TY - JOUR A1 - Heuskin, D. A1 - Kargl, F. A1 - Griesche, Axel A1 - Stenzel, C. A1 - Mitschke, D. A1 - Bräuer, D. A1 - Meyer, A. T1 - MSL compatible isothermal furnace insert for high temperature shear-cell diffusion experiments JF - Journal of physics / Conference series N2 - For long-time diffusion experiments shear-cell techniques offer more favourable terms than the traditional long capillary techniques. Here, we present a further developed shear-cell that enables the measurement of diffusion coefficients up to temperatures of 1600 °C. Hence, diffusion experiments can be carried out at temperatures not accessible until now by conventional capillary or shear-cell techniques. The modified shear-cell, which can contain up to six samples of a total length of 90mm and a diameter of 1.5 mm, is built of 30 shear discs of 3mm thickness each. It is operated in an isothermal furnace insert which can be accommodated in the Materials Science Laboratory of the International Space Station. This provides the opportunity that the shear-cell can be applied to microgravity and to ground-based experiments, respectively. The heater insert with an overall length of 518mm and a diameter of 210mm consists of four heating zones with a total power of 3.5 kW. Temperature homogeneity along the graphite sample compartment is better than 2K at 1600°C. Details of the new design are discussed and results of first successfully performed heating and shearing cycles are presented. KW - Microgravity KW - Diffusion KW - Shear cell KW - Melt KW - Alloy PY - 2011 DO - https://doi.org/10.1088/1742-6596/327/1/012053 SN - 1742-6588 SN - 1742-6596 VL - 327 IS - 012053 SP - 1 EP - 8 PB - IOP Publ. CY - Bristol, UK AN - OPUS4-24994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kargl, F. A1 - Engelhardt, M. A1 - Yang, F. A1 - Weis, H. A1 - Schmakat, P. A1 - Schillinger, B. A1 - Griesche, Axel A1 - Meyer, A. T1 - In situ studies of mass transport in liquid alloys by means of neutron radiography JF - Journal of physics / Condensed matter N2 - When in situ techniques became available in recent years this led to a breakthrough in accurately determining diffusion coefficients for liquid alloys. Here we discuss how neutron radiography can be used to measure chemical diffusion in a ternary AlCuAg alloy. Neutron radiography hereby gives complementary information to x-ray radiography used for measuring chemical diffusion and to quasielastic neutron scattering used mainly for determining self-diffusion. A novel Al2O3 based furnace that enables one to study diffusion processes by means of neutron radiography is discussed. A chemical diffusion coefficient of Ag against Al around the eutectic composition Al68.6Cu13.8Ag17.6 at.% was obtained. It is demonstrated that the in situ technique of neutron radiography is a powerful means to study mass transport properties in situ in binary and ternary alloys that show poor x-ray contrast. KW - Neutron radiography KW - Diffusion KW - Liquid alloys KW - Shear cell PY - 2011 DO - https://doi.org/10.1088/0953-8984/23/25/254201 SN - 0953-8984 SN - 1361-648X VL - 23 IS - 25 SP - 254201-1 EP - 254201-8 PB - IOP Publ. Ltd. CY - Bristol AN - OPUS4-23854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -