TY - JOUR A1 - Schmidt, C. A1 - Schierack, P. A1 - Gerber, U. A1 - Schröder, C. A1 - Choi, Youngeun A1 - Bald, Ilko A1 - Lehmann, W. A1 - Rödiger, S. T1 - Streptavidin Homologues for Applications on Solid Surfaces at High Temperatures JF - Langmuir N2 - One of the most commonly used bonds between two biomolecules is the bond between biotin and streptavidin (SA) or streptavidin homologues (SAHs). A high dissociation constant and the consequent high-temperature stability even allows for its use in nucleic acid detection under polymerase chain reaction (PCR) conditions. There are a number of SAHs available, and for assay design, it is of great interest to determine as to which SAH will perform the best under assay conditions. Although there are numerous single studies on the characterization of SAHs in solution or selected solid phases, there is no systematic study comparing different SAHs for biomolecule-binding, hybridization, and PCR assays on solid phases. We compared streptavidin, core streptavidin, traptavidin, core traptavidin, neutravidin, and monomeric streptavidin on the surface of microbeads (10–15 μm in diameter) and designed multiplex microbead-based experiments and analyzed simultaneously the binding of biotinylated oligonucleotides and the hybridization of oligonucleotides to complementary capture probes. We also bound comparably large DNA origamis to capture probes on the microbead surface. We used a real-time fluorescence microscopy imaging platform, with which it is possible to subject samples to a programmable time and temperature profile and to record binding processes on the microbead surface depending on the time and temperature. With the exception of core traptavidin and monomeric streptavidin, all other SA/SAHs were suitable for our investigations. We found hybridization efficiencies close to 100% for streptavidin, core streptavidin, traptavidin, and neutravidin. These could all be considered equally suitable for hybridization, PCR applications, and melting point analysis. The SA/SAH–biotin bond was temperature-sensitive when the oligonucleotide was mono-biotinylated, with traptavidin being the most stable followed by streptavidin and neutravidin. Mono-biotinylated oligonucleotides can be used in experiments with temperatures up to 70 °C. When oligonucleotides were bis-biotinylated, all SA/SAH–biotin bonds had similar temperature stability under PCR conditions, even if they comprised a streptavidin variant with slower biotin dissociation and increased mechanostability. KW - Biopolymers Probes KW - Hybridization KW - Fluorescence KW - Genetics PY - 2020 DO - https://doi.org/10.1021/acs.langmuir.9b02339 VL - 36 IS - 2 SP - 628 EP - 636 PB - American Chemical Society Publication CY - Washington AN - OPUS4-50357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heck, C. A1 - Michaeli, Y. A1 - Bald, Ilko A1 - Ebenstein, Y. T1 - Analytical epigenetics: single-molecule optical detection of DNA and histone modifications JF - Current Opinion in Biotechnology N2 - The field of epigenetics describes the relationship between genotype and phenotype, by regulating gene expression without changing the canonical base sequence of DNA. It deals with molecular genomic information that is encoded by a rich repertoire of chemical modifications and molecular interactions. This regulation involves DNA, RNA and proteins that are enzymatically tagged with small molecular groups that alter their physical and chemical properties. It is now clear that epigenetic alterations are involved in development and disease, and thus, are the focus of intensive research. The ability to record epigenetic changes and quantify them in rare medical samples is critical for next generation diagnostics. Optical detection offers the ultimate single-molecule sensitivity and the potential for spectral multiplexing. Here we review recent progress in ultrasensitive optical detection of DNA and histone modifications. KW - Epigenetics KW - Fluorescence KW - SERS PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S095816691830082X DO - https://doi.org/10.1016/j.copbio.2018.09.006 SN - 0958-1669 VL - 55 SP - 151 EP - 158 PB - Elsevier AN - OPUS4-46680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meiling, T. T. A1 - Schürmann, Robin A1 - Vogel, Stefanie A1 - Ebel, Kenny A1 - Nicolas, C. A1 - Milosavljević, A. R. A1 - Bald, Ilko T1 - Photophysics and chemistry of nitrogen-doped carbon nanodots with high photoluminescence quantum yield JF - The Journal of Physical Chemistry C N2 - Fluorescent carbon nanodots (CNDs) are very promising nanomaterials for a broad range of applications because of their high photostability, presumed selective luminescence, and low cost at which they can be produced. In this respect, CNDs are superior to well-established semiconductor quantum dots and organic dyes. However, reported synthesis protocols for CNDs typically lead to low photoluminescence quantum yield (PLQY) and low reproducibility, resulting in a poor understanding of the CND chemistry and photophysics. Here, we report a one-step synthesis of nitrogen-doped carbon nanodots (N-CNDs) from various carboxylic acids, Tris, and ethylenediaminetetraacetic acid resulting in high PLQY of up to 90%. The reaction conditions in terms of starting materials, temperature, and reaction time are carefully optimized and their influence on the photophysical properties is characterized. We find that citric acid-derived N-CNDs can result in a very high PLQY of 90%, but they do not Show selective luminescence. By contrast, acetic acid-derived N-CNDs show selective luminescence but a PLQY of 50%. The chemical composition of the surface and core of these two selected N-CND types is characterized among others by high-Resolution synchrotron X-ray photoelectron spectroscopy using single isolated N-CND clusters. The results indicate that photoexcitation occurs in the N-CND core, whereas the emission properties are determined by the N-CND surface groups. KW - Carbon nanodots KW - Fluorescence KW - Synchrotron XPS PY - 2018 DO - https://doi.org/10.1021/acs.jpcc.8b00748 SN - 1932-7447 VL - 122 IS - 18 SP - 10217 EP - 10230 PB - American Chemical Society CY - Washington, DC AN - OPUS4-45426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Choi, Youungeun A1 - Kotthoff, Lisa A1 - Olejko, L. A1 - Resch-Genger, Ute A1 - Bald, Ilko T1 - DNA origami-based Förster resonance energy-transfer nanoarrays and their application as ratiometric sensors JF - ACS Applied Materials and Interfaces N2 - DNA origami nanostructures provide a platform where dye molecules can be arranged with nanoscale accuracy allowing to assemble multiple fluorophores without dye–dye aggregation. Aiming to develop a bright and sensitive ratiometric sensor system, we systematically studied the optical properties of nanoarrays of dyes built on DNA origami platforms using a DNA template that provides a high versatility of label choice at minimum cost. The dyes are arranged at distances, at which they efficiently interact by Förster resonance energy transfer (FRET). To optimize array brightness, the FRET efficiencies between the donor fluorescein (FAM) and the acceptor cyanine 3 were determined for different sizes of the array and for different arrangements of the dye molecules within the array. By utilizing nanoarrays providing optimum FRET efficiency and brightness, we subsequently designed a ratiometric pH nanosensor using coumarin 343 as a pH-inert FRET donor and FAM as a pH-responsive acceptor. Our results indicate that the sensitivity of a ratiometric sensor can be improved simply by arranging the dyes into a well-defined array. The dyes used here can be easily replaced by other analyte-responsive dyes, demonstrating the huge potential of DNA nanotechnology for light harvesting, signal enhancement, and sensing schemes in life sciences. KW - DNA origami KW - FRET KW - Sensing KW - Ratiometric sensing KW - Fluorescence PY - 2018 DO - https://doi.org/10.1021/acsami.8b03585 SN - 1944-8244 SN - 1944-8252 VL - 10 IS - 27 SP - 23295 EP - 23302 PB - ACS AN - OPUS4-46002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -