, L. A1 - Gaft, M. A1 - Raichlin, Y. A1 - Gornushkin, Igor B. T1 - Cascade generation in Al laser induced plasma N2 - We found cascade IR generation in Al laser induced plasma. This generation includes doublet transitions 3s25s 2S1∕2→ 3s24p 2P1∕2,3∕2 → 3s24s 2S1∕2; corresponding to strong lines at 2110 and 2117 nm, and much weaker lines at 1312–1315 nm. The 3s25s2S 1∕2 starting IR generation level is directly pumped from the 3s23p 2P3∕2 ground level. The starting level for UV generation at 396.2 nm (transitions 3s24s 2S1∕2 → 4p 2P3∕2) is populated due to the fast collisional processes in the plasma plume. These differences led to different time and special dependences on the lasing in the IR and UV spectral range within the aluminum laser induced plasma. KW - Plasma diagnostics KW - Laser induced plasma KW - LIBS KW - Plasma modeling PY - 2018 DO - https://doi.org/10.1016/j.optcom.2018.01.041 VL - 415 SP - 127 EP - 129 PB - Elsevier B.V. AN - OPUS4-44274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shabanov, Sergej V. A1 - Gornushkin, Igor B. T1 - Geometrical effects in data collection and processing for calibration-free laser-induced breakdown spectroscopy N2 - Data processing in the calibration-free laser-induced breakdown spectroscopy (LIBS) is usually based on the solution of the radiative transfer equation along a particular line of sight through a plasma plume. The LIBS data processing is generalized to the case when the spectral data are collected from large portions of the plume. It is shown that by adjusting the optical depth and width of the lines the spectra obtained by collecting light from an entire spherical homogeneous plasma plume can be least-square fitted to a spectrum obtained by collecting the radiation just along a plume diameter with a relative error of 10 −11 or smaller (for the optical depth not exceeding 0.3) so that a mismatch of geometries of data processing and data collection cannot be detected by fitting. Despite the existence of such a perfect least-square fit, the errors in the line optical depth and width found by a data processing with an inappropriate geometry can be large. It is shown with analytic and numerical examples that the corresponding relative errors in the found elemental number densities and concentrations may be as high as 50% and 20%, respectively. Safe for a few found exceptions, these errors are impossible to eliminate from LIBS data processing unless a proper solution of the radiative transfer equation corresponding to the ray tracing in the spectral data collection is used. KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics PY - 2018 DO - https://doi.org/10.1016/j.jqsrt.2017.09.018 SN - 0022-4073 SN - 1879-1352 VL - 204 SP - 190 EP - 205 PB - Elsevier AN - OPUS4-43131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -