TY - JOUR A1 - Zimmermann, Yoel A1 - Bazgir, Adib A1 - Al-Feghali, Alexander A1 - Ansari, Mehrad A1 - Bocarsly, Joshua A1 - Brinson, L Catherine A1 - Chiang, Yuan A1 - Circi, Defne A1 - Chiu, Min-Hsueh A1 - Daelman, Nathan A1 - Evans, Matthew A1 - Gangan, Abhijeet S A1 - George, Janine A1 - Harb, Hassan A1 - Khalighinejad, Ghazal A1 - Takrim Khan, Sartaaj A1 - Klawohn, Sascha A1 - Lederbauer, Magdalena A1 - Mahjoubi, Soroush A1 - Mohr, Bernadette A1 - Mohamad Moosavi, Seyed A1 - Naik, Aakash Ashok A1 - Ozhan, Aleyna Beste A1 - Plessers, Dieter A1 - Roy, Aritra A1 - Schoeppach, Fabian A1 - Schwaller, Philippe A1 - Terboven, Carla A1 - Ueltzen, Katharina A1 - Wu, Yue A1 - Zhu, Shang A1 - Janssen, Jan A1 - Li, Calvin A1 - Foster, Ian A1 - Blaiszik, Ben T1 - 32 examples of LLM applications in materials science and chemistry: towards automation, assistants, agents, and accelerated scientific discovery N2 - Large Language Models (LLMs) are reshaping many aspects of materials science and chemistry research, enabling advances in molecular property prediction, materials design, scientific automation, knowledge extraction, and more. Recent developments demonstrate that the latest class of models are able to integrate structured and unstructured data, assist in hypothesis generation, and streamline research workflows. To explore the frontier of LLM capabilities across the research lifecycle, we review applications of LLMs through 34 total projects developed during the second annual Large Language Model Hackathon for Applications in Materials Science and Chemistry, a global hybrid event. These projects spanned seven key research areas: (1) molecular and material property prediction, (2) molecular and material design, (3) automation and novel interfaces, (4) scientific communication and education, (5) research data management and automation, (6) hypothesis generation and evaluation, and (7) knowledge extraction and reasoning from the scientific literature. Collectively, these applications illustrate how LLMs serve as versatile predictive models, platforms for rapid prototyping of domain-specific tools, and much more. In particular, improvements in both open source and proprietary LLM performance through the addition of reasoning, additional training data, and new techniques have expanded effectiveness, particularly in low-data environments and interdisciplinary research. As LLMs continue to improve, their integration into scientific workflows presents both new opportunities and new challenges, requiring ongoing exploration, continued refinement, and further research to address reliability, interpretability, and reproducibility. KW - Large Language Models KW - Machine Learning KW - Materials Design KW - Bonding Analysis KW - Phonons KW - Thermal properties PY - 2025 DO - https://doi.org/10.1088/2632-2153/ae011a SN - 2632-2153 VL - 6 IS - 3 SP - 1 EP - 34 PB - IOP Publishing AN - OPUS4-64019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghata, Anupama A1 - Bernges, Tim A1 - Maus, Oliver A1 - Wankmiller, Björn A1 - Naik, Aakash A1 - Bustamante, Joana A1 - Gaultois, Michael W. A1 - Delaire, Olivier A1 - Hansen, Michael Ryan A1 - George, Janine A1 - Zeier, Wolfgang G. T1 - Exploring the Thermal and Ionic Transport of Cu+ Conducting Argyrodite Cu7PSe6 N2 - AbstractUnderstanding the origin of low thermal conductivities in ionic conductors is essential for improving their thermoelectric efficiency, although accompanying high ionic conduction may present challenges for maintaining thermoelectric device integrity. This study investigates the thermal and ionic transport in Cu7PSe6, aiming to elucidate their fundamental origins and correlation with the structural and dynamic properties. Through a comprehensive approach including various characterization techniques and computational analyses, it is demonstrated that the low thermal conductivity in Cu7PSe6 arises from structural complexity, variations in bond strengths, and high lattice anharmonicity, leading to pronounced diffuson transport of heat and fast ionic conduction. It is found that upon increasing the temperature, the ionic conductivity increases significantly in Cu7PSe6, whereas the thermal conductivity remains nearly constant, revealing no direct correlation between ionic and thermal transport. This absence of direct influence suggests innovative design strategies in thermoelectric applications to enhance stability by diminishing ionic conduction, while maintaining low thermal conductivity, thereby linking the domains of solid‐state ionics and thermoelectrics. Thus, this study attempts to clarify the fundamental principles governing thermal and ionic transport in Cu+‐superionic conductors, similar to recent findings in Ag+ argyrodites. KW - Thermoelectrics KW - Phonons KW - Chemically Complex Materials KW - DFT KW - Bonding Analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608866 DO - https://doi.org/10.1002/aenm.202402039 SP - 1 EP - 9 PB - Wiley AN - OPUS4-60886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Naik, Aakash A1 - Ueltzen, Katharina A1 - Ertural, Christina A1 - Jackson, Adam J. A1 - George, Janine T1 - LobsterPy: A package to automatically analyze LOBSTERruns N2 - The LOBSTER (Deringer et al., 2011;Maintz et al., 2013 ,2016 ;Nelson et al., 2020 ) software aids in extracting quantum-chemical bonding information from materials by projecting the plane-wave based wave functions from density functional theory (DFT) onto an atomic orbital basis. LobsterEnv, a module implemented in pymatgen (Ong et al., 2013) by some of the authors of this package, facilitates the use of quantum-chemical bonding information obtained from LOBSTER calculations to identify neighbors and coordination environments. LobsterPy is a Python package that offers a set of convenient tools to further analyze and summarize the LobsterEnv outputs in the form of JSONs that are easy to interpret and process. These tools enable the estimation of (anti) bonding contributions, generation of textual descriptions, and visualization of LOBSTER computation results. Since its first release, both LobsterPy and LobsterEnv capabilities have been extended significantly. Unlike earlier versions, which could only automatically analyze Crystal Orbital Hamilton Populations (COHPs) (Dronskowski & Blöchl, 1993), both can now also analyze Crystal Orbital Overlap Populations (COOP) (Hughbanks & Hoffmann, 1983) and Crystal Orbital Bond Index (COBI) (Müller et al., 2021). Extracting the information about the most important orbitals contributing to the bonds is optional, and users can enable it as needed. Additionally, bonding-based features for machinelearning (ML) studies can be engineered via the sub-packages “featurize” and “structuregraphs”. Alongside its Python interface, it also provides an easy-to-use command line interface (CLI) that runs automatic analysis of the computations and generates a summary of results and publication-ready figures. LobsterPy has been used to produce the results in Ngo et al. (2023), Chen et al. (2024), Naik et al. (2023), and it is also part of Atomate2 (2023) bonding analysis workflow for generating bonding analysis data in a format compatible with the Materials Project (Jain et al., 2013) API. KW - Materials Science KW - Automation KW - Bonding Analysis KW - Materials Properties PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595809 DO - https://doi.org/10.21105/joss.06286 VL - 9 IS - 94 SP - 1 EP - 4 PB - The Open Journal AN - OPUS4-59580 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Naik, Aakash A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Philipp A1 - George, Janine T1 - A Quantum-Chemical Bonding Database for Solid-State Materials N2 - An in-depth insight into the chemistry and nature of the individual chemical bonds is essential for understanding materials. Bonding analysis is thus expected to provide important features for large-scale data analysis and machine learning of material properties. Such chemical bonding information can be computed using the LOBSTER software package, which post-processes modern density functional theory data by projecting the plane wave-based wave functions onto an atomic orbital basis. With the help of a fully automatic workflow, the VASP and LOBSTER software packages are used to generate the data. We then perform bonding analyses on 1520 compounds (insulators and semiconductors) and provide the results as a database. The projected densities of states and bonding indicators are benchmarked on standard density-functional theory computations and available heuristics, respectively. Lastly, we illustrate the predictive power of bonding descriptors by constructing a machine learning model for phononic properties, which shows an increase in prediction accuracies by 27% (mean absolute errors) compared to a benchmark model differing only by not relying on any quantum-chemical bonding features. KW - Bonding Analysis KW - DFT KW - High-throughput KW - Database KW - Phonons KW - Machine Learning PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582892 DO - https://doi.org/10.1038/s41597-023-02477-5 VL - 10 IS - 1 SP - 1 EP - 18 AN - OPUS4-58289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -