TY - JOUR A1 - Greiser, Sebastian A1 - Gluth, Gregor A1 - Sturm, Patrick A1 - Jäger, Christian T1 - 29Si{27Al}, 27Al{29Si} and 27Al{1H} double-resonance NMR spectroscopy study of cementitious sodium aluminosilicate gels (geopolymers) and gel-zeolite composites JF - RSC Advances N2 - The influence of starting materials and synthesis route on the properties and the structure of cementitious sodium aluminosilicate gels is not fully understood, partly due their amorphous nature and the fact that they often contain residual reactants, which can make the results of single-pulse NMR spectroscopy applied to these materials difficult to interpret or ambiguous. To overcome some of these limitations, 29Si{27Al} TRAPDOR NMR as well as 27Al{29Si} and 27Al{1H} REDOR NMR spectroscopy were applied to materials synthesized by the one-part alkali-activation route from three different amorphous silica starting materials, including rice husk ash. The latter led to formation of a fully amorphous sodium aluminosilicate gel (geopolymer), while the materials produced from the other silicas contained amorphous phase and crystalline zeolites. Application of the double-resonance NMR methods allowed to identify hydrous alumina gel domains in the rice husk ash-based material as well as significantly differing amounts of residual silica in the three cured materials. Four-coordinated Al existed not only in the aluminosilicate gel framework but also in a water-rich chemical environment with only a small amount of Si in proximity, likely in the alumina gel or possibly present as extra-framework Al in the aluminosilicate gel. The results demonstrate how the employment of different silica starting materials determines the phase assemblage of one-part alkali-activated materials, which in turn influences their engineering properties such as the resistance against chemically/biologically aggressive media. KW - Alkali-activated materials KW - Solid-state NMR KW - Aluminium hydroxide KW - Rice husk ash PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-469353 DO - https://doi.org/10.1039/C8RA09246J SN - 2046-2069 VL - 8 IS - 70 SP - 40164 EP - 40171 PB - Royal Society of Chemistry AN - OPUS4-46935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gallo, Emanuela A1 - Sánchez-Olivares, G. A1 - Schartel, Bernhard T1 - Flame retardancy of starch-based biocomposites - aluminium hydroxide-coconut fiber synergy JF - Polimery N2 - The use of coconut fiber (CF) agricultural waste was considered as an environmentally friendly and inexpensive alternative in flame retarded biocomposites. To decrease the high content of aluminum trihydrate (ATH) required, the thermal decomposition (thermogravimetry), flammability [oxygen index (LOI) and UL 94 test] and fire behavior (cone calorimeter) of a combination of CF and ATH were investigated in a commercial blend of thermoplastic starch (TPS) and cellulose derivatives. CF induced some charring activity, slightly decreasing the fire load and burning propensity in cone calorimeter test. ATH decomposes endothermically into water and inorganic residue. Significant fuel dilution as well as a pronounced residual protection layer reduces the fire hazards. Replacing a part of ATH with coconut fibers resulted in improved flame retardancy in terms of ignition, reaction to small flame, and flame-spread characteristics [heat release rate (HRR), fire growth rate (FIGRA), etc.]. The observed ATH and CF synergy opens the door to significant reduction of the ATH contents and thus to interesting flame retarded biocomposites. KW - Biocomposites KW - Flammability KW - Starch KW - Aluminium hydroxide KW - Coconut fiber PY - 2013 SN - 0032-2725 VL - 58 IS - 5 SP - 395 EP - 402 PB - Industrial chemistry research inst CY - Warszawa, Poland AN - OPUS4-28513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kreft, B. A1 - Bednarczyk, M. A1 - Emmerling, Franziska A1 - Marsch, W.C. T1 - Cutaneous-subcutaneous pseudolymphoma after specific immunotherapy with grass-rye pollen-allergen extract containing aluminium hydroxide JF - Advances in dermatology and allergology N2 - Allergen-specific immunotherapy is an important treatment procedure in IgE-mediated allergic diseases such as allergic rhinitis or insect toxin allergies. A reduction in the clinical reaction to the allergens to which the patient is known to be sensitized is intended by means of antigen-specific influence on the immune system. The allergenspecific immunotherapy can be applied by subcutaneous injections, and for selected allergens by means of sublingual application of the appropriate allergen. Occasionally, the injection of aluminium hydroxide-adsorbed sera induces a usually transient formation of granulomas. We are reporting on a rare case of cutaneous-subcutaneous pseudolymphoma in the injection area of both upper arms, probably induced by subcutaneous allergen-specific immunotherapy. KW - Allergen-specific immunotherapy KW - Pseudolymphoma KW - Aluminium hydroxide PY - 2011 SN - 1642-395X VL - XXVIII IS - 2 SP - 134 EP - 137 PB - Termedia Wydawnictwa Med. CY - Pozna´n AN - OPUS4-24629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -