TY - JOUR A1 - Yesilcicek, Yasemin A1 - Haas, S. A1 - Suárez Ocano, Patricia A1 - Zaiser, E. A1 - Hesse, René A1 - Többens, D. M. A1 - Glatzel, U. A1 - Manzoni, Anna Maria T1 - Controlling Lattice Misfit and Creep Rate Through the γ' Cube Shapes in the Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy with Hf and W Additions N2 - Trace elements play an important role in the fine-tuning of complex material properties. This study focuses on the correlation of microstructure, lattice misfit and creep properties. The compositionally complex alloy Al10Co25Cr8Fe15Ni36Ti6 (in at. %) was tuned with high melting trace elements Hf and W. The microstructure consists of a γ matrix, γ' precipitates and the Heusler phase and it is accompanied by good mechanical properties for high temperature applications. The addition of 0.5 at.% Hf to the Al10Co25Cr8Fe15Ni36Ti6 alloy resulted in more sharp-edged cubic γ′ precipitates and an increase in the Heusler phase amount. The addition of 1 at.% W led to more rounded γ′ precipitates and the dissolution of the Heusler phase. The shapes of the γ' precipitates of the alloys Al9.25Co25Cr8Fe15Ni36Ti6Hf0.25W0.5 and Al9.25Co25Cr8Fe15Ni36Ti6Hf0.5W0.25, that are the alloys of interest in this paper, create a transition from the well-rounded precipitates in the alloy with 1% W containing alloy to the sharp angular particles in the alloy with 0.5% Hf. While the lattice misfit has a direct correlation to the γ' precipitates shape, the creep rate is also related to the amount of the Heusler phase. The lattice misfit increases with decreasing corner radius of the γ' precipitates. So does the creep rate, but it also increases with the amount of Heusler phase. The microstructures were investigated by SEM and TEM, the lattice misfit was calculated from the lattice parameters obtained by synchrotron radiation measurements. KW - High entropy alloy KW - Lattice misfit KW - Creep KW - Transmission electron microscopy KW - X-ray diffraction PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565655 DO - https://doi.org/10.1007/s44210-022-00009-1 SP - 1 EP - 9 PB - Springer AN - OPUS4-56565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaiser, E. A1 - Fantin, Andrea A1 - Manzoni, Anna Maria A1 - Hesse, René A1 - Többens, D. M. A1 - Hsu, W.-C. A1 - Murakami, H. A1 - Yeh, A.-C. A1 - Pavel, M. J. A1 - Weaver, M. L. A1 - Zhu, H. A1 - Wu, Y. A1 - Vogel, F. T1 - Elucidating hierarchical microstructures in high entropy superalloys: An integrated multiscale study N2 - In this study, we examine a high entropy superalloy (HESA-Y1: Ni49.37Co20Cr7Fe4Al11.6Ti6Re1Mo0.5W0.5Hf0.03 at%), focusing on hierarchical microstructure formation and its effects on mechanical properties. Thermodynamic modeling using Thermo-Calc predicts equilibrium phase fractions, compositions, and transition temperatures,which are validated by experimental data from differential scanning calorimetry (DSC). Transmission electronmicroscopy (TEM) reveals that secondary aging induces nanometer-sized γ particles within γ’ precipitates, forming a hierarchical γ/γ’ microstructure. Atom probe tomography (APT) confirms supersaturation of γ’ precipitates with γ-forming elements (Co, Cr, Fe), driving γ particle formation, and measures interfacial widths between γ’ and γ phases. Partitioning coefficients derived from APT align with Thermo-Calc predictions for most elements. Vickers microhardness testing shows an increase of about 50 HV in the hierarchical microstructure compared to the conventional one. In situ synchrotron X-ray diffraction (XRD) from 25 to 750 ◦C determines a small, negative lattice misfit δ between γ and γ’ phases, suggesting enhanced microstructural stability, consistent with Thermo-Calc calculations. Our methodological approach enables measurement of the unconstrained lattice parameter of phase-extracted γ’ in a single-crystal XRD setup. Due to their small size and low volume fraction, γ particles do not produce distinct reflections in the X-ray diffractogram. Elucidating hierarchical microstructures across multiple scales, we establish that the presence of Re and Hf and controlled aging processes lead to enhanced mechanical properties, offering valuable insights for the design of advanced high entropy superalloys. KW - High entropy alloys KW - Transmission electron microscopy KW - X-ray diffraction KW - Superalloy PY - 2025 DO - https://doi.org/10.1016/j.matchar.2024.114642 VL - 220 SP - 1 EP - 13 PB - Elsevier Inc. AN - OPUS4-62348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zänker, Steffen A1 - Scholz, G. A1 - Marquardt, Julien A1 - Emmerling, Franziska T1 - Structural changes in Ba-compounds of different hardness induced by high-energy ball milling – evidenced by 137Ba NMR and X-ray powder diffraction N2 - Changes in the global bulk and local structures, of three different barium compounds (BaZrO3, BaF2, and BaFCl),were induced by mechanical milling and followed using X-ray powder diffraction (PXRD), subsequent microstructure analysis, and 137Ba solid state NMR spectroscopy. Harder materials like BaZrO3 experience significantly higher structural changes upon milling than softer materials like BaF2. Moreover, soft materials with layered structures, like BaFCl, show a pronounced structural change during the milling process. By combining PXRD and solid state NMR, detailed information on the changes to the global and local structures were obtained, which are of interest for mechanochemical synthesis, mechanically treated catalysts or ionic conductors. KW - Mechanochemistry KW - X-ray diffraction KW - Solid state NMR PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547397 DO - https://doi.org/10.1002/zaac.202200026 SN - 0044-2313 VL - 648 IS - 10 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Orts Gil, Guillermo A1 - Gross, Thomas A1 - Deutsch, Cornelius A1 - Hinrichs, R. A1 - Vasconcellos, M.A.Z. A1 - Zoz, H. A1 - Yigit, D. A1 - Sun, X. T1 - Impact of high energy ball milling on the nanostructure of magnetite-graphite and magnetite-graphite-molybdenum disulphide blends N2 - Different, partly complementary and partly redundant characterization methods were applied to study the transition of magnetite, graphite and MoS2 powders to mechanically alloyed nanostructures. The applied methods were: Transmission electron microscopy (TEM), Mössbauer spectroscopy (MS), Raman spectroscopy (RS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The main objective was to prepare a model material providing the essential features of a typical tribofilm forming during automotive braking, and to assess the impact of different constituents on sliding behaviour and friction level. Irrespective of the initial grain size, the raw materials were transferred to a nanocrystalline structure and mixed on a nanoscopic scale during high energy ball milling. Whereas magnetite remained almost unchanged, graphite and molybdenum disulphide were transformed to a nanocrystalline and highly disordered structure. The observed increase of the coefficient of friction was attributed to a loss of lubricity of the latter ingredient due to this transformation and subsequent oxidation. KW - Ball milling KW - Mössbauer spectroscopy KW - Raman spectroscopy KW - Transmission electron microscopy KW - X-ray diffraction KW - X-ray photoelectron spectroscopy PY - 2013 DO - https://doi.org/10.1016/j.matchar.2013.09.007 SN - 1044-5803 SN - 1873-4189 VL - 86 SP - 28 EP - 38 PB - Elsevier Inc. CY - New York, NY AN - OPUS4-29697 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Rooch, Heidemarie A1 - Pyzalla, A. A1 - Wang, L. T1 - Investigation of white etching layers on rails by optical microscopy, electron microscopy, X-ray and synchrotron X-ray diffraction N2 - Patches of white etching layers on rail surfaces were investigated using sophisticated techniques like cross-sectional transmission electron microscopy (XTEM) and synchroton X-ray diffraction. Optical microscopy failed to resolve the microstructure, but in the TEM submicron grains with high dislocation densities and occasional twins, which are characteristic features of high carbon martensite, were observed. The martensitic structure was confirmed by evaluation of synchroton X-ray diffraction line profiles. The latter technique also allowed to determine dislocation densities of the order of 1012 cm-2 and residual compressive stresses of about 200 MPa. KW - Cross-sectional transmission electron microscopy KW - White etching layers KW - X-ray diffraction PY - 2001 DO - https://doi.org/10.1016/S0921-5093(00)01842-6 SN - 0921-5093 SN - 1873-4936 VL - 303 SP - 150 EP - 157 PB - Elsevier CY - Amsterdam AN - OPUS4-2370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -