TY - CHAP A1 - Telgmann, L. A1 - Lindner, U. A1 - Lingott, J. A1 - Jakubowski, Norbert ED - Prof. Dr. Golloch, Alfred T1 - Analysis and speciation of lanthanoides by ICP-MS T2 - Handbook of rare earth elements N2 - Inductively coupled plasma mass spectrometry (ICP-MS) is based on formation of positively charged atomic ions in a high-frequency inductively coupled Argon plasma at atmospheric pressure. The ions are extracted and transferred from the plasma source into a mass analyzer operated at high vacuum via an interface equipped with a sampling and a skimmer cone. The ions are separated in the mass analyzer according to their charge to mass ratio. The ions are converted at a conversion dynode and are detected by use of a secondary electron multiplier or a Faraday cup. From an analytical point of view, ICP-MS is a well-established method for multi-elemental analysis in particular for elements at trace- and ultra-trace levels. Furthermore, methods based on ICP-MS offer simple quantification concepts, for which usually (liquid) standards are applied, low matrix effects compared to other conventional analytical techniques, and relative limits of detection (LODs) in the low pg g−1 range and absolute LODs down to the attomol range. For these applications, ICP-MS excels by a high sensitivity which is independent of the molecular structure and a wide linear dynamic range. It has found acceptance in various application areas and during the last decade ICP-MS is also more and more applied for detection of rare earth elements particularly in the life sciences. Due to the fact that all molecules introduced into the high temperature of the plasma in the ion source were completely dissociated and broken down into atoms, which are subsequently ionized, all elemental species information is completely lost. However, if the different species are separated before they enter the plasma by using adequate fractionation or separation techniques, then ICP-MS can be used as a very sensitive element-specific detector. We will discuss this feature of ICP-MS in this chapter in more detail at hand of the speciation of gadolinium-containing contrast agents. KW - Analysis of lanthanoides KW - ICP-MS KW - Speciation of Gd-containing MRI contrast agents PY - 2017 SN - 978-3-11-036523-8 SP - Chapter 5, 124 EP - 144 PB - De Gruyter AN - OPUS4-40238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Telgmann, L. A1 - Lindner, U. A1 - Lingott, J. A1 - Jakubowski, Norbert T1 - Analysis and speciation of lanthanoides by ICP-MS JF - Physical Sciences Reviews N2 - Inductively coupled plasma mass spectrometry (ICP-MS) is based on formation of positively charged atomic ions in a high-frequency inductively coupled Argon plasma at atmospheric pressure. The ions are extracted and transferred from the plasma source into a mass analyzer operated at high vacuum via an interface equipped with a sampling and a skimmer cone. The ions are separated in the mass analyzer according to their charge to mass ratio. The ions are converted at a conversion dynode and are detected by use of a secondary electron multiplier or a Faraday cup. From an analytical point of view, ICP-MS is a well-established method for multi-elemental analysis in particular for elements at trace- and ultra-trace levels. Furthermore, methods based on ICP-MS offer simple quantification concepts, for which usually (liquid) standards are applied, low matrix effects compared to other conventional analytical techniques, and relative limits of detection (LODs) in the low pg g−1 range and absolute LODs down to the attomol range. For these applications, ICP-MS excels by a high sensitivity which is independent of the molecular structure and a wide linear dynamic range. It has found acceptance in various application areas and during the last decade ICP-MS is also more and more applied for detection of rare earth elements particularly in the life sciences. Due to the fact that all molecules introduced into the high temperature of the plasma in the ion source were completely dissociated and broken down into atoms, which are subsequently ionized, all elemental species information is completely lost. However, if the different species are separated before they enter the plasma by using adequate fractionation or separation techniques, then ICP-MS can be used as a very sensitive element-specific detector. We will discuss this feature of ICP-MS in this chapter in more detail at hand of the speciation of gadolinium-containing contrast agents. KW - Analysis of lanthanoides KW - ICP-MS KW - Speciation of Gd-containing MRI contrast agents PY - 2016 UR - http://adsabs.harvard.edu/abs/2016PhSRv...1...58T DO - https://doi.org/10.1515/psr-2016-0058 SN - 2365-659X SN - 2365-6581 VL - 1 IS - 11 SP - id. 58, 1 EP - 20 AN - OPUS4-40176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seeger, Stefan T1 - Analysis of air pollutants in ambient and indoor aerosolsby TXRF - application examples N2 - Quantitative chemical analysis of airborne particulate matter (PM) is vital for the understanding of health effects in indoor and outdoor environments, as well as for enforcing air quality regulations. Typically, airborne particles are sampled over long time periods on filters, followed by lab-based analysis, e.g., with inductively coupled plasma mass spectrometry (ICP-MS). Within the EURAMET EMPIR AEROMET project, cascade impactor aerosol sampling was combined for the first time with on-site total reflection X-ray fluorescence (TXRF) spectroscopy to develop a tool for quantifying particle element compositions within short time intervals and even on-site. This makes variations of aerosol chemistry observable with time resolution of only a few hours and with good size resolution in the PM10 range. A proof of principles of this methodological approach and the comparison to standard methods within the scope of a field campaign will be presented. Secondly, aerosol sampling and TXRF analysis seems suitable for the quantification of elements in indoor aerosols as well and may provide an important enhancement of existing methods for the analysis of organic species in aerosols (such as sampling and TD-GC/MS). As an example, the TXRF analysis of particles emitted from laser printers under controlled conditions in an environmental test chamber will be presented. T2 - TXRF Journal ClubB CY - Online meeeting DA - 24.02.2022 KW - Aerosol KW - TXRF KW - Cascade impactor KW - ICP-MS KW - Particles KW - Air quality monitoring KW - Element mass concentration PY - 2022 AN - OPUS4-54418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert A1 - Müller, Larissa A1 - Traub, Heike A1 - Esteban-Fernández, Diego A1 - Panne, Ulrich A1 - Herrmann, Antje A1 - Schellenberger, E. A1 - Kneipp, Janina T1 - Bio- and immuno-imaging by use of laser ablation ICP-MS N2 - Imuno-histochemical staining (IHC) of cancer biomarker on tissue sections is one of the most important analytical techniques for cancer diagnosis although standardization and quality management is tedious and differ significantly from clinic to clinic. Combining established IHC staining strategies with modern quantitative methods would increase it`s potential. We used element mass spectrometry (ICP-MS) and a new ink-jet printed internal standardization approach in combination with IHC staining. The printing strategy was utilized to improve elemental image resolution and reproducibility of paraffin embedded breast cancer tissue sections in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) after conventional IHC staining as a model system to investigate the new capabilities of this technique. T2 - European Winter Conference on Plasma Spectrochemistry 2016 CY - Tucson, Arizona, USA DA - 10.01.2016 KW - Laser Ablation KW - ICP-MS KW - Bio-Imaging PY - 2016 AN - OPUS4-36492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cruz-Alonso, M. A1 - Fernandez, B. A1 - Alvarez, L. A1 - Gonzalez-Iglesias, H. A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Pereiro, R. T1 - Bioimaging of metallothioneins in ocular tissue sections by laser ablation-ICP-MS using bioconjugated gold nanoclusters as specific tags JF - Microchimica Acta N2 - An immunohistochemical method is described to visualize the distribution of metallothioneins 1/2 (MT 1/2) and metallothionein 3 (MT 3) in human ocular tissue. It is making use of (a) antibodies conjugated to gold nanoclusters (AuNCs) acting as labels, and (b) laser ablation (LA) coupled to inductively coupled plasma – mass spectrometry (ICP-MS). Water-soluble fluorescent AuNCs (with an average size of 2.7 nm) were synthesized and then conjugated to antibody by carbodiimide coupling. The surface of the modified AuNCs was then blocked with hydroxylamine to avoid nonspecific interactions with biological tissue. Immunoassays for MT 1/2 and MT 3 in ocular tissue sections (5 μm thick) from two post mortem human donors were performed. Imaging studies were then performed by fluorescence using confocal microscopy, and LA-ICP-MS was performed in the retina to measure the signal for gold. Signal amplification by the >500 gold atoms in each nanocluster allowed the antigens (MT 1/2 and MT 3) to be imaged by LA-ICP-MS using a laser spot size as small as 4 μm. The image patterns found in retina are in good agreement with those obtained by conventional fluorescence immunohistochemistry which was used as an established reference method. KW - Nanocluster KW - Immunohistochemistry KW - Laser ablation KW - ICP-MS KW - Fluorescence KW - Bioimaging PY - 2018 DO - https://doi.org/10.1007/s00604-017-2597-1 SN - 1436-5073 SN - 0026-3672 VL - 185 IS - 1 SP - 64 EP - 72 PB - Springer CY - Vienna AN - OPUS4-44637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blanchard, V. A1 - Traub, Heike A1 - Biskup, K. A1 - Wieczorek, M. A1 - Saatz, Jessica A1 - Pagel, K. T1 - Central project for biochemical analysis of proteoglycans and glycosaminoglycans and for element-specific microscopy N2 - Nearly all disease processes are associated with variations of components of the extracellular matrix (ECM) that are typically observed during the development of inflammation. This concerns for example proteoglycans and their associated glycosaminoglycans (GAG), which have been shown to bind to cationic metal imaging probes due to their strong complexing activity. The complexing activity largely depends on the degree of GAG sulfation and/or carboxylation as well as on the GAG isomericity. In this central project, we investigate GAG structures from inflammatory disorders (namely cardiovascular diseases, inflammatory intestinal diseases and neuroinflammation) provided by researchers of the Collaborative Research Center at the molecular disaccharidic level using chromatographic and mass spectrometric methods. In parallel, the spatial localization and quantification of metal-based imaging probes are evaluated by LA-ICP-MS imaging. T2 - 1st International Symposium In vivo Visualization of Extracellular Matrix Pathology CY - Online Meeting DA - 27.05.2021 KW - Laser ablation KW - ICP-MS KW - MALDI PY - 2021 AN - OPUS4-52716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sötebier, Carina A1 - Bierkandt, Frank A1 - Bettmer, J. A1 - Rades, Steffi A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Characterization of Ag nanoparticles: limitation and advantages of field-flow fractionation N2 - Silver nanoparticles (Ag NPs) are widely used in consumer products due to their excellent antibacterial properties. Their broad application has led to a variety of recent regulation on their use and labelling. Thus, a highly specific analytical method for their characterization and quantification is needed. Due to their large separation range, field-flow fractionation (FFF) techniques are repeatedly applied for the analysis of NP. Limitations of FFF include quantification, sample loss and insufficient recovery rates. Another challenge can be non-ideal elution behavior of particles in complex and unknown matrices. The possible sources for sample losses of Ag NP have been studied using an asymmetric flow FFF (AF4) in combination with inductively coupled plasma mass spectrometry (ICP-MS). The influence of different parameters, for example the sample concentration, on the recovery rates and sample loss has been investigated. Using laser ablation ICP-MS, the Ag deposition on the membrane was located and quantified. Our results identified ionic silver as the main sources of sample loss. These results can be useful for further method improvement. However, when a Ag NP sample containing an unknown complex matrix is analyzed, FFF method optimization is challenging as the sample might show a shift in the retention times and lower recovery rates. In this case, ICP-MS experiment in the single particle mode (sp-ICP-MS) can be a useful addition to the FFF measurement. Here, upon assumption of spherical particles, the geometric diameters can be calculated. This fast and easy approach can be helpful in order to interpret the FFF fractograms and advice the FFF method optimization process. T2 - 18th International Symposium on Field- and Flow-Based Separations CY - Dresden, Germany DA - 22.05.2016 KW - Silver KW - Nanoparticles KW - Field-flow fractionation KW - ICP-MS PY - 2016 AN - OPUS4-36352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brauckmann, C. A1 - Pramann, A. A1 - Rienitz, O. A1 - Schulze, A. A1 - Phukphatthanachai, P. A1 - Vogl, Jochen T1 - Combining Isotope Dilution and Standard Addition - Elemental Analysis in Complex Samples N2 - A new method combining isotope dilution mass spectrometry (IDMS) and standard addition has been developed to determine the mass fractions w of different elements in complex matrices: (a) silicon in aqueous tetramethylammonium hydroxide (TMAH), (b) sulfur in biodiesel fuel, and (c) iron bound to transferrin in human serum. All measurements were carried out using inductively coupled plasma mass spectrometry (ICP–MS). The method requires the gravimetric preparation of several blends (bi)—each consisting of roughly the same masses (mx,i) of the sample solution (x) and my,i of a spike solution (y) plus different masses (mz,i) of a reference solution (z). Only these masses and the isotope ratios (Rb,i) in the blends and reference and spike solutions have to be measured. The derivation of the underlying equations based on linear regression is presented and compared to a related concept reported by Pagliano and Meija. The uncertainties achievable, e.g., in the case of the Si blank in extremely pure TMAH of urel (w(Si)) = 90% (linear regression method, this work) and urel (w(Si)) = 150% (the method reported by Pagliano and Meija) seem to suggest better applicability of the new method in practical use due to the higher robustness of regression analysis. T2 - CITAC Best Paper Award Ceremony CY - Online meeting DA - 21.06.2022 KW - Isotope dilution mass spectrometry KW - Standard addition KW - ICP-MS KW - Blank characterization KW - Silicon KW - Sulfur KW - Transferrin KW - Tetramethylammonium hydroxide KW - Biodiesel fuel KW - Human serum PY - 2022 AN - OPUS4-55032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quétel, C. A1 - Vogl, Jochen A1 - Prohaska, T. A1 - Nelms, S. A1 - Taylor, P.D.P. A1 - De Bièvre, P. T1 - Comparative performance study of ICP mass spectrometers by means of U "isotopic measurements" JF - Fresenius' journal of analytical chemistry N2 - The performance of four commercially available ICPMS instruments of three different types was compared by means of uranium "isotopic measurements". Examined were two quadrupole sector (different generation, different manufacturer), one single detector double focusing magnetic sector and one multiple collector double focusing magnetic sector instruments. The same samples of the IRMM-072 series were used under routine conditions to measure the 233U/235U and the 233U/238U ratios which, in these samples, vary over almost three orders of magnitude from ~ 1 to ~ 2 · 10-3. Within expanded (k = 2) uncertainties, good agreement was observed between the certified values and the data internally corrected for mass-discrimination effects. The magnitude of the evaluated uncertainties was different for each type of instrument. With the multiple collector instrument, expanded uncertainties varied from - 0.04% to- 0.24% for the 233U/235U ratio, and from - 0.08% to - 0.27% for the 233U/238U ratio. They were ~ 1 to 5 times larger with the single detector magnetic sector instrument, and ~ 10 to 25 times larger with both quadrupole sector instruments. With the multiple collector instrument, repeatability of the measurements seemed to be limited by the difficulty of correcting properly for instrumental background, whereas with the single detector magnetic sector instrument the counting statistics was the only limitation (on smallest ratios). Apparent mass-discrimination was clearly found to be larger but more reproducible (and hence easier to correct for) in the case of magnetic sector instruments than for both quadrupole sector instruments. If space charge effects were the main source of mass-discrimination for all instruments, these results are in contradiction with the hypothesis of the size of mass-discrimination decreasing with the acceleration voltage. With the single detector magnetic sector instrument in particular (when operated by changing the ion energy only), our results pointed at more than only one major source of mass-discrimination, with variable size depending on the ratios measured. KW - ICP-MS KW - Isotope ratio KW - Uranium PY - 2000 DO - https://doi.org/10.1007/s002160000499 SN - 0937-0633 VL - 368 SP - 148 EP - 155 PB - Springer CY - Berlin AN - OPUS4-7218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jakubowski, N. A1 - Borrmann, S. A1 - Recknagel, Sebastian A1 - Roik, Janina A1 - Rickert, F. T1 - Comparison of peristaltic pumps used for sample introduction in Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) JF - Spectroscopy N2 - In this investigation, two conventional peristaltic pumps are compared with a new pump based on the “easy click” principle using a simultaneous ICP-AES instrument with standard operating conditions. It is found that the figures of merit achieved are quite comparable for all three pumps. Relative standard deviations (RSDs) range between 0.2% and 1.8%, and limits of detection as low as 0.1 μg/L have been achieved , demonstrating that the easy click principle of the new pump does not compromise the analytical figures of merit. KW - ICP-AES KW - Peristaltic pumps KW - ICP-MS PY - 2020 IS - 35 / S4 SP - 6 AN - OPUS4-52020 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wetzel, Annica A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia A1 - Rhode, Michael T1 - Corrosion Properties and Protective Oxide Film Characteristics of CrMnFeCoNi High Entropy Alloy and CrCoNi Medium Entropy Alloy N2 - High and medium entropy alloys gained increasing academic and industrial interest as novel materials for engineering applications. This project is aiming to clarify and compare the general and local corrosion properties of high entropy alloy CrMnFeCoNi and medium entropy alloy CrCoNi in different aqueous environments. The focus lies on the local corrosion processes that result either from microstructural imperfections (inclusions, defects at grain boundaries etc.) in the base material or processing related changes in the microstructure and/or local composition. The corrosion behavior of the alloys was monitored via potentiodynamic polarization experiments and the local corrosion characteristics were further investigated by means of scanning electrochemical microscopy (SECM). Their passivation behavior was analyzed in two different electrolyte systems (NaCl and H2SO4 c = 0.1M). The characterization of the surface morphology and composition of the passive film was performed by means of atomic force microscopy (AFM), scanning electron microscopy coupled with energy dispersive X-Ray spectroscopy (SEM/EDX) and X-Ray photoelectron spectroscopy (XPS), respectively. To analyze the semiconducting properties of the passive film Mott-Schottky analysis was conducted. Considering long term corrosion effects, electrochemical work was supported with immersion tests and the analysis of corrosion products by SEM/EDX, ICP-MS and XPS depth-profiling. Our results indicate that the medium entropy alloy CrCoNi has a significantly higher corrosion resistance due to the higher concentration of chromium in comparison to the high entropy alloy CrMnFeCoNi. The presentation will summarize our results on the mechanistical aspects of the observed high corrosion resistance. T2 - ISE Annual 72nd meeting CY - Online meeting DA - 29.08.2021 KW - High Entropy Alloys KW - Aqueous Corrosion KW - Medium Entropy Alloys KW - Atomic Forc Microscopy KW - Scanning Kelvin Probe Force Microscopy KW - Potentiodynamic Polarization KW - Electrochemical Impedance Spectroscopy KW - ICP-MS PY - 2021 AN - OPUS4-53789 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wetzel, Annica A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia A1 - Rhode, Michael T1 - Corrosion Properties and Protective Oxide Film Characteristics of CrMnFeCoNi High Entropy Alloy and CrCoNi Medium Entropy Alloy N2 - High and medium entropy alloys gained increasing academic and industrial interest as novel materials for engineering applications. This project is aiming to clarify and compare the general and local corrosion properties of high entropy alloy CrMnFeCoNi and medium entropy alloy CrCoNi in different aqueous environments. The focus lies on the local corrosion processes that result either from microstructural imperfections (inclusions, defects at grain boundaries etc.) in the base material or processing related changes in the microstructure and/or local composition. The corrosion behavior of the alloys was monitored via potentiodynamic polarization experiments and the local corrosion characteristics were further investigated by means of scanning electrochemical microscopy (SECM). Their passivation behavior was analyzed in three different electrolyte systems (NaCl, H2SO4 and NaClO4; c = 0.1M). The characterization of the surface morphology and composition of the passive film was performed by means of atomic force microscopy (AFM), scanning electron microscopy coupled with energy dispersive X-Ray spectroscopy (SEM/EDX) and X-Ray photoelectron spectroscopy (XPS), respectively. Considering long term corrosion effects, electrochemical work was supported with immersion tests and the analysis of corrosion products by SEM/EDX and XPS depth-profiling. Our results indicate that the medium entropy alloy CrCoNi has a significantly higher corrosion resistance due to the higher concentration of Chromium in comparison to the high entropy alloy CrMnFeCoNi. The presentation will summarize our results on the mechanistical aspects of the observed high corrosion resistance. T2 - EuroMat 2021 CY - Online meeting DA - 12.09.21 KW - High Entropy Alloys KW - Aqueous Corrosion KW - Medium Entropy Alloys KW - Atomic Forc Microscopy KW - Scanning Kelvin Probe Force Microscopy KW - Potentiodynamic Polarization KW - Electrochemical Impedance Spectroscopy KW - ICP-MS PY - 2021 AN - OPUS4-53790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wetzel, Annica A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia A1 - Rhode, Michael T1 - Corrosion Properties and Protective Oxide Film Characteristics of CrMnFeCoNi High Entropy Alloy and CrCoNi Medium Entropy Alloy N2 - High and medium entropy alloys gained increasing academic and industrial interest as novel materials for engineering applications. This project is aiming to clarify and compare the general and local corrosion properties of high entropy alloy CrMnFeCoNi and medium entropy alloy CrCoNi in different aqueous environments. The focus lies on the local corrosion processes that result either from microstructural imperfections (inclusions, defects at grain boundaries etc.) in the base material or processing related changes in the microstructure and/or local composition. The corrosion behavior of the alloys was monitored via potentiodynamic polarization experiments and the local corrosion characteristics were further investigated by means of scanning electrochemical microscopy (SECM). Their passivation behavior was analyzed in three different electrolyte systems (NaCl, H2SO4 and NaClO4; c = 0.1M). The characterization of the surface morphology and composition of the passive film was performed by means of atomic force microscopy (AFM), scanning electron microscopy coupled with energy dispersive X-Ray spectroscopy (SEM/EDX) and X-Ray photoelectron spectroscopy (XPS), respectively. Considering long term corrosion effects, electrochemical work was supported with immersion tests and the analysis of corrosion products by SEM/EDX and XPS depth-profiling. Our results indicate that the medium entropy alloy CrCoNi has a significantly higher corrosion resistance due to the higher concentration of Chromium in comparison to the high entropy alloy CrMnFeCoNi. The presentation will summarize our results on the mechanistical aspects of the observed high corrosion resistance. T2 - EUROCORR 2021 CY - Online meeting DA - 20.09.2021 KW - High Entropy Alloys KW - Aqueous Corrosion KW - Medium Entropy Alloys KW - Atomic Forc Microscopy KW - Scanning Kelvin Probe Force Microscopy KW - Potentiodynamic Polarization KW - Electrochemical Impedance Spectroscopy KW - ICP-MS PY - 2021 AN - OPUS4-53791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike A1 - Klöckner, P. A1 - Wagner, S. A1 - Ruhl, A.S. A1 - Eisentraut, P. A1 - Albrecht, M. A1 - Reemtsma, T. T1 - Determination of tire wear particles based on elemental composition N2 - In this presentation the use of ICP-MS for the analysis of tire wear particles in environmental samples is presented. T2 - Wassertagung der GdCh CY - Papenburg, Germany DA - 07.05.2018 KW - ICP-MS KW - Mikroplastik KW - Analytik KW - Reifenabrieb PY - 2018 AN - OPUS4-45201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Silke A1 - Meckelburg, Angela A1 - Recknagel, Sebastian A1 - Matschat, Ralf A1 - Panne, Ulrich T1 - Determination of trace elements in iron ore, cast iron and steel using the 7500cs JF - Agilent ICP-MS journal KW - Steel KW - Iron ore KW - Cast iron KW - ICP-MS PY - 2009 IS - 38 SP - 4 EP - 5 PB - Agilent Technologies CY - Santa Clara, CA, USA AN - OPUS4-19476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lemke, Nora A1 - El-Khatib, Ahmed A1 - Theuring, F. A1 - Jakubowski, Norbert A1 - Vogl, Jochen T1 - Development of a method for protein quantification via isotope dilution ICP-MS for application on an Alzheimer’s biomarker N2 - Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful method for the matrix-independent quantitative analysis of target elements. Developed for the use in inorganic trace analysis, ICP-MS is nowadays emerging as a valuable tool for bioanalytical questions. Especially the use of ICP-MS for quantitative proteomics by measuring heteroatoms has gained popularity in the last decade, considering that established quantification methods like organic mass spectrometry depend on the existence of matched protein and peptide standards or labelling of the target protein. The need for reliable quantification of proteins is constantly growing, but only a limited number of well characterized and quantified protein standards are available so far. Not only in basic research, but also in a clinical context, accurately quantified, traceable protein standards are needed to ensure comparability of measurements between laboratories. One disease with a major impact on our ageing society is Alzheimer’s disease (AD), which is still challenging to diagnose. As this is also due to a lack in comparability and accuracy of existing biomarker assays, the community would greatly benefit from well quantified protein biomarker standards. In this work, we applied isotope dilution analysis (IDA) using ICP-MS to quantify proteins of known stoichiometry via their sulfur content. Sulfur is present in two amino acids, cysteine and methionine, and hence exists in nearly all proteins. Simple strategies were employed for the detection of low molecular sulfur species to correct for sulfur contaminants and allow for reliable quantification of various proteins. We report the protein mass fractions with expanded uncertainties of a standard reference material and commercially available proteins determined by sulfur IDA. The herein developed method can be applied for the reliable and traceable quantification of pure proteins and will be used for the quantification of an AD biomarker. Our target is the tau protein, as brain load and distribution of tau is highly correlated with the clinical progression of AD. T2 - ReMiND 2019 Biomolecules in Neurodegenerative Diseases CY - Braunschweig, Germany DA - 26.06.2019 KW - ICP-MS KW - Isotope dilution KW - Proteins KW - Quantification PY - 2019 AN - OPUS4-48464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seeger, Stefan A1 - Osan, J. A1 - Czömpöly, O. A1 - Gross, A. A1 - Stoßnach, H. A1 - Stabile, L. A1 - Ochsenkuehn-Petropoulou, M. A1 - Tsakanika, L. A. A1 - Lymperopoulou, T. A1 - Goddart, S. A1 - Fiebig, M. A1 - Gaie-Levrel, F. A1 - Rissler, J. A1 - Kayser, Y. A1 - Beckhoff, B. T1 - Element mass concentrations in ambient aerosols, a comparison of results from filter sampling & ICP-MS ans cascade impactor sampling & mobile total reflection X-RAY fluorescence spectroscopy N2 - Quantitative chemical analysis of airborne particulate matter (PM) is vital for the understanding of health effects in indoor and outdoor environments and required by EU air quality regulations. Typically, airborne particles are sampled on filters, followed by lab-based analysis, e.g., with inductively coupled plasma mass spectrometry (ICP-MS). Within the EURAMET EMPIR AEROMET project, cascade impactor aerosol sampling was combined with on-site total reflection X-ray fluorescence (TXRF) spectroscopy. The study aimed at a proof of principles for this new mobile and on-size tool for the quantification of aerosol element compositions and element mass concentrations within short time intervals of less than 12 h. In a field campaign the method’s technical feasibility could be demonstrated. The TXRF results were traced back to a stationary, reference-free XRS setup in the laboratory of the German national metrology institute PTB at the BESSY II electron storage ring in Berlin, Germany. Simultaneous PM10-filter sampling, followed by standardized lab-based analysis, allowed for a comparison of the field campaign data of both methods. As Fig. 1 shows, the correspondence between PM10 filter sampling and ICP-MS, and on the other hand, cascade impactor sampling and TXRF is quite encouraging. However, for some of the analysed elements, e.g. V and Pb, the observed deviations are higher than expected and this highlights the fact, that spectral deconvolution strategies for TXRF on cascade impactor samples still need some improvement. This work was supported by the EMPIR programme, co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme, through grant agreements 16ENV07 AEROMET and 19ENV08 AEROMET II T2 - 12th International Conference on Instrumental Methods of Analysis (IMA-2021) CY - Athens, Greece DA - 20.09.2021 KW - Aerosol KW - TXRF KW - Reference method KW - Cascade impactor KW - Ambient aerosols KW - Air quality monitoring KW - Element mass concentration KW - Size resolved chemical composition KW - Time resolved chemical composition KW - ICP-MS PY - 2021 AN - OPUS4-53597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Saatz, Jessica A1 - Ascher, Lena T1 - Elemental imaging by laser ablation ICP-MS N2 - Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is nowadays an established multi-elemental analysis and mapping technique. It was shown that LA-ICP-MS can visualize the elemental distribution within tissue thin sections or cell samples. Quantification is possible by using appropriate matrix-matched calibration samples. Besides naturally occurring elements and metals from contrast agents, biomolecules using metal-tagged antibodies were detected in different bio-medical samples. By combining the results with findings from histology, magnetic resonance imaging (MRI) and other techniques disease related changes like alterations of the extracellular matrix can be investigated. T2 - 4th Colloquium of CRC 1340 "Matrix in Vision" CY - Berlin, Germany DA - 09.04.2019 KW - Laser ablation KW - ICP-MS KW - Imaging PY - 2019 AN - OPUS4-47752 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Völzke, Jule Lexa T1 - Herstellung und Charakterisierung Antigen-beschichteter Nanopartikel als Analoga von Virus-like Particles (VLP) T2 - Masterarbeit N2 - In dieser Arbeit wurden drei verschiedene Nanomaterialien auf ihre Bindungsfähigkeit zu Proteinen untersucht. Zu Beginn standen dabei die Herstellung stabiler Dispersionen der einzelnen Nanopartikel und die Stabilität der gebildeten Konjugate im Vordergrund. Der Nachweis einer erfolgreichen Konjugatbildung, sprich der Beschichtung von Nanopartikel mit Proteinen, wurde sowohl qualitativ mittels DLS-Messungen als auch über quantitative Protein-Bestimmungen erbracht. Für die Quantifizierung konnten verschiedene Methoden eingesetzt werden. Neben der klassischen Vorgehensweise, welche indirekt über die Quantifizierung von ungebundenem Protein im Überstand erfolgt, konnten ihm Rahmen dieser Arbeit verschiedene direkte Bestimmungsmethoden entwickelt werden. So wurden mittels kolorimetrischer Tests, wie dem BCA-Assay und dem Bradford-Assay, Nanodiamantdispersionen mit Hilfe einer Korrekturwellenlänge vermessen und quantifiziert. Ebenso zum Einsatz kam die Methode der Aminosäureanalytik, welche aufgrund ihrer guten Rückführbarkeit auf Aminosäurestandards Ergebnisse mit hoher Richtigkeit generieren kann und ebenso die Detektion kleiner Proteinmengen möglich macht. Nach den erfolgten quantitativen Betrachtungen wurden die Protein-beschichteten Nanopartikel auf ihre Anwendbarkeit als Analoga von Virus-like Particles (VLP) bei einer Immunisierung zur Gewinnung von polyklonalen Antikörpern gegen humanes Ceruloplasmin in Kaninchen überprüft. Es konnte mittels ELISA gezeigt werden, dass die Konjugate erfolgreich für die Herstellung von Antikörpern eingesetzt werden können und im zeitlichen Verlauf einer Immunisierung eine Steigerung des Antikörper-Titers zu erreichen ist. KW - DLS KW - Dynamische Lichtstreuung KW - Aluminiumoxid KW - Nanodiamant KW - Gold-Nanopartikel KW - BSA KW - Albumin KW - Protein G KW - Ceruloplasmin KW - Immunpräzipitation KW - Ultraschall KW - BCA KW - Bradford-Assay KW - AAAA KW - Aromatische Aminosäureanalytik KW - ICP-MS KW - NaCl-Methode PY - 2018 SP - 1 EP - 107 PB - Humboldt-Universität zu Berlin CY - Berlin AN - OPUS4-54625 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Giesen, Charlotte T1 - ICP-MS and Elemental Tags for the Life Sciences N2 - Die induktiv gekoppelte Plasma Massenspektrometrie (ICP-MS) wurde aufgrund ihrer hohen Empfindlichkeit, des großen linearen dynamischen Messbereichs und ihrer Multielementfähigkeit für die Analytik von Biomolekülen eingesetzt. Jedoch wird das Potential dieser Technik außerhalb der ICP-Gemeinschaft selten genutzt. Daher wurden in dieser Arbeit ICP-MS-basierte Immunoassays für medizinische (Krebsdiagnostik, Toxizitätsstudien zu Cisplatin), biochemische (DNA Mikroarray, Einzelzellanalytik) und umweltrelevante (Lebensmittelanalytik) Anwendungen entwickelt. Die Detektion erfolgte durch chemische Markierungen. Die Laserablation (LA)-ICP-MS wurde für die direkte Analyse von festen Proben wie Mikroarrays und Gewebedünnschnitten eingesetzt. Ein Immunoassay zur Ochratoxin A (OTA) Bestimmung in Wein wurde entwickelt, und die ICP-MS mit der herkömmlichen photometrischen Detektion verglichen. Die Nachweisgrenze betrug 0.003 μg L-1, und der Quantifizierungsbereich lag zwischen 0.01 und 1 μg L-1 für beide Methoden. Für die LA-ICP- MS basierte DNA Mikroarray Detektion wurden Goldnanopartikel über Streptavidin-Biotin Bindungen eingeführt. In der immunhistochemischen Diagnostik werden üblicherweise für einen Patienten bis zu 20 Krebsmarker abgefragt, was zu einer Reihe von zeitaufwändigen Färbeprotokollen führt. Daher wurde hier die LA-ICP-MS als eine neue, multiplexfähige Detektionsmethode für die Analytik an Gewebeschnitten entwickelt. Hierzu wurden Lanthanide für die Detektion von bis zu drei verschiedenen Tumormarkern in Brustkrebsgewebe eingesetzt. Darüber hinaus wurde mittels Iodmarkierung eine LA-ICP-MS Methode entwickelt, in der ein 4 μm Laserstrahl ausreichend war für die Darstellung von einzelnen Zellen und Zellkernen. Iod wurde außerdem als interner Standard für Gewebeschnitte verwendet. Zusätzlich wurden Pt-Protein Komplexe mit 1D und 2D Gelelektrophorese getrennt und mit LA-ICP-MS analysiert. Die hohe räumliche Auflösung dieser Technik wurde anhand der Detektion von platinierten Proteinen in Rattennierengewebe auch in einer aktuellen Studie zur Toxizität von Cisplatin und dem daher notwendigen Schutz der Niere unter Beweis gestellt. N2 - Inductively coupled plasma mass spectrometry (ICP-MS) has been applied for the analysis of biomolecules due to its high sensitivity, wide linear dynamic range, and multielement capabilities. However, outside the elemental MS community the potential of this technique, e.g. for life sciences applications, is not yet fully exploited. Thus, the development of ICP-MS-based (immuno) assays for a wide range of medical (cancer diagnostics, cisplatin toxicity studies), biochemical (DNA microarray, single cell analysis), and environmental (analysis of comestible goods) applications was accomplished by utilization of chemical labels. Laser ablation (LA)-ICP-MS was employed for the direct analysis of solid samples like microarrays and thin tissue sections. An immunoassay was developed for ochratoxin A (OTA) determination in wine, and ICP-MS detection was compared to conventional photometry by gold nanoparticle tagging and horseradish peroxidase, respectively. Detection limits of the assay were optimized to 0.003 μg L-1, and the quantification range was 0.01–1 μg L-1 for both methods. For LA-ICP-MS-based DNA microarray detection, gold nanoparticle tags were specifically introduced via a streptavidin-biotin linkage. In immunohistochemistry (IHC), up to 20 tumor markers are routinely evaluated for one patient and thus, a common analysis results in a series of time consuming staining procedures. Hence, LA-ICP- MS was elaborated as a detection tool for a novel, multiplexed IHC analysis of tissue sections. Different lanthanides were employed for the simultaneous detection of up to three tumor markers (Her 2, CK 7, and MUC 1) in a breast cancer tissue. Additionally, iodine was employed as a labeling reagent, and a new LA-ICP-MS method for single cell and cell nucleus imaging was developed at 4 μm laser spot size. Iodine was also applied as a new internal standard for tissue samples. Moreover, Pt-protein complexes separated by an optimized 1D and 2D gel electrophoresis were analyzed by LA-ICP-MS. The high spatial resolution of this technique was further demonstrated in a current study of cisplatin toxicity and renal protective strategies in rat kidney tissue by detecting platinated proteins. T3 - BAM Dissertationsreihe - 83 KW - ICP-MS KW - Life Sciences KW - Nanoparticles KW - Elemental Tags PY - 2012 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-758 SN - 978-3-9814634-7-7 SN - 1613-4249 VL - 83 SP - 1 EP - 199 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-75 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike A1 - Klöckner, P. A1 - Wagner, S. A1 - Ruhl, A.S. A1 - Eisentraut, Paul A1 - Albrecht, M. A1 - Reemtsma, T. T1 - Identification of tire wear particles based on elemental composition N2 - The identification of tire wear particles by use of ICP-MS is presented. T2 - SETAC CY - Rome, Italy DA - 13.05.2018 KW - Microplastics KW - Tire wear particles KW - ICP-MS PY - 2018 AN - OPUS4-45205 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Drescher, D. A1 - Büchner, T. A1 - Müller, L. A1 - Wanka, Antje A1 - Hösl, S. A1 - Ascher, Lena A1 - Cruz-Alonso, M. A1 - Pisonero, J. A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - Imaging of biological samples by LA-ICP-MS N2 - In recent years, elemental imaging of biological samples like tissue thin sections using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is gaining more and more importance. Improvements concerning spatial resolution as well as signal-to-background ratio due to low-dispersion sample chambers make LA-ICP-MS also interesting for single cell analysis. To evaluate the interaction of nanoparticles (NPs) with cells LA-ICP-MS was applied for the imaging of individual cells. Our findings show, that NP aggregates can be localized within cellular compartments. The uptake efficiency depends strongly on the physico-chemical properties of the nanostructures (size, chemical composition, surface modification), as well as on the incubation conditions (concentration, time). Moreover, LA-ICP-MS is increasingly becoming an important complementary technique in bioanalysis by using element-tagging strategies to determine biomolecules indirectly. Based on the specific binding between antibodies and their corresponding antigens, proteins and peptides can be detected in tissue or cells using tagged antibodies. As artificial tags metal chelates loaded with lanthanides, polymer-based elemental tags or metal-containing nanoparticles can be used. Thereby LA-ICP-MS is a sensitive detection tool for multiplexed immuno-histochemistry of tissue and cell samples. Our results demonstrate the potential of LA-ICP-MS to investigate the distribution of naturally occurring elements, administered agents as well as biomolecules by using metal-tagged antibodies. T2 - Workshop on tandem LIBS/LA-ICP-MS 2019 CY - Berlin, Germany DA - 18.11.2019 KW - Laser ablation KW - ICP-MS KW - Nanoparticles KW - Imaging PY - 2019 AN - OPUS4-49704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Traub, Heike ED - Milacic, R. ED - Scancar, J. ED - Goenaga-Infante, H. ED - Vidmar, J. T1 - Imaging of metal-based nanoparticles in tissue and cell samples by laser ablation inductively coupled plasma mass spectrometry T2 - Comprehensive Analytical Chemistry, Analysis and Characterisation of Metal-Based Nanomaterials N2 - Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is nowadays a versatile and powerful analytical method for direct solid sample analysis. The applicability has been demonstrated for a wide variety of samples covering hard and soft materials. In an imaging mode the technique provides quantitative information on the elemental distribution within a sample. LA-ICP-MS imaging is of particular interest in biomedical research as the distribution of an element gives valuable insight on uptake and distribution of essential and toxic trace elements, administered contrast agents as well es nanoparticles. LA-ICP-MS is therefore a powerful complement to other imaging techniques. Recent instrumental improvements, especially in sample chamber design, have contributed to better sensitivity and spatial resolution enabling subcellular imaging. The book chapter provides a comprehensive overview about spatially resolved localisation and quantification of various nanoparticles in cells and tissue thin sections by LA-ICP-MS. Furthermore, different sample preparation strategies and internal standardisation and calibration approaches for bioimaging by LA-ICP-MS are summarized and discussed. Metal-containing nanomaterials are used in numerous fields ranging from industrial applications to nanomedicine. Several studies have demonstrated that the physicochemical properties of nanoparticles have an impact on their pharmacokinetics, transfer and clearance. The high sensitivity and multielement capability of LA-ICP-MS enables the elucidation of interactions between tissue components and nanomaterials used as imaging probes or drug carriers. Potential toxic effects are investigated as well. Thus, LA imaging significantly supports the clinical translation of safe and efficient nanoparticles for diagnostic and therapeutic purposes. KW - Laser ablation KW - ICP-MS KW - Imaging KW - Nanoparticle KW - Nanomaterial KW - Tissue KW - Cell PY - 2021 SN - 978-0-323-85305-7 SN - 0166-526X VL - 93 SP - 173 EP - 240 PB - Elsevier CY - Amsterdam ET - 1 AN - OPUS4-52775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Drescher, D. A1 - Büchner, T. A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - Imaging of nanoparticles in cells by LA-ICP-MS N2 - Studying the interaction of nanoparticles (NPs) with cells has become a growing field of interest. Research topics are ranging from nanotoxicology to medical applications e.g. as theranostic agents. In order to evaluate nano-bio interactions, the number of NPs inside cells as well as their localisation within cellular substructures is of particular interest. In recent years, elemental imaging of biological samples using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is gaining more and more importance. Latest instrumental developments regarding spatial resolution (down to 1 µm) and detection efficiency make LA ICP-MS particularly interesting for single cell analysis. Here, we have applied LA-ICP-MS for sub-cellular scale imaging of individual cells to study the NP pathway from uptake, via intracellular processing up to cell division. Furthermore, the local distribution of naturally occurring elements in cells like P was measured to indicate the cell morphology. Murine fibroblast cells were incubated with different metal-containing NPs under varying experimental conditions. For LA analysis, the cells were fixed and dried. Sub-cellular resolution was achieved by careful optimisation of the laser ablation parameters. By rastering with the laser beam across the sample, a two-dimensional image of the elemental distribution can be received. Our results show that LA-ICP-MS is able to localise NP aggregates within cellular substructures. The studied NPs accumulate in the perinuclear region in the course of intracellular processing, e.g. multivesicular fusion and endosomal maturation, but do not enter the nucleus. The uptake depends on the physico-chemical properties of the nanostructures and on the incubation conditions like concentration and incubation time. Additionally, the number of NPs internalized by individual cells was determined and variations within a cell population became visible. The findings demonstrate the potential of LA-ICP-MS providing insight into NP uptake and intracellular distribution dependent on experimental parameters. T2 - Euroanalysis 2017 CY - Stockholm, Sweden DA - 28.08.2017 KW - Laser ablation KW - Nanoparticle KW - ICP-MS KW - Imaging KW - Cell PY - 2017 AN - OPUS4-41884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Jule L. A1 - El-Khatib, Ahmed H. A1 - Vogl, Jochen A1 - Weller, Michael G. T1 - Immunoprecipitation with Nanodiamonds for the Enrichment of Ceruloplasmin from Human Serum N2 - In this study, we developed a new immunoprecipitation method based on protein-coated nanodiamonds. Performing SDS-PAGE and using the SDS-PAGE buffer as an eluent showed that CER could be successfully enriched from human serum. Based on the copper determination with ICP-MS, the amount of bound CER on the nanodiamonds can be calculated. We could show the fulfilled mass balance of bound CER and CER in the supernatant after incubation with a known amount of CER. For isotope ratio analysis this method can be applied to compare ratios of the total copper content in human serum to copper ratios from CER enrichment. T2 - ReMiND 2019 CY - Braunschweig, Germany DA - 26.06.2019 KW - Metalloprotein KW - Copper KW - Affinity enrichment KW - Immunoaffinity KW - Protein g KW - Blood KW - Serum KW - Plasma KW - SDS-PAGE KW - ICP-MS PY - 2019 UR - https://www.ptb.de/empir/remind-conference.html AN - OPUS4-49728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Lisec, Jan T1 - IsoCor N2 - Despite numerous advantages offered by hyphenation of chromatography and electrokinetic separation methods with multicollector (MC) ICP-MS for isotope analysis, the main limitation of such systems is the decrease in precision and increase in uncertainty due to generation of short transient signals. To minimize this limitation, most authors compare several isotope ratio calculation methods and establish a multi-step data processing routine based on the precision and accuracy of the methods. However, to the best of our knowledge, there is no universal data processing tool available that incorporates all important steps of the treatment of the transient signals. Thus, we introduce a data processing application (App) IsoCor that facilitates automatic calculation of isotope ratios from transient signals and eases selection of the most suitable method. The IsoCor App performs baseline subtraction, peak detection, mass bias correction, isotope ratio calculation and delta calculation. The feasibility and reliability of the App was proven by reproducing the results from isotope analysis of three elements (neodymium, mercury and sulfur) measured on-line via hyphenated systems. The IsoCor App provides trackability of the results to ensure quality control of the analysis. KW - Shiny-App KW - ICP-MS KW - Software PY - 2022 UR - https://github.com/cran/IsoCor/ PB - GitHub CY - San Francisco, CA, USA AN - OPUS4-56307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Arakawa, Akihiro A1 - Jakubowski, Norbert A1 - Flemig, Sabine A1 - Köllensperger, G. A1 - Rusz, M. A1 - Iwahata, D. A1 - Traub, Heike A1 - Hirata, T. T1 - LA-ICP-MS study of Ag nanoparticle transport in a three-dimensional in vitro model N2 - We have applied laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with subcellular resolution as an elemental mass microscope to investigate the distributions of Ag nanoparticles (NP) in a 3-dimentional multicellular spheroid (MCS) model. The production of MCS has been optimized by changing the seeding cell number (500 to 40,000 cells) and the growth period (1 to 10 days). Incubations of MCS with Ag nanoparticle suspensions were performed with a concentration of 5 µg mL-1 for 24 hours. Thin-sections of the Eosin stained MCS were analysed by elemental mass microscopy using LA-ICP-MS to image distributions of 109Ag, 31P, 63Cu, 66Zn and 79Br. A calibration using NP suspensions was applied to convert the measured Ag intensity into the number of particles being present in each measurement pixel. The numbers of NP determined ranged from 30 up to 4,000 particles in an enrichment zone. The particle distribution was clearly correlated to 31P, 66Zn and 79Br and was localized in an outer rim of proliferating cells (confirmed by DAPI) with a width of about two-single cell diameters. For the highest seeding cell number NPs were only detected in this outer rim, whereas small molecules as for instance 79Br and 109Ag ions were detected in the core of the MCS as well. Aniline blue staining demonstrated that this outer rim was rich in collagen structures in which fibroblast cells were embedded and a thin-membrane was visible which separated the core from the biological active cell layer functioning as biological barriers for NP transport. In this presentation, we will show the possibility using this 3-dimensional model for toxicological and medical applications. T2 - European Winter Conference on Plasma Spectrochemistry EWCPS-2019 CY - Pau, France DA - 03.02.2019 KW - Laser ablation KW - ICP-MS KW - Nanoparticles KW - Cell KW - Multicellular spheroid PY - 2019 AN - OPUS4-47374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Drescher, D. A1 - Büchner, T. A1 - Pisonero, J. A1 - Bouzas-Ramos, D. A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - LA-ICP-MS to study nanoparticle-cell interaction N2 - Nanoparticles (NPs) have found a wide range of applications in research and industry. Thereby the interaction of NPs with biological systems like cells has become a major field of interest, ranging from medical applications to nanotoxicology. Size, shape and surface modification of the nanomaterials determine the uptake rate and pathway into the cells, and therefore impact specific cell components and processes. In recent years, elemental imaging of biological samples using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is gaining more and more importance. Improvements concerning both spatial resolution (down to 1 µm) and signal-to-background ratio due to low-dispersion LA chambers make LA-ICP-MS particularly interesting for single cell analysis. Here LA-ICP-MS was applied for the imaging of individual cells to study the uptake and intracellular processing of metal-containing nanostructures. The cells were incubated with different NPs under varying experimental conditions and afterwards fixed with para-formaldehyde and dried for LA analysis. High-spatial resolution LA-ICP-MS was achieved by careful optimisation of the laser ablation parameters. Our findings show, that LA-ICP-MS is applicable to localize NP aggregates within cellular compartments. The uptake efficiency depends strongly on the physicochemical properties of the nanostructures as well as on the incubation conditions like concentration and incubation time. The results demonstrate the potential of LA-ICP-MS providing insight into nanoparticle-cell interaction dependent on experimental parameters. T2 - 14th European Workshop on Laser Ablation (EWLA) CY - Pau, France DA - 26.06.2018 KW - Laser ablation KW - ICP-MS KW - Imaging KW - Nanoparticle KW - Cell PY - 2018 AN - OPUS4-45570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Arakawa, Akihiro A1 - Jakubowski, Norbert A1 - Flemig, Sabine A1 - Koellensperger, G. A1 - Theiner, S. A1 - Schweikert, A. A1 - Iwahata, D. A1 - Traub, Heike A1 - Hirata, T. T1 - Localization of cells and exposed nanoparticles in three-dimensional in vitro tissue analog measured by means of an elemental microscopy based on LA-ICP-TOF-MS N2 - Metallic nanoparticles (NPs) are currently applied in a variety of consumer products and are also attractive for medical applications. With their widespread use, the potential for human exposure to NPs — either intended or unintended — is increasing. Therefore, many studies have evaluated the toxicity and transport mechanism of NPs. In comparison with two-dimensional cultured cells, multicellular spheroids (MCS) look promising to be used as a three-dimensional cellular model, having unique advantages in nanoparticle studies due to the fact that interactions with excreted extracellular matrix can be investigated. Fibroblast cells are one of the most important cell systems to express a microenvironment by excreting an abundant extracellular matrix. For bioimaging laser ablation inductively coupled-plasma mass spectrometry (LA-ICP-MS) is used in this investigation to study the interaction of metallic NPs with MCS for multi-element detection offering a wide dynamic range. As a mass spectrometer we have applied a time-of-flight (TOF) instrument for (quasi-) simultaneous detection of all isotopes of elements of interest. The aim of this study is to investigate the localization of silver (Ag) NPs exposed to fibroblast MCSs by means of LA-ICP-TOF-MS. In addition, for demonstrating elemental microscopy we chose phosphorous (31P) and iron (56Fe) to visualize regions of enriched extracellular matrix and single cells, respectively. In this presentation, we show that exposed Ag NPs are highly accumulated at the same position of single cells in an outer rim of fibroblast MCSs. T2 - 7th International Symposium on Metallomics CY - Warsaw, Poland DA - 30.06.2019 KW - Nanoparticle KW - Laser ablation KW - ICP-MS KW - Multicellular spheroid PY - 2019 AN - OPUS4-48425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert A1 - Müller, L. A1 - Traub, Heike A1 - Esteban-Fernández, D. A1 - Panne, Ulrich A1 - Wanka, Antje A1 - Schellenberger, E. A1 - Theuring, F. A1 - Kneipp, J. T1 - Method development for metal detection at cellular levels N2 - An overview about different analytical approaches will be presented of how to detect metals in individual biological cells by use of ICP-MS. For this purpose, we are using different sample introduction systems for ICP-MS for detection, imaging and quantification of metals at cellular levels. By use of laser ablation, we have studied the up-take by and distribution of nanoparticles in single cells. Recently we have developed staining techniques to measure protein and DNA content of cells and identifying the cell status by immunoassays using metal-tagging of antibodies. New research based on cell arrays will be shortly discussed. Using pneumatic nebulization and microdroplet generation, we have also studied the up-take of nanoparticles and toxic metals as well as essential elements in single cells using different ICP-MS mass spectrometric concepts (sector field instrument, triple-quad instrument, time of flight (CyTOF) instrument). The different ICP-MS based methods will be compared concerning their analytical figures of merit and their strengths and weaknesses will be evaluated. T2 - Metallomics 2017 CY - Vienna, Austria DA - 14.08.2017 KW - Single cell analysis KW - Laser ablation KW - Nanoparticles KW - ICP-MS PY - 2017 AN - OPUS4-41690 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert A1 - Müller, L. A1 - Traub, Heike A1 - Esteban-Fernández, D. A1 - Panne, Ulrich A1 - Wanka, Antje A1 - Kneipp, J. T1 - Method development for metal detection at cellular levels by ICP-MS N2 - An overview about different analytical approaches will be presented of how to detect metals in individual biological cells by use of ICP-MS. For this purpose, we are using different sample introduction systems for ICP-MS for detection, imaging and quantification of metals at cellular levels. By use of laser ablation, we have studied the up-take by and distribution of nanoparticles in single cells. Recently we have developed staining techniques to measure protein and DNA content of cells and identifying the cell status by immunoassays using metal-tagging of antibodies. New research based on cell arrays will be shortly discussed. Using pneumatic nebulization and microdroplet generation, we have also studied the up-take of nanoparticles and toxic metals as well as essential elements in single cells using different ICP-MS mass spectrometric concepts (sector field instrument, triple-quad instrument, time of flight (CyTOF) instrument). The different ICP-MS based methods will be compared concerning their analytical figures of merit and their strengths and weaknesses will be evaluated. T2 - 16th Czech-Slovak Spectroscopic Conference CY - Luhacovice, Czech Republic DA - 27.05.2018 KW - Single cell analysis KW - ICP-MS KW - Nanoparticles PY - 2018 AN - OPUS4-45161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meermann, Björn A1 - Wichmann, K. A1 - Lauer, F. A1 - Tremel, W. A1 - Vanhaecke, F. A1 - von der Au, M. A1 - Schwinn, M. A1 - Borovinskaya, O. A1 - Büchel, C. A1 - Kuhlmeier, K. T1 - Neue ICP-MS basierte Methoden zur Analyse von Nano- und Mikropartikeln in der Umwelt N2 - In den vergangen Jahren hat das Umweltbewusstsein in der Bevölkerung stark zugenommen und somit auch das Interesse an der Vermeidung von anthropogenen (Schad-)Stoffen in der Umwelt. Eine (neue) Substanzklasse, deren Umweltauswirkungen noch nicht vollständig untersucht sind und die in den vergangenen Jahren immer mehr an Bedeutung gewonnen hat, sind (metallbasierte) Nanomaterialien. Im Gegensatz zu bspw. Elementspezies weisen Nanomaterialien eine Vielzahl von Eigenschaften auf und lassen sich nicht über nur ein Merkmal beschreiben - dies stellt eine große analytische Herausforderung dar. Hier haben sich vor allem die Feld-Fluss-Fraktionierung (AF4) und die single-particle-ICP-MS als leistungsstarke analytische Methoden herausgestellt. In (aquatischen) Umweltmatrizes (z.B. Oberflächengewässern) liegen neben artifiziellen auch natürliche Partikel vor, was eine weitere große Herausforderung für den Nachweis von Nanomaterialien darstellt. Neben dem Nachweis von anthropogenen Stoffen in der Umwelt ist zudem deren ökotoxikologische Bewertung wichtig. In der aquatischen Ökotoxikologie werden hierzu Testorganismen mit den jeweiligen Substanzen über die Wasserphase exponiert. Effektkonzentrationen (EC50) werden dabei auf Basis der Konzentrationen in der Wasserphase abgeleitet - tatsächlich bioakkumulierte Mengen werden hierbei jedoch meist nicht ermittelt; eine weitere große Herausforderung besteht zudem in der Bewertung von Mischungstoxizitäten. Gängige Testorganismen sind u.a. Kieselalgen (Diatomeen). Diatomeen stehen am Anfang der Nahrungskette - toxikologisch relevante Metalle/Nanomaterialien können sich hierüber im Nahrungsnetz der Oberflächengewässer anreichern und ggf. nachhaltig auswirken. Im ersten Teil des Vortrages werden zunächst neue elementanalytische Methoden zum Nachweis von metallbasierten Nanopartikeln in Umweltmatrizes auf Basis der AF4/ICP-SFMS sowie stabilen Isotopenlabeln am Beispiel von Eisennanopartikeln vorgestellt. Im zweiten Teil wird eine neue elementanalytische Methode als komplementäre Technik zur ökotoxikologischen Bewertung von (Schad-)Stoffen vorgestellt. Die neue Methode basiert auf der on-line Kopplung von HPLC mit der single-cell-ICP-(ToF)-MS (sc-ICP-(ToF)-MS) [1, 3-5]. Hierüber konnten wir erfolgreich die automatisierte Multielementanalytik einzelner Diatomeen realisieren und zur Analyse von mit Metallen inkubierten Diatomeen (cyclotella meneghiniana) einsetzen. Wir konnten zeigen, dass die sc-ICP-ToF-MS zukünftig eine leistungsstarke, komplementäre Technik in der aquatischen Ökotoxikologie zum z.B. Test von Metallen und Nanomaterialien darstellt. T2 - GDCh Wissenschaftsforum Chemie CY - Aachen, Germany DA - 17.09.2019 KW - ICP-MS KW - Nanomaterialien KW - Single particle-ICP-ToF-MS KW - Single cell-ICP-ToF-MS PY - 2019 AN - OPUS4-49743 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, L. A1 - Traub, Heike A1 - Jakubowski, Norbert T1 - Novel applications of lanthanoides as analytical or diagnostic tools in the life sciences by ICP-MS-based techniques JF - Physical Sciences Reviews N2 - Inductively coupled plasma mass spectrometry (ICP-MS) is a well-established analytical method for multi-elemental analysis in particular for elements at trace and ultra-trace levels. It has found acceptance in various application areas during the last decade. ICP-MS is also more and more applied for detection in the life sciences. For these applications, ICP-MS excels by a high sensitivity, which is independent of the molecular structure of the analyte, a wide linear dynamic range and by excellent multi-element capabilities. Furthermore, methods based on ICP-MS offer simple quantification concepts, for which usually (liquid) standards are applied, low matrix effects compared to other conventional bioanalytical techniques, and relative limits of detection (LODs) in the low pg g−1 range and absolute LODs down to the attomol range. In this chapter, we focus on new applications where the multi-element capability of ICP-MS is used for detection of lanthanoides or rare earth elements, which are applied as elemental stains or tags of biomolecules and in particular of antibodies. KW - ICP-MS KW - Life sciences KW - Mass cytometry KW - Laser ablation (LA)-ICP-MS KW - Bioimaging PY - 2016 DO - https://doi.org/10.1515/psr-2016-0064 SN - 2365-659X SN - 2365-6581 VL - 1 IS - 11 SP - 1 EP - 19 AN - OPUS4-40234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Müller, L. A1 - Traub, Heike A1 - Jakubowski, Norbert ED - Prof. Dr. Golloch, Alfred T1 - Novel applications of lanthanoides as analytical or diagnostic tools in the life sciences by ICP-MS-based techniques T2 - Handbook of rare earth elements N2 - Inductively coupled plasma mass spectrometry (ICP-MS) is a well-established analytical method for multi-elemental analysis in particular for elements at trace and ultra-trace levels. It has found acceptance in various application areas during the last decade. ICP-MS is also more and more applied for detection in the life sciences. For these applications, ICP-MS excels by a high sensitivity, which is independent of the molecular structure of the analyte, a wide linear dynamic range and by excellent multi-element capabilities. Furthermore, methods based on ICP-MS offer simple quantification concepts, for which usually (liquid) standards are applied, low matrix effects compared to other conventional bioanalytical techniques, and relative limits of detection (LODs) in the low pg g−1 range and absolute LODs down to the attomol range. In this chapter, we focus on new applications where the multi-element capability of ICP-MS is used for detection of lanthanoides or rare earth elements, which are applied as elemental stains or tags of biomolecules and in particular of antibodies. KW - ICP-MS KW - Life sciences KW - Mass cytometry KW - Laser ablation (LA)-ICP-MS KW - Bioimaging PY - 2017 SN - 978-3-11-036523-8 SP - Chapter 11, 301 EP - 320 PB - De Gruyter AN - OPUS4-40244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Theiner, S. A1 - Corte Rodriguez, M. A1 - Traub, Heike ED - Golloch, A. T1 - Novel applications of lanthanoids as analytical or diagnostic tools in the life sciences by ICP-MS based techniques T2 - Handbook of Rare Earth Elements: Analytics N2 - Inductively coupled plasma-mass spectrometry (ICP-MS) is a well-established analytical method offering high sensitivity and multi-element analysis. ICP-MS has found acceptance in various application areas ranging from material analysis to applications in the life sciences. Within the last 15 years new strategies for the sensitive detection and accurate quantification of biomolecules in complex biomedical samples have been developed. Recent instrumental improvements have contributed to this progress. As most of the biomolecules do not contain endogenous metals etectable with ICP-MS, bioconjugation with artificial metal-containing tags based on metal-loaded chelate complexes or nanoparticles is increasingly applied to determine biomolecules indirectly. Especially, the combination of immunohistochemical workflows using lanthanoid-tagged antibodies and ICP-MS detection provides new insights in the complexity and interdependency of cellular processes. Single-cell ICP-MS, also termed as mass cytometry, allows high-dimensional analysis of biomarkers in cell populations at single-cell resolution. For that purpose, lanthanoid isotope labelled antibodies are used to detect their corresponding target molecules. The visualisation of the elemental distribution is possible with laser ablation ICP-MS (LA-ICPMS) at high spatial resolution. Especially, the combination of LA with ICP time-of-flight mass spectrometry, also referred to as imaging mass cytometry (IMC), opens new possibilities for multiparametric tissue imaging at the single-cell level and even below. The lanthanoid localisation and concentration can be linked to their conjugated antibody target providing valuable information about surface markers, intracellular signalling molecules to measure biological function, and the network state of an individual cell in a tissue. This book chapter focuses on new applications, where the multi-element capabilities of ICP-MS are used for the detection of lanthanoids applied as artificial elemental stains or tags for biomolecules and in particular antibodies. KW - ICP-MS KW - Laser ablation KW - Cell KW - Antibody KW - Immunohistochemistry KW - Lanthanoid KW - Mass cytometry KW - Imaging PY - 2022 SN - 978-3-11069-645-5 SN - 978-3-11069-636-3 DO - https://doi.org/10.1515/9783110696455-013 SP - 399 EP - 444 PB - De Gruyter CY - Berlin, Boston ET - 2. rev. and exten. edition AN - OPUS4-55118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lemke, Nora A1 - El-Khatib, Ahmed A1 - Theuring, F. A1 - Vogl, Jochen A1 - Jakubowski, Norbert T1 - Optimization of protein quantification via isotope dilution ICP-MS of a standard reference protein N2 - Quantitative proteomics are nowadays one of the key tasks in life sciences. A multitude of methods for protein quantification are established and more techniques are developed each year, but there still is a lack of well characterized and quantified protein standards. We aim to develop an ICP-MS based method to quantify pure proteins reliably and traceable to SI. Here, we employ isotope Dilution analysis for the quantification of proteins of known stoichiometry via their sulfur content. T2 - European Winter Conference on Plasma Spectrochemistry 2019 CY - Pau, France DA - 03.02.2019 KW - ICP-MS KW - Isotope dilution KW - Proteins PY - 2019 AN - OPUS4-47933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Jakubowski, Norbert A1 - Prohaska, T. A1 - Roos, P.H. ED - Beauchemin, D. ED - Matthews, D. T1 - Polyatomic ions with double-focusing magnet sector mass spectrometers T2 - The encyclopedia of mass spectrometry - elemental and isotope ratio mass spectrometry KW - ICP-MS KW - Sektorfeldgeräte PY - 2010 SN - 978-0-08-043804-7 VL - 5 SP - 132 EP - 150 PB - Elsevier CY - Oxford, UK AN - OPUS4-22237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja T1 - Progress Talk 2 / Working Group Meeting of Prof. Erhard Kemnitz (Humboldt-Universität zu Berlin) N2 - This presentation deals with the progress between month seven and eleven of my PhD thesis. I prepared it, in order to update my supervisor Prof. Kemnitz and my colleagues from the department of chemistry at the Humboldt-Universität zu Berlin (HU). T2 - Working Group Meeting of Prof. Erhard Kemnitz CY - Humboldt-Universität zu Berlin (HU), Germany DA - 20.06.2017 KW - XPS KW - Synchrotron KW - Core@shell nanoparticles KW - SEM KW - ICP-MS PY - 2017 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-40893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lemke, Nora A1 - El-Khatib, Ahmed A1 - Theuring, F. A1 - Vogl, Jochen A1 - Jakubowksi, Norbert T1 - Protein quantification of an Alzheimer’s biomarker via isotope dilution inductively coupled plasma mass spectrometry N2 - Neurodegenerative diseases are one of the major problems for our ageing society. Alzheimer’s disease (AD) as the most common neurodegenerative disorder affects over 46.8 million people worldwide and the number will increase as the population ages. The diagnosis of AD is challenging and only half of the patients are identified yet and often only in late stages. One reason is that existing assays for identification and quantification of AD biomarkers lack accuracy and are poorly comparable. This study is part of the EU project “ReMiND” aiming to develop accurate, reliable and traceable methods for the detection and quantification of known and suspected AD biomarkers. Our target is the tau protein, as brain load and distribution of tau is highly correlated with the clinical progression of AD. We intend to develop a measurement method for the accurate quantification of tau by means of inductively coupled plasma mass spectrometry (ICP-MS). ICP-MS is a powerful method for the matrix independent quantitative analysis of target elements. Developed for the use in inorganic trace analysis, ICP-MS is nowadays emerging as a valuable tool for bioanalytical questions. Especially the use of ICP-MS for quantitative proteomics by measuring heteroatoms is highly promising, considering that established quantification methods like organic mass spectrometry depend on the existence of matched protein and peptide standards or labelling of the target protein. In this work, we applied isotope dilution analysis (IDA) using ICP-MS to quantify proteins of known stoichiometry via their sulphur content. Sulphur is present in two amino acids, cysteine and methionine, and hence is omnipresent in nearly all proteins. A NIST standard bovine serum albumin (BSA) was quantified using sulfur IDA to optimize sample preparation and method parameters. Our goal is to employ the developed method in a proof of concept study for the quantification of the AD biomarker tau extracted from brains of a mouse model for AD. T2 - 26. ICPMS-Anwendertreffen CY - Berlin, Germany DA - 03.09.2018 KW - ICP-MS KW - Isotope dilution KW - Protein analysis PY - 2018 AN - OPUS4-46585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Löhr, Konrad A1 - Traub, Heike A1 - Wanka, Antje Jutta A1 - Panne, Ulrich A1 - Jakubowski, Norbert T1 - Quantification of metals in single cells by LA-ICP-MS: Comparison of single spot analysis and imaging JF - Journal of Analytical Atomic Spectrometry N2 - LA-ICP-MS is increasingly used for single cell analysis in two different detection modes using either the imaging mode with subcellular resolution or alternatively single spot analysis of cells with a larger laser spot size. This study compares the analytical figures of merit of both detection modes (signal to noise, precision, accuracy, throughput), as well as ease of operation and data evaluation. Adherent 3T3 fibroblast cells were stained with two metal dyes (mDOTA-Ho, Ir-DNA-intercalator) and several dozen cells were measured using both modes. We found a ten times higher throughput for single spot analysis, which has as well a straightforward data analysis, shortening the total analysis time further. The signal to noise ratio for single spot analysis was found to be slightly better compared to the signal to noise of pixels in imaging. The mean metal intensity per single cell differed by only 10% between both modes and obtained distributions were found to show no statistically significant differences. Using matrix matched calibration based on standards spotted onto nitrocellulose membrane, we achieved detection limits (10s) of 12 fg for Ir and 30 fg for Ho and quantified 57 +/-35 fg Ir and 1192 +/- 707 fg Ho per single cell. Compared to a conventional ICP-MS measurement of a digest of about 60000 cells, 54% of Ir content and 358% Ho content was found using quantitative LA-ICP-MS. The difference might be a consequence of the two metal dyes binding to different structures of the cell and therefore might behave differently in sample preparation for conventional and LA-ICP-MS. KW - Cells KW - Laser ablation KW - ICP-MS KW - Metals KW - Quantification PY - 2018 DO - https://doi.org/10.1039/c8ja00191j SN - 0267-9477 VL - 33 IS - 9 SP - 1579 EP - 1587 PB - RSC Royal Society of Chemistry CY - London AN - OPUS4-46441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Quantification of sulfur in copper metals and its alloys by ICP-IDMS N2 - Sulfur is one of the major impurity elements in copper. Previously applied methods for the quantification of sulfur in copper and other pure metals revealed a lack of traceability and showed inconsistent result. Therefore, in this study a procedure was developed for the quantification of total sulfur in copper at low concentration levels using inductively coupled plasma-isotope dilution mass spectrometry (ICP-IDMS). A major challenge for the quantification of sulfur in copper (alloyed/unalloyed) by ICPMS is the copper matrix itself, causing matrix effects and making an extensive cleaning (cones, extraction lens) necessary after measurements. Matschat et al investigated the analysis of high-purity metals (including copper) by high resolution ICP-MS and found that the copper matrix shows strong matrix effects on the sensitivity resulting from Cu deposition on the cones. Therefore, the major part of the copper matrix has to be separated, which was accomplished by adding ammonia which forms a complex with the copper while releasing the sulfur. This was followed by a chromatographic separation using a weak cation resin. After that the sulfur fraction was further purified by chromatographic means using an anion exchange method followed by a chelating resin. The anion exchange resin (AG1X8), however, is selective to sulfate and sulfite but less-selective to sulfide. Therefore, when quantifying total sulfur in copper, the different species of sulfur need to be oxidized to sulfate prior to the sulfur-matrix separation on the AG1X8 resin in order to avoid any measurement bias. When applying the HPA oxidation with concentrated HNO3 and H2O2 a complete conversion from sulfide and sulfite to sulfate could be achieved. The recovery of all investigated sulfur species is quantitative within measurement uncertainties. The copper samples investigated in this study contain copper in the range of 0.85-0.99 kg·kg-1 and zinc from <10 to 300 g·kg-1. Approximately 0.10-0.25 g of these samples were used to perform the sulfur-copper separation. After applying the complete three stage separation procedure the mass fractions of both elements were significantly reduced to below 400 ng·g-1 for copper and below 50 ng·g-1 for zinc, respectively. The developed procedure shows high performance, especially concerning high efficiency in matrix removal (> 99.999%) while keeping the recovery of sulfur above 80%. The procedure blank was determined by IDMS as well and yielded values for the individual IDMS measurement sequences ranging from 3 ng to 53 ng. The average of these individual procedure blanks (n=22) was calculated and yielded a total procedure blank of 14 ng sulphur with standard deviation of 12 ng. The limit of detection (LOD, blank+3SD) calculated on this basis was 0.20 µg·g-1 while the limit of quantification (LOQ, blank+10SD) was 0.54 µg·g-1, when considering a sample weight of 0.25 g. The quantification of low sulfur contents (< 15 µg/g) by conventional IDMS is hindered by the very high Cu/S ratio, which clearly affects the separation in a negative way: The recovery of sulfur dropped to about 30 % for four replicates, while two further replicates even showed recoveries below 10%. To enable measurement without completely changing the separation procedure, an exact amount of sulfur was added prior to spiking, such that the sulfur mass fraction was shifted to the optimum working range of the separation procedure. Thus exact amounts of sulfur were added to enhance the mass fraction of sulfur from 15 µg·g-1 to 40 µg·g-1, then the IDMS analysis was performed as usual and finally the added sulfur amount was subtracted. The so obtained measurement result agreed well with the certified value within the uncertainties. The relative expanded measurement uncertainties for conventional IDMS are below 1%. When applying the modified IDMS procedure, where back-spike is added to the sample before spiking, the relative expanded measurement uncertainties are larger and up to 5%. With the presented sulfur-matrix procedure a working range from approximately 15 µg·g-1 to 1500 µg·g-1 can be achieved. The developed procedure for the quantification of low sulfur amounts in copper has been validated here via three different routes: first an inter-laboratory comparison at highest metrological level, second a step-by-step validation by checking each single step of the procedure and third the setup of a complete uncertainty budget. The procedure is sufficient to facilitate value assignment of total sulfur mass fraction in reference materials. Additionally, relative measurement uncertainties were calculated below 1 % and the measurement results are traceable to the SI, which is clearly demonstrated in this work. The procedure reported in this study is a new reference procedure for sulfur measurement in copper, well meeting the requirements of the two major purposes: the certification of reference materials and the assignment of reference values for inter-laboratory comparison. T2 - Winter Conference on Plasma Spectrochemistry CY - Amelia Island, FL, USA DA - 08.01.2018 KW - Isotope dilution mass spectrometry KW - Sulfur-copper-sepration KW - SI traceability KW - Measurement uncertainty KW - ICP-MS KW - Sulfur species conversion PY - 2018 AN - OPUS4-44640 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Quantification of sulphur in copper metals by isotope dilution LA-ICP-MS using polyethylene frits N2 - Sulphur is one of the relevant impurities in copper and its alloys affecting their material properties. To ensure the quality of copper products, fast direct solid sampling techniques are very attractive. However, for the calibration suitable matrix reference materials are required. For the certification of such reference materials appropriate, SI-traceable analytical methods are essential. Therefore, a procedure was developed to quantify total sulphur in copper by combining the classical isotope dilution (ID) technique and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Here, for the first time, polyethylene (PE) frits were used to prepare appropriate solid samples for the sulphur quantification in copper metals (alloyed/unalloyed) by isotope dilution LA-ICP-MS. The properties of the PE frit meet the requirements as porous material with high absorption efficiency, thermal and chemical resistance as well as low sulphur blank. Different copper reference materials were used to develop and validate the procedure. The copper samples were spiked with 34S, digested with nitric acid and then the digests were absorbed on PE frits. After drying, the frits were analysed by LA-ICP-IDMS using a Nd:YAG laser at 213 nm coupled to an ICP sector field mass spectrometer. It could be demonstrated, that the sample solution dispersed on the frits did not influence the 32S/34S ratio significantly even though the sulphur intensities were fluctuating along the scanned lines. Relative standard deviations of the isotope ratios were below 5 % in average between three line scans (except for the pure spike solution and procedure blank). The measurement results were validated by comparing them with the results obtained by conventional ICP-IDMS after analyte-matrix separation. Plotting the mass fraction of sulphur in copper obtained by LA-ICP-IDMS versus those obtained by ICP-IDMS yields a linear curve with a correlation coefficient of 0.9999 showing a strong agreement between both techniques. The metrological traceability to the SI from the kg down to the sulphur mass fraction in copper is established by an unbroken chain of comparisons, each accompanied by an uncertainty budget. Thus, the measurement results are considered reliable, acceptable and comparable within the stated measurement uncertainty. T2 - 14th European Workshop on Laser Ablation (EWLA) CY - Pau, France DA - 26.06.2018 KW - ICP-MS KW - Laser ablation KW - Isotope dilution KW - Copper PY - 2018 AN - OPUS4-45569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sötebier, Carina A1 - Weidner, Steffen A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Bettmer, J. T1 - Separation and quantification of silver nanoparticles and silver ions using reversed phase high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry in combination with isotope dilution analysis JF - Journal of Chromatography A N2 - A reversed phase high performance liquid chromatography coupled to an inductively coupled plasma mass spectrometer (HPLC-ICP-MS) approach in combination with isotope dilution analysis (IDA) for the separation and parallel quantification of nanostructured and ionic silver (Ag) is presented. The main focus of this work was the determination of the ionic Ag concentration. For a sufficient stabilization of the ions without dissolving the nanoparticles (NPs), the eluent had to be initially optimized. The determined Ag ion concentration was in a good agreement with results obtained using ultrafiltration. Further, the mechanism of the NP separation in the HPLC column was investigated. Typical size exclusion effects were found by comparing results from columns with different pore sizes. Since the recovery rates decreased with increasing Ag NP size and large Ag NPs did not elute from the column, additional interactions of the particles with the stationary phase were assumed. Our results reveal that the presented method is not only applicable to Ag NPs, but also to gold and polystyrene NPs. Finally, IDA-HPLC-ICP-MS experiments in single particle mode were performed to determine the particle cut-off size. The comparison with conventional spICP-MS experiments resulted in a similar diameter and particle size distribution. KW - ICP-MS KW - Silver nanoparticles KW - HPLC KW - Isotope dilution analysis KW - Field flow fractionation KW - Toxicology PY - 2016 DO - https://doi.org/10.1016/j.chroma.2016.09.028 SN - 0021-9673 VL - 1468 SP - 102 EP - 108 PB - Elsevier B.V. AN - OPUS4-38642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Büchner, T. A1 - Drescher, D. A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - Studying cellular uptake of metal-containing nanoparticles by LA-ICP-MS N2 - Nanoparticles (NPs) have potential applications in medical diagnostics, imaging, drug delivery and other kinds of therapy. Furthermore, studies concerning nanoparticle uptake by cells are important for risk assessment. Size, shape and surface modification of the NPs determine the uptake rate and pathway into the cells, and therefore impact specific cell components and processes. Understanding the different uptake mechanisms and involved processes require sub-cellular resolution to determine, for example, whether the nanoparticles are reaching the nucleus. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is an established quantitative multi-elemental analysis and mapping technique. However, sub-cellular imaging has traditionally been challenging to achieve due to a lack of sensitivity at small laser spots. But now novel laser ablation systems with improved sensitivity and washout time allow imaging at high lateral resolution with spot sizes down to 1 µm. Here LA-ICP-MS was applied for the imaging of individual fibroblast cells to study the uptake and intracellular processing of metal-containing NPs. To indicate cell morphology the local distribution of naturally occurring elements in cells like P and Zn was measured, too. Our results show that LA-ICP-MS can be used to localise nanoparticle aggregates within cellular compartments. The studied NPs accumulate in the perinuclear region in the course of intracellular processing, but do not enter the cell nucleus. The uptake efficiency depends strongly on the physico-chemical properties of the nanostructures as well as on the incubation conditions like concentration and incubation time. The potential of LA-ICP-MS for analysis at single cell level will be demonstrated. T2 - Euroanalysis 2017 CY - Stockholm, Sweden DA - 28.08.2017 KW - Laser ablation KW - ICP-MS KW - Nanoparticle KW - Cell PY - 2017 AN - OPUS4-41883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Büchner, T. A1 - Drescher, D. A1 - Merk, V. A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - Studying nanoparticle-cell interaction by ICP-MS based techniques N2 - Nanoparticles (NPs) have found a wide range of applications in research and industry. Thereby the interaction of NPs with biological systems like cells has become a major field of interest, ranging from medical applications to nanotoxicology. Size, shape and surface modification of the nanomaterials determine the uptake rate and pathway into the cells, and therefore impact specific cell components and processes. Inductively coupled plasma mass spectrometry (ICP-MS) is a well-established analytical method offering high sensitivity and multi-element capability. By coupling a laser ablation (LA) system to an ICP-MS the analysis of different kinds of solid samples is possible. In recent years, it was shown that LA-ICP-MS can provide quantitative as well as distribution information of metal containing nanoparticles (NPs) in cell samples. Here LA-ICP-MS was applied for the imaging of individual fibroblast cells to study the uptake and intracellular processing of NPs. Our results show that LA-ICP-MS can be used to localize nanoparticle aggregates within cellular compartments. The studied NPs accumulate in the perinuclear region in the course of intracellular processing, but do not enter the cell nucleus. The uptake efficiency depends strongly on the physico-chemical properties of the nanostructures as well as on the incubation conditions like concentration and incubation time. ICP-MS was used to determine the composition of the nanomaterials as well as the number of NPs in cells after acid digestion of the samples. T2 - Workshop on Reference Nanomaterials CY - Berlin, Germany DA - 14.05.2018 KW - ICP-MS KW - Laser ablation KW - Nanoparticle KW - Cell PY - 2018 AN - OPUS4-45073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Büchner, T. A1 - Drescher, D. A1 - Merk, V. A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - Studying nanoparticle-cell interaction by ICP-MS based techniques N2 - Nanoparticles (NPs) have found a wide range of applications in research and industry. Thereby the interaction of NPs with biological systems like cells has become a major field of interest, ranging from medical applications to nanotoxicology. Size, shape and surface modification of the nanomaterials determine the uptake rate and pathway into the cells, and therefore impact specific cell components and processes. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is an established quantitative multi-elemental analysis and mapping technique. In recent years, it was shown that LA-ICP-MS can provide quantitative as well as distribution information of metal containing nanoparticles (NPs) in cell samples. Here LA-ICP-MS was applied for the imaging of individual fibroblast cells to study the uptake and intracellular processing of NPs. Our results show that LA-ICP-MS can be used to localize nanoparticle aggregates within cellular compartments. The studied NPs accumulate in the perinuclear region in the course of intracellular processing, but do not enter the cell nucleus. The uptake efficiency depends strongly on the physico-chemical properties of the nanostructures as well as on the incubation conditions like concentration and incubation time. ICP-MS was used to determine the composition of the nanomaterials as well as the number of NPs in cells after acid digestion of the samples. T2 - 13. Symposium „Massenspektrometrische Verfahren der Element­spurenanalyse“ & 26. ICP-MS-Anwendertreffen CY - Berlin, Germany DA - 03.09.2018 KW - ICP-MS KW - Nanoparticle KW - Cell KW - Laser ablation PY - 2018 AN - OPUS4-45860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Drescher, D. A1 - Büchner, T. A1 - Merk, V. A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - Studying nanoparticle-cell interaction by LA ICP-MS N2 - The interaction of nanoparticles (NPs) with cells has become a major field of interest, ranging from medical applications to nanotoxicology. Size, shape and surface modification of the NPs determine the uptake rate and pathway into the cells, and therefore impact specific cell components and processes. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is an established quantitative multi-elemental analysis and mapping technique. In recent years, it was shown that LA-ICP-MS can provide quantitative as well as distribution information of NPs in cell samples. Here LA-ICP-MS was applied for the imaging of individual cells to study the uptake and intracellular processing of metal-containing nanostructures. Additionally, the local distribution of naturally occurring elements in cells like P was measured to indicate cell morphology. The cells were incubated with different types of NPs under varying experimental conditions. For LA analysis, the cells were fixed and dried. Our findings show, that LA-ICP-MS is suitable for the localisation of nanoparticle aggregates within cellular compartments. The studied NPs accumulate in the perinuclear region in the course of intracellular processing, but do not enter the cell nucleus. The uptake efficiency depends strongly on the physicochemical properties of the nanostructures as well as on the incubation conditions like concentration and incubation time. The results demonstrate the potential of LA-ICP-MS providing insight into NP uptake, intracellular distribution and cell-to-cell variation dependent on experimental parameters. T2 - Workshop on Laser Bioimaging Mass Spectrometry CY - Münster, Germany DA - 24.05.2018 KW - Imaging KW - Laser ablation KW - ICP-MS KW - Nanoparticle KW - Cell PY - 2018 AN - OPUS4-45071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lemke, Nora A1 - El-Khatib, Ahmed A1 - Theuring, F. A1 - Jakubowski, Norbert A1 - Vogl, Jochen T1 - Sulfur isotope dilution ICP MS for traceable protein quantification N2 - Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful method for the matrix-independent quantitative analysis of target elements. Developed for the use in inorganic trace analysis, ICP-MS is nowadays a valuable tool for bioanalytical questions. Especially the use of ICP-MS for quantitative proteomics by measuring heteroatoms has gained recognition in the last decade, considering that established quantification methods like organic mass spectrometry depend on labelling of the target protein or the existence of matched protein and peptide standards. The need for reliable quantification of proteins is continuously growing, but only a limited number of well-characterized and quantified protein standards are available so far. Accurately quantified, traceable protein standards are necessary to ensure comparability of measurements between laboratories, not only in basic research but also in a clinical context. One example of this is the Alzheimer’s disease biomarker tau protein. However, existing tau standards lack comparability, emphasizing the need for a well-quantified protein standard. Therefore, we developed a method for the quantification of pure proteins via sulfur isotope dilution ICP-MS (IDMS). As sulfur is present in two amino acids, cysteine and methionine, it exists in nearly all proteins and can be used for the quantification of proteins of known stoichiometry. We employed simple offline strategies for the separation of non-protein bound sulfur species. Quantification of these contaminations by IDMS allows for correction of the protein content and enables reliable protein quantification. We report the protein mass fractions of a standard reference material and commercially available proteins determined by sulfur IDMS, including the expanded uncertainties. The developed method can be applied for the reliable and traceable quantification of pure proteins for use as in-house standards. Here, we successfully used this method for the quantification of the tau protein. T2 - 53rd annual conference of the DGMS including 27th ICP-MS User's Meeting CY - Münster, Germany DA - 01.03.2020 KW - ICP-MS KW - Isotope dilution KW - Protein KW - Quantification KW - Tau protein PY - 2020 AN - OPUS4-50510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ecke, Alexander A1 - Westphalen, Tanja A1 - Retzmann, Anika A1 - Schneider, Rudolf T1 - The Fate of the Antibiotic Amoxicillin in the Aquatic Environment N2 - Contamination of the environment with antibiotics is of great concern as it promotes the evolution of antimicrobial resistances. In case of amoxicillin (AMX) in the aquatic environment, further risk arises from hydrolysis products (HPs) which can cause allergy. To assess these risks, a comprehensive investigation and understanding of the degradation of AMX is necessary. We investigated the hydrolysis rate of AMX in different types of water as well as the influence of temperature and irradiation. The content of the heavy metal ions copper and zinc was found to be crucial for the hydrolysis rate of AMX and stability of HPs. Eventually, a new degradation pathway for AMX could be elaborated and confirmed by tandem mass spectrometry (LC-MS/MS). T2 - Berliner Chemie in Praxis Symposium CY - Berlin, Germany DA - 07.10.2022 KW - Hydrolysis KW - Amoxicillin KW - LC-MS/MS KW - ICP-MS PY - 2022 AN - OPUS4-56026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Loehr, Konrad T1 - Towards single cell arraying for LA-ICP-MS N2 - Analysis of single cells via LA-ICP-MS is a technique with great potential, however manual targeting of single cells is laborious and therefore microarraying of cells looks promising. In this work, we investigate the potential of a commercial non-contact piezo dispenser arraying system (S3, Scienion AG, Berlin), equipped with a novel technology for single-cell isolation called CellenONE™ (Cellenion, Lyon). Usually if one aims to create a microarray of single cells via spotting a suitably diluted cell suspension, one will observe a Poisson-distributed cell number per spot. CellenONE™ overcomes this problem by controlling the number of cells optically in the piezo dispense capillary (PDC) via image recognition to obtain true single cell arrays. The figures of merit of the customized and optimized setup will be presented. In a proof of concept experiment we investigated the trace elemental fingerprint of THP-1 cells by LA-ICP-TOF-MS (Analyte G2, Teledyne Cetac; icpTOF, TOFWERK) and quantified two metal cell dyes, mDOTA-Ho (CheMatech, Dijon), and Ir-DNA intercalator (Fluidigm, San Francisco). For that, matrix matched calibration standards after Wang et al. were successfully prepared using the same arraying system. We believe that this novel approach opens new ways for automated quantitative single cell LA-ICP-MS. T2 - DIAGNOSTICS 8.0 CY - Berlin, Germany DA - 06.09.2018 KW - High throughput KW - Single cell KW - Laser ablation KW - ICP-MS KW - CellenONE PY - 2018 AN - OPUS4-45904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Saatz, Jessica A1 - Ascher, Lena A1 - Boyraz, B. A1 - Hahndorf, J. A1 - Schnorr, J. A1 - Schellenberger, E. A1 - Tauber, R. T1 - Unraveling the interaction of MRI contrast agents with tissue using LA ICP MS N2 - Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is increasingly used to study the distribution of metal-containing drugs, imaging probes and nanomaterials in connection with disease related changes and therapy progress. Additionally, biomolecules can be detected indirectly by using metal-tagged antibodies. The extracellular matrix (ECM) is, besides the cells, an important component of all body tissues. The macromolecular network of the ECM consists of structural proteins (e.g., collagen, elastin) and proteoglycans composed of highly negatively charged carbohydrates, the glycosaminoglycans (GAGs), which are covalently linked to a protein core. Many diseases, including inflammatory processes and tumors, are associated with characteristic ECM changes at an early stage. Recent studies have shown that contrast agents for magnetic resonance imaging (MRI), which are based on gadolinium containing chelate complexes or iron oxide nanoparticles, can bind themselves to ECM components. To elucidate the role of GAGs like keratan sulfate (KS) and its modification state in disease, highly specific tools are necessary. As a complement to conventional immunohistochemistry LA-ICP-MS was applied to investigate the distribution of KS in tissue thin sections using a well characterized anti-KS antibody labelled with metal ions. Furthermore, LA-ICP-MS was used for the detection of MRI contrast agents and the identification of their target cells and molecules in tissue samples from animal models, e.g. for cardiovascular diseases. The results show the possibilities of LA-ICP-MS for the elucidation of pathological tissue changes. T2 - European Workshop on Laser Ablation (EWLA 2022) CY - Berne, Switzerland DA - 12.07.2022 KW - Laser ablation KW - Imaging KW - ICP-MS KW - Antibody PY - 2022 AN - OPUS4-55315 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -