TY - JOUR A1 - Unger, Wolfgang A1 - Senoner, Mathias A1 - Wirth, Thomas A1 - Bütefisch, S. A1 - Busch, I. T1 - Lateral resolution delivered by imaging surface-analytical instruments as SIMS, AES and XPS: Application of the BAM-L200 Certified Reference Material and related ISO Standards JF - Journal of Surface Analysis N2 - The certified reference material BAM-L200, a nanoscale stripe pattern for length calibration and specification of lateral resolution, is described. BAM-L200 is prepared from a cross-sectioned epitaxially grown layer stack of AlxGa1-xAs and InxGa1 xAs on a GaAs substrate. The surface of BAM-L200 provides a flat pattern with stripe widths ranging down to 1 nm. Calibration distances, grating periods and stripe widths have been certified by TEM with traceability to the length unit. The combination of gratings, isolated narrow stripes and sharp edges of wide stripes offers a plenty of options for the determination of lateral resolution, sharpness and calibration of length scale at selected settings of imaging surface analytical instruments. The feasibility of the reference material for an analysis of the lateral resolution is demonstrated in detail by evaluation of ToF-SIMS, AES and EDX images. Other applications developed in the community are summarized, too. BAM-L200 fully supports the implementation of the revised International Standard ISO 18516 (in preparation) which is based on knowledge outlined in the Technical Report ISO/TR 19319:2013. KW - Standardization KW - AES KW - XPS KW - SIMS KW - Lateral resolution KW - Certified reference material PY - 2017 SN - 1341-1756 VL - 24 IS - 2 SP - 123 EP - 128 AN - OPUS4-43138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Unger, Wolfgang A1 - Gross, Thomas ED - John C. Rivière, ED - Sverre Myhra, T1 - Catalyst characterization T2 - Handbook of surface and interface analysis - Methods for Problem-Solving KW - Catalyst KW - Surface KW - Analysis KW - XPS KW - ESCA KW - SIMS PY - 2009 SN - 978-0-8493-7558-3 VL - 2nd Edition IS - Chapter 16 SP - 501 EP - 528 PB - CRC Press CY - Boca Raton, FL, USA AN - OPUS4-19602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang T1 - Advanced surface chemical analysis of plasma modified polymers and plasma-polymers N2 - A comprehensive characterization of plasma modified polymer surfaces or plasma-polymerized thin films needs access to parameters as - concentration of saturated/unsaturated carbon species (e.g. aromaticity) or other double bonds as C=N or C=O, - branching, and - losses of crystallinty or other degrees of structural order. Furthermore the complex ageing phenomena of plasma modified polymers/plasma-polymers and the measurement of an in-depth distribution of chemical species are challenges for the analyst. The talk will display selected examples where such challenges have been met by using advanced methods of surface chemical analyses as Photoelectron Spectroscopy with variable excitation energy (“SyncXPS”), X-ray Absorption Spectroscopy (NEXAFS) at C, N and O K-edges and Time-of-Flight Secondary Mass Spectroscopy (ToF-SIMS) combined with Principal Component analysis (PCA). T2 - IAP workshop – IAP 2016 "Organic surface modifications by plasmas and plasma-polymers" CY - Nancy, France DA - 08.06.2016 KW - XPS KW - NEXAFS KW - SIMS KW - Plasmapolymer PY - 2016 AN - OPUS4-36725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang A1 - Senoner, Mathias A1 - Wirth, Thomas A1 - Bütefisch, S. A1 - Busch, I. A1 - Rossi, A. A1 - Passiu, C. A1 - Spencer, N.D. T1 - Testing lateral resolution and field of view in imaging and small area analysis: reference materials and standardization N2 - The certified reference material BAM-L200, a nanoscale stripe pattern for length calibration and specification of lateral resolution, is described. BAM-L200 is prepared from a cross-sectioned epitaxially grown layer stack of AlxGa1-xAs and InxGa1 xAs on a GaAs substrate. The surface of BAM-L200 provides a flat pattern with stripe widths ranging down to 1 nm. Calibration distances, grating periods and stripe widths have been certified by TEM with traceability to the length unit. The combination of gratings, isolated narrow stripes and sharp edges of wide stripes offers a plenty of options for the determination of lateral resolution, sharpness and calibration of length scale at selected settings of imaging surface analytical instruments. The feasibility of the reference material for an analysis of the lateral resolution is demonstrated in detail by evaluation of ToF-SIMS, AES and EDX images. Other applications developed in the community are summarized, too. BAM-L200 fully supports the implementation of the revised International Standard ISO 18516 (in preparation) which is based on knowledge outlined in the Technical Report ISO/TR 19319:2013. T2 - 7th International Symposium on Practical Surface Analysis(PSA-16) CY - Daejeon, Korea DA - 17.10.2016 KW - BAM L200 KW - SIMS KW - AES KW - XPS PY - 2016 AN - OPUS4-38266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang A1 - Wirth, Thomas A1 - Senoner, Mathias T1 - Lateral resolution delivered by imaging surface-analytical instruments as SIMS, AES and XPS: Application of the BAM-L200 Certified Reference Material and related ISO Standards N2 - The certified reference material BAM-L200, a nanoscale stripe pattern for length calibration and specification of lateral resolution, is described. BAM-L200 is prepared from a cross-sectioned epitaxially grown layer stack of AlxGa1-xAs and InxGa1-xAs on a GaAs substrate. The surface of BAM-L200 provides a flat pattern with stripe widths ranging down to 1 nm. Calibration distances, grating periods and stripe widths have been certified by TEM with traceability to the length unit. The combination of gratings, isolated narrow stripes and sharp edges of wide stripes offers a plenty of options for the determination of lateral resolution, sharpness and calibration of length scale at selected settings of imaging surface analytical instruments. The feasibility of the reference material for an analysis of the lateral resolution is demonstrated in detail by evaluation of ToF-SIMS, AES and EDX images. Other applications developed in the community are summarized, too. BAM-L200 fully supports the implementation of the revised International Standard ISO 18516 (in preparation) which is based on knowledge outlined in the Technical Report ISO/TR 19319:2013. Fundamental approaches to determination of lateral resolution and sharpness in beam-based methods T2 - SIMS Europe 2016 CY - Münster, Germany DA - 18.09.2016 KW - ISO standards KW - XPS KW - AES KW - SIMS KW - Lateral resolution PY - 2016 AN - OPUS4-37507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Unger, Wolfgang T1 - Measuring organic layers N2 - Many innovative products - from touchscreens to solar panels to pharmaceuticals – utilise multiple organic layers to create complex functionality. New techniques have been developed to remove and measure layers individually enabling improved product development and assisting with quality assurance. However, manufacturers cannot be certain of the depth of layer being removed and new reference materials for these techniques are needed to increase uptake, and remove a major barrier to innovation. KW - Organic layers KW - XPS KW - SIMS PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-388656 UR - http://www.euramet.org/metrology-for-societys-challenges/metrology-for-industry/impact-case-studies-emrp-industry-theme/ SP - 1 EP - 2 CY - Teddington AN - OPUS4-38865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang T1 - Acquiring and Documenting Reproducible Spectra, Depth Profiles and Images: XPS, AES and SIMS N2 - In this talk sample prep/handling, instrument calibration and data acquisition methods with examples from XPS, Auger and SIMS will be addressed in terms of their contributions to the reproducibility of data delivered by the methods. Active parties in the field are VAMAS TWA 2 “Surface chemical analysis” (http://www.vamas.org/twa2/index.html), ISO/TC 201 “Surface chemical analysis” (https://www.iso.org/committee/54618.html) and the Surface Analysis Working Group (SAWG) at the International Meter Convention (https://www.bipm.org/en/ committees/cc/wg/sawg.html). The tools to improve the reproducibility of spectra, depth profiles and images at these international platforms are inter-laboratory comparisons, validated SOPs, standards and certified reference materials (CRM) as well as uncertainty budgets and establishment of traceability chains. The last point is of specific importance because all the methods, XPS, Auger and SIMS, are not primary methods. To address quantitative XPS, AES and SIMS results of relevant inter-laboratory comparisons organized by SAWG considering measurands as alloy surface composition and thickness of thin films will be introduced. These comparisons delivered results which are viewed to be benchmarking, some of them resulted in ISO/TC 201 standards. For quantitative XPS and AES the principal outline of an uncertainty budget will be discussed together with the audience. Another issue of quantitative XPS which definitely needs consideration are valid methods for a determination of the transmission function of the instruments and even for the emission angle in the respective experiments. Concerning the field of depth profiling it has to be investigated together with the audience whether the ISO (or ASTM) standards we have are sufficient to guarantee comparable results. Having in mind the number of different sputter ion species available today and range of samples of interest (metals, semiconductors, organic films) this might be questionable. And, how do depth profiling by AR-XPS and variable excitation energy XPS compete here? For imaging surface chemical analysis, the characterization of the imaging system is an issue to be investigated. Here the determination of lateral resolution is a relevant topic. Finally, the future needs to develop metrology for new applications e.g., ambient-pressure XPS, bio samples, and core-shell nanoparticles, will be issues raised for a discussion with the audience. T2 - 17th Topical Conference on Quantitative Surface Analysis (QSA 17) CY - Long Beach, CA, USA DA - 21.10.2018 KW - Depth Profiles and Images KW - X-ray Photoelectron Spectroscopy (XPS) KW - Auger Electron Spectroscopy (AES) KW - SIMS KW - Reproducible Spectra PY - 2018 AN - OPUS4-46470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Senoner, Mathias A1 - Wirth, Thomas A1 - Unger, Wolfgang A1 - Escher, M. A1 - Weber, N. A1 - Funnenmann, D. A1 - Krömker, B. T1 - Testing of Lateral Resolution in the Nanometre Range Using the BAM-L002 - Certified Reference Material: Application to ToF-SIMS IV and NanoESCA Instruments JF - Journal of surface analysis T2 - International Symposium on Practical Surface Analysis CY - Jeju, Republic of Corea DA - 2004-10-04 KW - ESCA KW - Nanometrologie KW - Nanotechnologie KW - Oberflächenanalytik KW - SIMS KW - XPS KW - Zertifiziertes Referenzmaterial PY - 2005 SN - 1341-1756 SN - 1347-8400 VL - 12 IS - 2 SP - 78 EP - 82 CY - Tsukuba AN - OPUS4-11146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Senoner, Mathias A1 - Unger, Wolfgang A1 - Powell, C. T1 - Surface chemical analysis - General procedures - Determination of lateral resolution T2 - Working Draft ISO Technical Report - ISO/PDTR 19319 KW - AES KW - Contrast transfer function KW - Imaging KW - ISO TC 201 KW - Lateral resolution KW - Performance of imaging instruments KW - Quality management systems KW - Simulation KW - SIMS KW - XPS PY - 2009 SP - 1 EP - 65 AN - OPUS4-19158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Senoner, Mathias A1 - Unger, Wolfgang T1 - Lateral resolution of secondary ion mass spectrometry - results of an inter-laboratory comparison JF - Surface and interface analysis N2 - Recently, BAM organised an inter-laboratory comparison focussed on lateral resolution and accuracy of sub-micron length measurements by secondary ion mass spectrometry (SIMS). Results were submitted by 16 laboratories from 10 countries. The task was to analyse a cross-sectioned semiconductor multilayer stack. The resulting strip pattern in the surface of the sample shows narrow strips, step transitions and gratings of different periods. Imaging analysis of this pattern enables the determination of relevant parameters related to the lateral resolution: (i) The width (FWHM) of the primary ion beam, (ii) the distance between 16% and 84% intensity points in a profile across the image of a step transition and (iii) the modulation of intensity in the images of gratings with different periods. The parameter's data reported by the participants vary in a wide range. A strong variation in the data of primary ion beam width was observed for results measured with the same type of instrument. The distance between two narrow strips was measured with high accuracy. Twelve of sixteen of the submitted values are within the limits of uncertainty of the reference value 964 ± 35 nm. This result shows that the calibration of the length scale of the SIMS instruments is already rather precise in most of the participating laboratories. KW - ESF KW - LSF KW - MTF KW - SIMS KW - Accuracy KW - Deconvolution KW - Edge method KW - Edge spread function KW - Inter-laboratory comparison KW - Ion microscopy KW - Lateral resolution KW - Length scale calibration KW - Line spread function KW - Modulation transfer function KW - Nanometrology KW - Nanotechnology KW - Primary ion beam width KW - Square-wave grating KW - Strip pattern PY - 2007 SN - 0142-2421 SN - 1096-9918 VL - 39 IS - 1 SP - 16 EP - 25 PB - Wiley CY - Chichester AN - OPUS4-14427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, S. A1 - Traulsen, C. H.-H. A1 - Heinrich, Thomas A1 - Poppenberg, J. A1 - Leppich, C. A1 - Holzweber, Markus A1 - Unger, Wolfgang A1 - Schalley, C.A. T1 - Sequence-programmable multicomponent multilayers of nanometer-sized tetralactam macrocycles on gold surfaces JF - The journal of physical chemistry / C N2 - Multicomponent multilayers have been deposited on gold surfaces by metal-ion-mediated layer-by-layer self-assembly of differently functionalized tetralactam macrocycles. The layer stack can be programmed with respect to the sequences of metal ions and macrocycles by the deposition sequence. KW - Organic layer KW - XPS KW - SIMS KW - NEXAFS PY - 2013 DO - https://doi.org/10.1021/jp405492v SN - 1932-7447 SN - 1089-5639 VL - 117 IS - 37 SP - 18980 EP - 18985 PB - Soc. CY - Washington, DC AN - OPUS4-32576 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Passiu, Cristiana A1 - Rossi, Antonella A1 - Bernard, Laetitia A1 - Paul, Dennis A1 - Hammond, John A1 - Unger, Wolfgang A1 - Venkataraman, Nagaiyanallur V. A1 - Spencer, Nicholas D. T1 - Fabrication and Microscopic and Spectroscopic Characterization of Planar, Bimetallic, Micro- and Nanopatterned Surfaces JF - Langmuir N2 - Micropatterns and nanopatterns of gold embedded in silver and titanium embedded in gold have been prepared by combining either photolithography or electron-beam lithography with a glue-free template-stripping procedure. The obtained patterned surfaces have been topographically characterized using atomic force microscopy and scanning electron microscopy, showing a very low root-mean-square roughness (<0.5 nm), high coplanarity between the two metals (maximum height difference ≈ 2 nm), and topographical continuity at the bimetallic interface. Spectroscopic characterization using X-ray photoelectron spectroscopy (XPS), time-of-flight secondary-ion mass spectrometry (ToF-SIMS), and Auger electron spectroscopy (AES) has shown a sharp chemical contrast between the two metals at the interface for titanium patterns embedded in gold, whereas diffusion of silver into gold was observed for gold patterns embedded in silver. Surface flatness combined with a high chemical contrast makes the obtained surfaces suitable for applications involving functionalization with molecules by orthogonal adsorption chemistries or for instrumental calibration. The latter possibility has been tested by determining the image sharpness and the analyzed area on circular patterns of different sizes for each of the spectroscopic techniques applied for characterization.This is the first study in which the analyzed area has been determined using XPS and AES on a flat surface, and the first example of a method for determining the analyzed area using ToF-SIMS. KW - XPS KW - AES KW - SIMS KW - Lateral resolution KW - Test pattern PY - 2017 UR - http://pubs.acs.org/doi/abs/10.1021/acs.langmuir.7b00942 DO - https://doi.org/10.1021/acs.langmuir.7b00942 SN - 0743-7463 VL - 33 IS - 23 SP - 5657 EP - 5665 PB - ACS AN - OPUS4-40929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oran, Umut A1 - Swaraj, Sufal A1 - Friedrich, Jörg Florian A1 - Unger, Wolfgang T1 - Surface analysis of plasma-deposited polymer films by Time of Flight Static Secondary Ion Mass Spectrometry (ToF-SSIMS) before and after exposure to ambient air JF - Surface and coatings technology N2 - Pulsed plasma deposited styrene and ethylene films were studied by Time of Flight Static Secondary Ion Mass Spectrometry (ToF-SSIMS) before and after exposure to ambient air. The influence of the external plasma parameters on the secondary ion mass spectra of plasma deposited films was investigated. Approaches for the interpretation of SSIMS spectra of organic materials were reviewed and applied to the evaluation of SSIMS data of plasma deposited films. From these data, information on the chemical character of the plasma deposited films was derived. When the plasma polymers are exposed to air oxygen incorporation occurs. The oxygen uptake is high at the beginning and then it levels of. A relation that “higher the regularity of the film lower is the oxygen uptake” was found. Harder plasma conditions, which could be obtained by applying higher plasma power or lower monomer flow rate, result in higher oxygen uptake and vice versa. KW - Plasma polymerization KW - Polyethylene (PE) KW - Polystyrene (PS) KW - SIMS KW - Ageing PY - 2005 DO - https://doi.org/10.1016/j.surfcoat.2005.02.032 SN - 0257-8972 VL - 200 IS - 1-4 SP - 463 EP - 467 PB - Elsevier Science CY - Lausanne AN - OPUS4-11044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kim, K. J. A1 - Kim, A. S. A1 - Jang, J. S. A1 - Suh, J. K. A1 - Wirth, Thomas A1 - Hodoroaba, Vasile-Dan A1 - Unger, Wolfgang A1 - Araujo, J. R. A1 - Archanjo, B. S. A1 - Galhardo, C. E. A1 - Damasceno, J. A1 - Achete, C. A. A1 - Wang, H. A1 - Wang, M. A1 - Bennett, J. A1 - Simons, D. A1 - Kurokawa, A. A1 - Terauchi, S. A1 - Fujimoto, T. A1 - Streeck, C. A1 - Beckhoff, B. A1 - Spencer, S. A1 - Shard, A. T1 - Measurement of mole fractions of Cu, In, Ga and Se in Cu(In,Ga)Se2 films JF - Metrologia N2 - CCQM key comparison K-129 for the quantitative analysis of Cu(In,Ga)Se2 (CIGS) films has been performed by the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The objective of this key comparison is to compare the equivalency of the National Metrology Institutes (NMIs) and Designated Institutes (DIs) for the measurement of mole fractions of Cu, In, Ga and Se in a thin CIGS film. The measurand of this key comparison is the average mole fractions of Cu, In, Ga and Se of a test CIGS alloy film in the unit of mole fraction (mol/mol). Mole fraction with the metrological unit of mol/mol can be practically converted to atomic fraction with the unit of at%. In this key comparison, a CIGS film with certified mole fractions was supplied as a reference specimen to determine the relative sensitivity factors (RSFs) of Cu, In, Ga and Se. The mole fractions of the reference specimen were certified by isotope dilution - inductively coupled plasma/mass spectrometry (ID-ICP/MS) and are traceable to the SI. A total number counting (TNC) method was recommended as a method to determine the signal intensities of the constituent elements acquired in the depth profiles by Secondary Ion Mass Spectrometry (SIMS), X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). Seven NMIs and one DI participated in this key comparison. The mole fractions of the CIGS films were measured by depth profiling based-SIMS, AES and XPS. The mole fractions were also measured by non-destructive X-Ray Fluorescence (XRF) Analysis and Electron Probe Micro Analysis (EPMA) with Energy Dispersive X-ray Spectrometry (EDX). In this key comparison, the average degrees of equivalence uncertainties for Cu, In, Ga and Se are 0.0093 mol/mol, 0.0123 mol/mol, 0.0047 mol/mol and 0.0228 mol/mol, respectively. These values are much smaller than that of Fe in a Fe-Ni alloy film in CCQM K-67 (0.0330 mol/mol). This means that the quantification of multi-element alloy films is possible by depth profiling analysis using the TNC method. KW - CIGS KW - Key comparison KW - CCQM KW - SIMS KW - XPS KW - AES KW - XRF KW - EPMA PY - 2016 UR - http://iopscience.iop.org/article/10.1088/0026-1394/53/1A/08011 DO - https://doi.org/10.1088/0026-1394/53/1A/08011 SN - 0026-1394 SN - 1681-7575 VL - 53, Technical Supplement SP - Article 08011, 1 EP - 19 PB - IOP Publishing AN - OPUS4-38110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Holzweber, Markus A1 - Shard, A.G. A1 - Jungnickel, H. A1 - Luch, A. A1 - Unger, Wolfgang T1 - Dual beam organic depth profiling using large argon cluster ion beams JF - Surface and interface analysis N2 - Argon cluster sputtering of an organic multilayer reference material consisting of two organic components, 4,4'-bis[N-(1-naphthyl-1-)-N-phenyl- amino]-biphenyl (NPB) and aluminium tris-(8-hydroxyquinolate) (Alq3), materials commonly used in organic light-emitting diodes industry, was carried out using time-of-flight SIMS in dual beam mode. The sample used in this study consists of a ~400-nm-thick NPB matrix with 3-nm marker layers of Alq3 at depth of ~50, 100, 200 and 300 nm. Argon cluster sputtering provides a constant sputter yield throughout the depth profiles, and the sputter yield volumes and depth resolution are presented for Ar-cluster sizes of 630, 820, 1000, 1250 and 1660 atoms at a kinetic energy of 2.5 keV. The effect of cluster size in this material and over this range is shown to be negligible. KW - SIMS KW - Organic depth profiling KW - Argon cluster KW - ToF-SIMS KW - Ar-GCIB KW - Secondary Ion Mass Spectrometry PY - 2014 DO - https://doi.org/10.1002/sia.5429 SN - 0142-2421 SN - 1096-9918 VL - 46 SP - 936 EP - 939 PB - Wiley CY - Chichester AN - OPUS4-32573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinrich, Thomas A1 - Traulsen, Christoph Hans-Henning A1 - Holzweber, Markus A1 - Richter, S. A1 - Kunz, V. A1 - Kastner, S.K. A1 - Krabbenborg, S.O. A1 - Huskens, J. A1 - Unger, Wolfgang A1 - Schalley, C.A. T1 - Coupled molecular switching processes in ordered mono- and multilayers of stimulus-responsive rotaxanes on gold surfaces JF - Journal of the American Chemical Society : JACS N2 - Interfaces provide the structural basis for function as, for example, encountered in nature in the membrane-embedded photosystem or in technology in solar cells. Synthetic functional multilayers of molecules cooperating in a coupled manner can be fabricated on surfaces through layer-by-layer self-assembly. Ordered arrays of stimulus-responsive rotaxanes undergoing well-controlled axle shuttling are excellent candidates for coupled mechanical motion. Such stimulus-responsive surfaces may help integrate synthetic molecular machines in larger systems exhibiting even macroscopic effects or generating mechanical work from chemical energy through cooperative action. The present work demonstrates the successful deposition of ordered mono- and multilayers of chemically switchable rotaxanes on gold surfaces. Rotaxane mono- and multilayers are shown to reversibly switch in a coupled manner between two ordered states as revealed by linear dichroism effects in angle-resolved NEXAFS spectra. Such a concerted switching process is observed only when the surfaces are well packed, while less densely packed surfaces lacking lateral order do not exhibit such effects. KW - Molecular machine KW - Rotaxane KW - LBL growth KW - XPS KW - NEXAFS KW - SIMS PY - 2015 DO - https://doi.org/10.1021/ja512654d SN - 0002-7863 SN - 1520-5126 VL - 137 IS - 13 SP - 4382 EP - 4390 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-33077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gross, Thomas A1 - Retzko, Iris A1 - Friedrich, Jörg Florian A1 - Unger, Wolfgang T1 - Time-of-flight-SIMS and XPS characterization of metal doped polymers JF - Applied surface science N2 - Organic thin films with defined chemical structures and physical properties are required for various applications. Plasma polymerization is of technological interest, since the deposition of plasma polymers is possible on any material of any shape in the desired thickness. We report on the TOF-SIMS (TOF: time-of-flight) and XPS investigations of pulse plasma ‘poly(acetylene)’ and alkali metal doped pulse plasma ‘poly(acetylene)’ films. The combination of TOF-SIMS and XPS supplies detailed information on the surface chemistry of these films. Application of both methods provides the possibility for cross-checking certain results. Moreover the different sensitivities of the methods can be utilized. According to the TOF-SIMS and XPS data it can be concluded that the interaction of alkali metals with plasma ‘poly(acetylene)’ results in electrovalent bonds of the type Me?+–C?- between carbon and metal. Furthermore carbon–oxygen–metal interactions were observed. These interactions are of the type C=O?-cdots, three dots, centeredMe?+ and/or C–O?-–Me?+. KW - SIMS KW - TOF-SIMS KW - XPS KW - Plasma KW - Polymer KW - Poly(acetylene) PY - 2003 DO - https://doi.org/10.1016/S0169-4332(02)00769-9 SN - 0169-4332 SN - 1873-5584 VL - 203-204 SP - 575 EP - 579 PB - North-Holland CY - Amsterdam AN - OPUS4-2271 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dietrich, Paul A1 - Unger, Wolfgang T1 - Summary of ISO/TC 201 technical report: ISO/TR 19693 surface chemical analysis—characterization of functional glass substrates for biosensing applications JF - Surface and Interface Analysis N2 - ISO/TR 19693:2018—Surface chemical analysis—Characterization of functional glass substrates for biosensing applications gives an overview of methods, strategies, and guidance to identify possible sources of problems related to substrates, device production steps (cleaning, activation, and chemical modification), and shelf life (storage conditions and aging). It is particularly relevant for surface chemical analysts characterizing glass‐based biosensors, and developers or quality managers in the biosensing device production community. Based on quantitative and qualitative surface chemical analysis, strategies for identifying the cause of poor Performance during device manufacturing can be developed and implemented. A review of measurement capabilities of surface analytical methods is given to assist readers from the biosensing community. KW - Bio sensing device KW - Surface chemical analysis KW - XPS KW - SIMS KW - Standardization PY - 2018 DO - https://doi.org/10.1002/sia.6481 SN - 0142-2421 SN - 1096-9918 VL - 50 IS - 8 SP - 835 EP - 838 PB - John Wiley & Sons, Ltd. AN - OPUS4-45829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -