TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gumenyuk, Andrey T1 - Comparison of MWIR and NIR thermography in a laser metal deposition (LMD) process N2 - Additive manufacturing (AM) offers a range of novel applications. However, the manufacturing process is complex and the production of defect-free parts with a high reliability is still a challenge. Thermography is a valuable tool for process surveillance, especially in metal AM processes. The high process temperatures allow one to use cameras usually operating in the visible spectral range. Here, we compare the results of first measurements during the manufacturing process of a commercial laser metal deposition (LMD) setup using a MWIR camera with those from a VIS high-speed camera with band pass filter in the NIR range. T2 - 14th Quantitative InfraRed Thermography Conference CY - Berlin, Germany DA - 25.06.2018 KW - Thermography KW - Additive manufacturing KW - Laser metal deposition KW - ProMoAM PY - 2018 AN - OPUS4-45408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Thermography in metal AM: Comparison of high-speed NIR thermography and MWIR thermography N2 - Additive manufacturing (AM) opens the route to a range of novel applications.However, the complexity of the manufacturing process poses a challenge for the production of defect-free parts with a high reliability. Since process dynamics and resulting microstructures of AM parts are strongly influenced by the involved temperature fields, thermography is a valuable tool for process surveillance. The high process temperatures in metal AM processes allow one to use cameras usually operating in the visible spectral range to detect the thermally emitted radiation from the process. In our work, we compare the results of first measurements during the manufacturing processes of a commercial laser metal deposition (LMD) setup and a laser beam melting (LBM) setup using a MWIR camera with those from a VIS high-speed camera with band pass filter in the NIR range. T2 - Additive Manufacturing Benchmarks 2018 CY - Gaithersburg, MA, USA DA - 18.06.2018 KW - Thermography KW - Additive manufacturing KW - Laser metal deposition KW - Laser beam melting KW - ProMoAM PY - 2018 AN - OPUS4-45401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Process monitoring in LBM using thermography and optical tomography N2 - Additive manufacturing (AM) opens the route to a range of novel applications. However, the complexity of the manufacturing process poses a challenge to produce defect-free parts with a high reliability. Since process dynamics and resulting microstructures of AM parts are strongly influenced by the involved temperature fields and cooling rates, thermography is a valuable tool for process monitoring. Another approach to monitor the energy input into the part during process is the use of optical tomography. Common visual camera systems reach much higher spatial resolution than infrared thermography cameras, whereas infrared thermography provides a much higher temperature dynamic. Therefore, the combined application increases the depth of information. Here, we present first measurement results using a laser beam melting setup that allows simultaneous acquisition of thermography and optical tomography from the same point of view using a beam splitter. A high-resolution CMOS camera operating in the visible spectral range is equipped with a near infrared bandpass filter and images of the build plate are recorded with long-term exposure during the whole layer exposing time. Thus, areas that reach higher maximum temperature or are at elevated temperature for an extended period of time appear brighter in the images. The used thermography camera is sensitive to the mid wavelength infrared range and records thermal videos of each layer exposure at an acquisition rate close to 1 kHz. As a next step, we will use computer tomographic data of the built part as a reference for defect detection. This research was funded by BAM within the focus area Materials. T2 - 3rd International Symposium Additive Manufacturing (ISAM 2019) CY - Dresden, Germany DA - 30.01.2019 KW - Additive manufacturing KW - Laser beam melting KW - Thermography KW - Optical Tomography PY - 2019 AN - OPUS4-47299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai A1 - Mohr, Gunther A1 - Gumenyuk, Andrey A1 - Straße, Anne A1 - Pittner, Andreas A1 - Günster, Jens A1 - Gornushkin, Igor B. A1 - Pelkner, Matthias A1 - Ehlers, Henrik A1 - Heckel, Thomas A1 - Zscherpel, Uwe A1 - Seeger, Stefan A1 - Bruno, Giovanni T1 - ProMoAM - Verfahrensentwicklung für das Prozessmonitoring in der additiven Fertigung N2 - Verfahren zum in-situ Monitoring der Prozess- und Bauteilparameter sollen Fehlstellen und Inhomogenitäten bereits während der Fertigung nachweisen und zukünftig auch die Regelung der Prozessparameter ermöglichen. T2 - Challenges in Additive Manufacturing: Innovative Materials and Quality Control, Berlin Partner Workshop CY - Berlin, Germany DA - 12.09.2018 KW - Additive Fertigung KW - Prozessmonitoring KW - ProMoAM PY - 2018 AN - OPUS4-46300 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Karkhin, V. A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - A General Analytical Solution for Two-Dimensional Columnar Crystal Growth during Laser Beam Welding of Thin Steel Sheets N2 - The main solidification parameters, namely the crystal axis, the growth rate, and the cross-sectional area of the columnar crystal control the primary microstructure and thus the final weld seam properties. Limited understanding of solidification parameters due to complexities in experimental and theoretical weld pool boundary determination and its mathematical description. Application of local Lamé curves for efficient weld pool boundary reconstruction Derivation of general analytical solutions for the main solidification parameters of a two-dimensional columnar crystal growth during laser beam welding of thin steel sheets. The Lamé curves approximation technique was successfully applied for the reconstruction of the rear part of the two-dimensional steady-state weld pool boundary. General analytical expressions for the main solidification parameters, namely the crystal axis, the growth rate and the cross-sectional area of the crystal were derived. The derived expressions and herewith obtained results were verified and validated by comparing them to known theoretical solutions and experimental measurements. Dimensionless analysis of the influence of the size and shape of the rear weld pool boundary on the solidification parameters was provided. The derived general solutions and the analysis provided allow for critical welding parameters to be estimated and adapted accordingly to improve the welding process. T2 - 3rd International Conference on Advanced Joining Processes CY - Braga, Portugal DA - 19.10.2023 KW - Laser beam welding KW - Analytical solution KW - Columnar crystal growth PY - 2023 AN - OPUS4-59174 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Graf, B. A1 - Rethmeier, Michael A1 - Ulbricht, Alexander T1 - Low cycle fatigue behavior, tensile properties and microstructural features of additively manufactured Ti-6Al-4V N2 - Despite of the significant advances in additive manufacturing (AM) process optimization there is still a lack of experimental results and understanding regarding the mechanical behavior and its relationship with the microstructural features of AM-parts, especially in loading conditions typical for safety-relevant applications. Within the scope of the presented ongoing investigations, a basic microstructural characterization, tensile tests at room and elevated temperature (400°C) as well as a characterization of the fatigue behavior of additively manufactured Ti-6Al-4V in the low cycle fatigue regime are carried out in the as-built state. After failure, different techniques are used to describe the failure mechanisms of the specimens. The AM-Specimens are provided by the Fraunhofer institute for production systems and design technology and investigated at the BAM following the philosophy of the TF-Project AGIL. T2 - Workshop on Additive Manufacturing: Process, materials, testing, simulation & implants CY - BAM, Berlin, Germany DA - 13.05.2019 KW - High Temperature Testing KW - Titanium KW - Ti-6Al-4V KW - Additive Manufacturing KW - DED-L KW - LMD KW - Computed Tomography KW - Microstructure KW - Tensile Properties KW - Low Cycle Fatigue PY - 2019 AN - OPUS4-48067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Backes, Sebastian A1 - Fahrbach, M. A1 - Cappella, Brunero A1 - Peiner, E. T1 - Scanning characterization of polymer coating layers using contact resonance with piezoresistive microprobes N2 - The motivation and the measurement setup for large fast-scanning piezoresistive cantilevers are presented. The theory behind the measurements of mechanical properties through contact resonance is explained. Results of such measurements on two kinds of polymer are compared to results from force distance curves. Noise, time-dependency and dependency of the results on the vibration mode are identified as challenges of contact resonance. T2 - 19th International Conference and Exhibition (European Society for Precision engineering and Nanotechnology/EUSPEN) CY - Bilbao, Spain DA - 03.06.2019 KW - Force distance curves KW - Contact resonance KW - Lubricants KW - Photoresist PY - 2019 AN - OPUS4-49903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Numerical and Experimental Observation of the melt pool behaviour for laser beam welded thick plates in partial penetration mode N2 - The geometry of the melt pool in laser beam welding plays a major role to understand the dynamics of the melt and its solidification behavior. In this study, a butt configuration of 20 mm thick structural steel and transparent quartz glass was used to observe the weld pool geometry in the partial penetration mode by means of a high-speed camera. The observations show that the dimensions of the weld pool vary depending on the depth. The areas close to the weld pool surface take a teardrop-shape. A bulge-region and its temporal evolution were observed approximately in the weld pool root. Additionally, a 3D transient thermal-fluid numerical simulation was performed to obtain the weld pool shape and to understand the formation mechanism of the observed bulging effect. The model considers the local temperature field, the effects of phase transition, thermo-capillary convection, natural convection and temperature-dependent material properties. The numerical results showed good accordance and were furthermore used to improve the understanding of the experimentally observed bulging effect. T2 - 5th International Symposium on Visualization in Joining & Welding Science through Advanced Measurements and Simulation CY - Osaka, Japan DA - 21.11.2019 KW - Partial penetration KW - Laser beam welding KW - Melt pool behaviour PY - 2019 AN - OPUS4-49896 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernardy, Christopher A1 - Konert, Florian A1 - Popiela, Bartosz A1 - Sarif, Raduan T1 - H2Safety@BAM: Competence Center for safe hydrogen technologies N2 - Presentation of the competence center H2Safety@BAM at the European PhD Hydrogen Conference 2024 in Ghent, Belgium. T2 - European PhD Hydrogen Conference 2024 (EPHyC2024) CY - Ghent, Belgium DA - 20.03.2024 KW - H2safety KW - Hydrogen KW - Safety KW - Competence center PY - 2024 AN - OPUS4-59756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Kromm, Arne A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Cabeza, Sandra T1 - Influence of deposition hatch length on residual stress in selective laser melted Inconel 718 N2 - The present study aims to evaluate the bulk residual stresses in SLM parts by using neutron diffraction measurements performed at E3 line -BER II neutron reactor- of Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. Together with microstructure characterization and distortion measurements, it is possible to describe the stress state throughout the whole sample. The sample was measured in as-build condition (on a build plate) and after releasing from the build plate. The used material is the nickel based superalloy 718. This alloy is widely used in aerospace and chemical industries due to its superior corrosion and heat resistant properties. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component. The normal and transversal component exhibits a rather compressive behavior while the longitudinal was tensile in the center part of the sample and became compressive towards the tip. As expected, the absolute values of all stress components decreased after releasing the sample from the building plate. A surface scan utilizing a coordinate-measuring machine (CMM) allowed us to present top surface distortion before and after releasing. The top surface showed a distortion around ±80µm after releasing. Microstructure evolution in the scanning-building cross-section is largely dominated by columnar grains. In addition, many small random orientated grains are prominent in the regions of a laser overlap during SLM. In summary, for the sample of superalloy 718 manufactured by SLM, a small distortion occurred when removing the sample from the build plate whereby the residual stress state decreases. Moreover, the observed columnar grains in the building direction could give a reason for the lowest stress values in that normal direction. However, the most important parameter controlling the residual stresses is the temperature gradient. Hence, future investigations are planned for a different scan strategy to distribute the laser impact in a more homogenous manner. T2 - WAM2018 CY - Grenoble, France DA - 09.04.2018 KW - Additive manufacturing KW - SLM KW - Residual stress KW - In718 PY - 2018 AN - OPUS4-44694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Carstensen, Niels A1 - Schirdewahn, S. A1 - Merklein, M. A1 - Hilgenberg, Kai T1 - Generation of Tribosystems by Additive Surface Treatment on Tool Steel Substrate N2 - Laser implantation aims at reducing friction and wear on highly stressed surfaces in forming processes. Especially the hot stamping process that is used as a resource efficient process for manufacturing geometrical complex and high-strength structures, exhibits severe wear and high friction during the forming operation. The laser implantation process addresses this problem by combining two different approaches (surface modification and surface structuring) in surface technology by creating elevated, highly wear-resistant micro-features to influence the tribological performance. Pure TiB2 implants have shown to reduce tool-sided wear significally and improve the part formability by reducing local necking in deep drawing tests. Within the scope of this work, TiB2-TiC and TiB2-TaC hard material mixtures are implanted on X38CrMoV5-3 hot work tool steel. The aim is to investigate how the implant material properties can be influenced by the application of different mixing ratios of hard material mixtures under the specific variation of the process parameters. Distinct implant formations are tested on a novel test apparatus to examine the influence on the tribological properties. From the analyses of the implant properties by hardness measurements, light microscopic images, EDX and XRD analyses process parameter ranges are identified to produce defect-free dome- and ring-shaped implants. The specific process parameters (pulse power, pulse duration, mixing ratio and coating thickness) can be used for the determination of the implant geometry (height, width and depth). The tribological tests exhibit improved friction and wear properties. Based on these results, a tribosystem manufactured by this additive surface treatment technology shows great potential to enhance the effectiveness of the hot stamping process. T2 - Friction 2021 CY - Sankt Augustin, Germany DA - 18.11.2021 KW - Laser implantation KW - Surface modification KW - Additive surface treatment KW - Hot stamping KW - Tool steel PY - 2021 AN - OPUS4-53809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Effner, Ute A1 - Mielentz, Frank A1 - Stolpe, Heiko A1 - Behrens, Matthias A1 - Bernstein, Thomas A1 - Niederleithinger, Ernst T1 - Entwicklung einer Bohrlochsonde für Ultraschalluntersuchungen an Abschlussbauwerken in Endlagern N2 - Für die Qualitätssicherung von Abschlusswerken für Endlager wird eine Ultraschall-Bohrlochsonde entwickelt. Mithilfe dieser Sonde, die aus einer Vielzahl von einzelnen koppelmittelfreien Ultraschall-Punktkontaktprüfköpfen besteht, soll die Rissfreiheit der Versuchsbauwerke überprüft werden. Ein erster Prototyp der Sonde wurde mit einem kommerziellen Ultraschallgerät betrieben und bestand aus 12 Transversalwellen-Punktkontaktprüfköpfen von denen jeweils sechs als Sender und sechs als Empfänger parallelgeschaltet waren. Um den erzeugten Schalldruck der Bohrlochsonde zu steigern, wurde bei der Neuentwicklung die Prüfkopfanzahl erhöht und zusätzlich die laufzeitgesteuerte Anregung der einzelnen Prüfköpfe vorgesehen. Für die Anregung der Prüfköpfe mit programmierten Zeitverzögerungen wurde ein neuartiger mehrkanaliger Sender für bipolare Rechtecksignale entwickelt. Durch die Entwicklung der Bohrlochsonde soll eine dynamische Anpassung der Prüfkopf-Apertur sowie eine Fokussierung des Schallfeldes in Abhängigkeit der zu untersuchenden Tiefe erfolgen. Mithilfe entsprechender Anregungsfunktionen kann das Schallfeld der Bohrlochsonde unterschiedlich geformt werden, z. B. ist auch ein Schwenken des fokussierten Schallbündels möglich. Dadurch wird das erfasste Prüfvolumen begrenzt und auf diese Weise das Signal-Störverhältnis der Empfangssignale verbessert. In Kombination mit SAFT-Rekonstruktionsrechnungen wird durch eine optimierte Abstrahlcharakteristik der Sonde mit einem hohen Schalldruck unter verschiedenen Winkeln eine verbesserte Signalqualität und damit eine erhöhte Aussagesicherheit der Ergebnisse in der Objektabbildung erwartet. T2 - DGZfP-Jahrestagung 2021 CY - Online meeting DA - 10.05.2021 KW - Abdichtbauwerk KW - Zerstörungsfreie Prüfung KW - Ultraschall-Echoverfahren KW - Bohrlochsonde KW - Verschlussbauwerk PY - 2021 UR - https://jahrestagung.dgzfp.de/portals/jt2021/bb176/inhalt/poster.htm AN - OPUS4-52657 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz A1 - Shabdali, Gundappa Ashwit A1 - Wandtke, Karsten A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Residual Stress Analysis on a DED-Arc High-strength Steel Component Using the Contour Method N2 - This poster compares the results of the residual stress determination of DED-Arc open hollow cuboid specimens via XRD with the contour method. The results are in very good agreement. T2 - ECRS11 CY - Prague, Czech Republic DA - 03.06.2024 KW - DED-Arc KW - Residual stress KW - Contour method PY - 2024 AN - OPUS4-60221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epperlein, Martin A1 - Poka, Konstantin A1 - Hilgenberg, Kai T1 - QI-Digital - Qualitätssicherung für die Additive Fertigung N2 - Für die konventionelle Fertigung hat sich das bestehende System der Qualitätsinfrastruktur (QI) bewährt. Die additive Fertigung vergrößert den gestalterischen Spielraum von möglichen Bauteilgeometrien und Prozessfehlern jedoch erheblich. Hier gerät die QI an ihre Grenzen, sodass die Fertigung und Zulassung sicherheits-relevanter Bauteile sehr zeit- und kostenintensive Versuche erfordern. Eine moderne digitale QI erlaubt eine effizientere Qualitätssicherung für additiv gefertigte Bauteile. Dies erfordert eine durchgängig digitale Abbildung des physischen Materialflusses. T2 - QI-Forum CY - Berlin, Germany DA - 11.10.2022 KW - Additive Fertigung KW - Qualitätssicherung KW - Digitalisierung PY - 2022 AN - OPUS4-56382 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Kromm, Arne A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Eigenspannungsrelaxation in additiv gefertigem austenitischem Stahl 316L: Einsatz moderner Beugungsmethoden N2 - In Hinblick auf den austenitischen Stahl AISI 316L erzeugt das pulverbettbasierte selektive Laserstrahlschmelzen, als ein additives Fertigungsverfahren, kristallographisch texturierte und Multiskalige Mikrostruktur. Einerseits können diese Mikrostrukturen zu einer Verbesserung der statischen mechanischen Eigenschaften führen (z. B. zu einer höheren Streckgrenze). Andererseits stehen diesen Verbesserungen der mechanischen Eigenschaften hohe Eigenspannungen gegenüber, die sich nachteilig auf das Ermüdungsverhalten auswirken können. Zur Reduzierung der Eigenspannungen und der daraus resultierenden negativen Auswirkungen auf die Ermüdungseigenschaften, werden Bauteile nach der Herstellung typischerweise wärmebehandelt. In dieser Studie wurde eine niedrige Wärmebehandlungstemperatur von 450°C höher temperierten Behandlungen bei 800 °C und 900 °C gegenübergestellt. Diese Wärmebehandlungstemperaturen bilden die oberen und die untere Grenze ein Spannungsarmglühendes Materials, ohne die prozessinduzierte Mikrostruktur signifikant zu verändern. Zusätzlich bieten diese Temperaturen den Vorteil, dass sie eine übermäßige intergranulare Ausscheidung von Karbiden und TCP-Phasen vermeiden, die zu einer Sensibilisierung des Werkstoffes gegen korrosive Umgebungen führen würden. Die Auswirkungen der Wärmebehandlung auf das Gefüge wurden mittels Rasterelektronenmikroskopie (BSE und EBSD) untersucht. Die Relaxation der Eigenspannungen wurde vor und nach den jeweiligen Wärmebehandlungen bei 800°C und 900°C mittels Neutronenbeugung charakterisiert. Die Ergebnisse zeigen, dass die Proben nach der Wärmebehandlung bei 900 °C nahezu spannungsfrei sind, was mit der Auflösung der zellularen Substruktur korreliert. T2 - AWT-Konferenz Additive Fertigung CY - Bremen, Germany DA - 29.06.2022 KW - Neutronbeugungsverfahren KW - Additive Fertigung KW - L-PBF 316L KW - Eigenspannung PY - 2022 AN - OPUS4-55788 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fabry, Çağtay A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Digitalisierung: iLap – Adaptive Prozesse für die vernetzte Produktion N2 - Übersichtposter zu TP 2.3: "Adaptive Lichtbogenschweißprozesse" des BMBF WKP Verbundprojekts iLap T2 - Fachbereichspräsentation 9.3 CY - Berlin, Germany DA - 01.03.2018 KW - Digitalisierung KW - Schweißdatenmanagement KW - Vernetzte Produktion KW - Prozessregelung KW - Adaptives Schweißen PY - 2018 AN - OPUS4-44359 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fabry, Çağtay A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - WelDX – data and quality standards for welding research N2 - The WelDX research project aims to foster the exchange of scientific data inside the welding community by developing and establishing a new open source file format suitable for documentation of experimental welding data and upholding associated quality standards. In addition to fostering scientific collaboration inside the national and international welding community an associated advisory committee will be established to oversee the future development of the file format. The proposed file format will be developed with regards to current needs of the community regarding interoperability, data quality and performance and will be published under an appropriate open source license. By using the file format objectivity, comparability and reproducibility across different institutes and experimental setups can be improved. T2 - Open Research Data - Open your data for research CY - Berlin, Germany DA - 21.10.2019 KW - Welding KW - Research data management KW - Open science KW - Open data KW - Digitalization PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-493842 DO - https://doi.org/10.5281/zenodo.3514199 AN - OPUS4-49384 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fabry, Çağtay A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Prozessregelung: MSG-Engspaltschweißen (IGF-Nr. 17.923N) N2 - Übersichtposter zu IGF-Vorhaben 17.923N "Sensorgestütztes MSG-Engspaltschweißen von Feinkornstählen mit modifizierter Prozessführung im Dickblechbereich" (DVS-Nr. 03.111) T2 - Fachbereichspräsentation 9.3 CY - Berlin, Germany DA - 01.03.2018 KW - MSG-Engspaltschweißen KW - Adaptives Schweißen KW - Lichtbogensensorik KW - Füllgradregelung PY - 2018 AN - OPUS4-44361 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Giese, Marcel A1 - Schröpfer, Dirk A1 - Engelking, Lorenz A1 - Eissel, Antonia A1 - Treutler, Kai A1 - Wesling, Volker A1 - Kannengießer, Thomas T1 - Mashining of wear resistant materials by means of ultrasonic assisted milling N2 - The long-term global goals of achieving almost net zero carbon emissions in the next decades are closely linked to the development of highly efficient components in plant, process and energy engineering, and their sustainable and resource-saving production. Plant components must increasingly withstand tribological loads in addition to high thermal, mechanical, and corrosive stresses. Such combined stresses demand high-performance alloys economically tailored to the application for wear protection and components produced as semi-finished products, via additive manufacturing (AM) or claddings via deposition welding. For instance, the protection of special components made of less cost-intensive materials, e.g., steel in process engineering for screw machines or exhaust gas separation, is feasible applying cost-intensive Ni- or Co-based hard-phase claddings. Today an increasing number of above-mentioned applications demand precise finishing machining of components to ensure defined compact surfaces with a high integrity and complex contours. Contour milling is standard process for finishing machining of metals. Especially, the desired properties of wear resistant materials (e.g., high strength, hard precipitations) imply significant challenges for milling processes and tools, leading frequently to uneconomic milling conditions due to intolerable high tool wear and surface defects. Inhomogeneous, anisotropic weld structures due to cladding or AM of wear resistance alloys lead to further deteriorations of milling processes due to unstable milling conditions and process forces during chip removal. To tackle these challenges, already several approaches exist, (1) to enhance machinability of the claddings by alloy modifications to specifically influence solidification and hard phases morphology (precipitation shape, size, distribution) and (2) to achieve significant improvements of the machining situation (e.g., increase of tool life and surfaces integrity) by means of modern hybrid machining processes such as ultrasonic-assisted milling. This contribution shows a comprehensive overview of recent results with these promising approaches for additively welded Ni- CoCr-alloys. T2 - 24th International Conference on Wear of Materials CY - Banff, Alberta, Canada DA - 16.04.2023 KW - Ultrasonic assisted milling KW - Surface integrity PY - 2023 AN - OPUS4-58944 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Goglin, Veronika A1 - Hüsken, Götz A1 - Wossidlo, Peter A1 - Häcker, Ralf A1 - Kühne, Hans-Carsten A1 - Brouwers, H.J.H. T1 - Influence of the fiber volume fraction and matrix stiffness on ultra-high performance fiber reinforced concrete subjected to direct tensile loading at moderate strain rates N2 - The mechanical behavior of normal strength and high-strength concretes under tension can be significantly improved by the incorporation of steel fibers. This improvement comprises not only an enhancement in strength and ductility, but also in energy absorption capacity, which makes steel fiber reinforced high-strength concrete potentially suitable for seismic design applications. Force transfer controlled processes between steel fibers and concrete matrix, i.e. fiber debonding and fiber pull-out during crack opening are the main mechanisms contributing to the high-energy dissipation characteristic of this composite material. In order to gain more information on the material efficiency under tension, a comparative study on different ultra-high performance fiber reinforced concretes (UHPFCs) subjected to direct tensile loading at moderate strain rates is presented. The experimental approach considered three UHPFC mixtures, incorporating two volumetric fractions of high-strength smooth steel fibers. The stiffness modification of the concrete matrix was realized by the addition of a copolymer. The direct tensile tests were conducted on small sized dumbbell shaped specimens at nominal strain rates of 0.000025 1/s and 0.01 1/s, representing quasi-static and seismic loading conditions, respectively. For a detailed analysis of crack formation and crack propagation during load application, classical tensile tests were accompanied by non-destructive measuring technique using digital image correlation (DIC). Furthermore, relevant material parameters, such as such as first and post cracking stresses, strain capacity, and energy absorption capacity are determined and discussed. T2 - 20th International Conference, 20. ibausil CY - Weimar, Germany DA - 12.09.2018 KW - UHPFC KW - Moderate strain rates KW - Tensile strength KW - Energy absorption capacity KW - Crack formation and propagation PY - 2018 AN - OPUS4-45772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grimault de Freitas, Tomás A1 - Sobol, Oded A1 - Konert, Florian A1 - Nietzke, Jonathan A1 - Krzysch, Zephanja A1 - Michler, Thorsten A1 - Wackermann, Ken A1 - Oesterlin, Heiner A1 - Elsen-Humberg, Stephan A1 - Koenigs, Timo A1 - Tlili, Mohamed A1 - Ruchti, Peter A1 - Beitelschmidt, Denise A1 - Systermans, Thomas A1 - Böllinghaus, Thomas T1 - H2HohlZug: Comprehensive Standardisation of the Hollow Specimen Method for Tests in High-Pressure Hydrogen Gas N2 - The poster starts by presenting the current limitations of the methods used to assess hydrogen effects on materials. Next, an alternative technique called the Hollow Specimen Technique is presented, which aims to overcome the limitations of the current standardised techniques, followed by its advantages. Finally, the H2HohlZug project, its work packages and objectives are presented. T2 - TransHyDE Vollversammlung CY - Leipzig, Germany DA - 29.11.2023 KW - Hollow Specimen Technique KW - Hydrogen Embrittlement KW - Tensile Test KW - High-Pressure Gaseous Hydrogen PY - 2023 AN - OPUS4-59153 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Häberle, Nicolas A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Multi-phase viscoplastic material modelling for grade S960QL steel N2 - Overview of recent scientific contributions on the experimental investigation and modeling of the grade S960QL steel multi-phase viscoplastic deformation behaviour with applications to computational welding mechanics. T2 - The 12th International Seminar "Numerical Analysis of Weldability" CY - Seggau, Austria DA - 23.09.2018 KW - Residual stress KW - Viscoplasticity KW - Material modeling KW - Grade S960QL steel PY - 2018 AN - OPUS4-46510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hübler, Daniela A1 - Höhne, Patrick A1 - Gradt, Thomas T1 - Influence of TiC content on the tribological behavior of NbC-Ni-TiC cermets N2 - Increasing demand for alternatives to tungsten carbide (WC) cemented carbides as cutting tools, due to the health risks of their wear products WO3 and Co3O4. Niobium carbide (NbC) has a high potential, due to its high wear resitance, high hot hardness and melting point (3520°C), and low solubility in iron alloys. T2 - 23rd International Conference on Wear of Materials CY - Online meeting DA - 26.04.2021 KW - Niobium carbide (NbC) KW - Cermets KW - Tribological behavior PY - 2021 AN - OPUS4-52560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Schröpfer, Dirk A1 - Lausch, T. T1 - Issues and challenges in component welding of high strength fine-grained structural steels N2 - When assessing the performance of welded components residual stresses are vital. The possibilities of transferring the real boundary conditions of welding, which influence the residual stress, into the laboratory are highlighted in this contribution. The potentials of a test system specially developed for this purpose are demonstrated. The component design induces global process-, geometry- and material-dependent stresses, which can be simulated and quantified in the system. In addition, the resulting local residual stress distribution can be exactly determined with high spatial resolution with the aid of X-ray diffraction. Examples are presented of how the conditions to be found during production are simulated in the laboratory. T2 - AJP 2019 CY - Ponta Delgada, Azores (Portugal) DA - 24.10.2019 KW - Residual stress KW - Welding KW - X-ray diffraction KW - Creep-resistant steel KW - Large-scale test PY - 2019 AN - OPUS4-50036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Konert, Florian A1 - Nietzke, Jonathan A1 - Sobol, Oded A1 - Schütz, S. A1 - Böllinghaus, Thomas T1 - Application of an in-situ H2Test Method N2 - The degradation effect of hydrogen on the mechanical properties of steels is well known, but still not sufficiently understood. The fast and safe market ramp up of hydrogen technologies makes it evident to evaluate a wider understanding of this topic. In general it is often described as hydrogen embrittlement. Therefore it is desirable to achieve a test method which is able to provide material properties under hydrogen atmosphere in an easy way. Currently mechanical tests under hydrogen atmosphere are executed in autoclaves. For this technique complex hardware is needed, therefore tests are expensive and test capacities are only available in a small scale. The shown test method promises a trendsetting approach for reducing costs and machine time by using hollow specimen. T2 - 4th International Conference on Metals and Hydrogen - Steely & Hydrogen 2022 CY - Ghent, Belgium DA - 11.10.2022 KW - Hydrogen KW - Hollow specimen KW - In-situ KW - Test procedure PY - 2022 AN - OPUS4-56032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Schröpfer, Dirk A1 - Lausch, T. A1 - Dixneit, Jonny A1 - Hannemann, Andreas A1 - Kannengießer, Thomas T1 - From the Field to the Lab: Assessment of Residual Stresses in real-life Welded Components N2 - Residual stresses are crucial when assessing the performance of welded components. The present work deals with the possibilities of transferring the real-life boundary conditions of welding, which influence the residual stress, into the laboratory. The possibilities of a test system specifically developed for this purpose with a maximum load capacity of 2 MN are shown. Due to the structural design, global process, geometry and material-dependent stresses are induced, which can be simulated and quantified within the system. Additionally, X-ray diffraction can be applied to determine the resulting local residual stress distribution precisely with high spatial resolution. Examples are presented how the conditions to be found during production are simulated in the laboratory. It is shown how welding residual stresses in high-strength steels are affected by the heat control. It was possible to clarify why elevated working temperatures significantly increase the tensile residual stresses in the heat affected zone (HAZ). The effect of a heat treatment applied under mechanical stress resulting from welding is demonstrated by the example of a creep resistant steel. Reheat cracking is significantly increased in this case compared to small scale laboratory based tests. T2 - European Conference on Residual Stresses - ECRS10 CY - Leuven, Belgium DA - 11.09.2018 KW - Welding KW - Residual stress KW - Large scale test PY - 2018 AN - OPUS4-45978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mayer, Uwe A1 - Baer, Wolfram A1 - Holzwarth, Marcel A1 - Weihe, Stephan T1 - Untersuchung des Master Curve-Konzeptes für ferritisches Gusseisen mit Kugelgraphit N2 - In dem Poster werden der Forschungsansatz, die Ziele, das Untersuchungsprogramm und die erwarteten Ergebnisse des BMUV-Forschungsvorhabens MCGUSS "Untersuchung des Master Curve-Konzeptes für ferritisches Gusseisen mit Kugelgraphit" vorgestellt. Mit Blick auf bruchmechanische Sicherheitsbewertungen in der Kerntechnik werden Stähle momentan mit dem deterministischen ASME-Referenzkurvenkonzept, ergänzt durch das probabilistische Master Curve-Konzept nach ASTM E1921, bewertet. Das Master Curve-Konzept wird bereits für die Bewertung von ferritischen Schmiedestahlbehältern verwendet. Bewertungsmethoden für ferritisches Gusseisen mit Kugelgraphit sind im Moment unvollständig. Normen wie die nationale BDG-Richtlinie P300 oder der internationale ASME-Code, Sect. III, Div. 3, WC-2330 decken Sprödbruch nicht ausreichend ab. Die Verwendung des Master Curve-Konzepts für ferritisches Gusseisen mit Kugelgraphit würde eine bruchmechanische Bewertung via einer KJc,d Verteilung erlauben und gleichzeitig Größeneffekte und einen Temperaturbereich von 100 K berücksichtigen. T2 - GRS-Projektstatusgespräch 2023 CY - Karlsruhe, Germany DA - 06.11.2023 KW - Dynamische Bruchzähigkeit KW - Sprödbruch KW - Gusseisen mit Kugelgraphit KW - Master Curve PY - 2023 AN - OPUS4-59060 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Merz, Benjamin A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Position Detection for Hybrid Repair of gas turbine blades using PBF-LB/M N2 - This poster presents a workflow for camera-based position detection of components within PBF-LB/M machines. This enables a hybrid repair process of highly stressed components such as gas turbine blades using PBF-LB/M. T2 - Kuratoriumsführung CY - Berlin, Germany DA - 21.06.2022 KW - Additive Manufacturing KW - PBF-LB/M KW - Position detection KW - Camera KW - Image processing PY - 2022 AN - OPUS4-56587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Merz, Benjamin A1 - Poka, Konstantin A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Precise Position Detection for Repair of Gas Turbine Blades using PBF-LB/M N2 - Additive manufacturing (AM) technologies are becoming increasingly important, not only for the manufacture of parts, but also as repair technology that complement existing production technologies. Powder bed fusion of metals by laser beam (PBF-LB/M) combines the freedom in design with high achievable accuracy, making it ideal as a repair approach. However, there are still challenges in adapting process for repair applications. When mounting parts inside PBF-LB/M machines, their real position within the build volume is unknown. One goal of a repair process is to minimize the offset between the base component and the additively manufactured structure to reduce additional rework. For a minimum offset between component and additively manufactured structure, the actual position of the component has to be identified with high precision within the machine coordinate system (MCS). In this work a process setup is presented that allows the actual position of a gas turbine blade to be detected inside a PBF-LB/M machine. A high resolution camera with 65 megapixel is used for this purpose. The presented setup is implemented on a SLM 280 HL PBF-LB/M machine. In addition to the setup, a novel repair workflow using PBF-LB/M is presented. The developed setup and workflow consider inaccuracies in the component and camera mounting, as well as process inaccuracies. This includes keystone distortion correction by homography. The machine setup and workflow are used to repair a real gas turbine blade. Subsequently the offset between the turbine blade and the additivley manufactured structure is validated by 3D scanning the repaired part. The maximum offset is 160 µm. The presented approach can be extended to other geometries and PBF-LB/M machine manufacturers. The high-resolution camera approach is platform independent, which facilates the market penetration of PBF-LB/M repair processes. T2 - International Symposium Additive Manufacturing 2023 (ISAM 2023) CY - Dresden, Germany DA - 30.11.2023 KW - additive manufacturing KW - powder bed fusion of metals utilizing a laser beam KW - PBF-LB/M KW - hybrid repair KW - position detection KW - high-resolution camera PY - 2023 AN - OPUS4-59193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyerdierks, M. A1 - Schreiber, V. A1 - Böhne, Ch. A1 - Jüttner, S. A1 - Meschut, G. A1 - Rethmeier, Michael T1 - Validierung von Methoden zur Vermeidung von Liquid Metal Embrittlement an realitätsnahen Prinzipbauteilen (IGF 21483 BG / P 1488) N2 - Ziel des Forschungsprojekts ist es, eine Korrelation zwischen Gleeble-Heißzug-Prüfverfahren und Widerstandspunktschweiß-basierten Prüfverfahren herzustellen. Es soll die Effektivität von Methoden zu Vermeidung von Liquid Metal Embrittlement an realitätsnahen Prinzipbauteilen bewertet werden. Weiterhin soll Kenntnis über Auswirkungen von LME Rissen auf das Tragverhalten von realitätsnahen Prinzipbauteilen gewonnen werden. T2 - 30. Schweißtechnische Fachtagung CY - Barleben, Germany DA - 07.10.2021 KW - Liquid Metal Embrittlement KW - Gleeble KW - Heißzug KW - Widerstandpunktschweißen KW - Flüssigmetallversprödung PY - 2021 AN - OPUS4-54061 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nazarzadehmoafi, Maryam A1 - Zscherpel, Uwe A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Maierhofer, Christiane A1 - Waske, Anja T1 - Detection of imprinted artificial defects in additively-manufactured samples by means of radiological inspections N2 - As a part of ProMoAM project, we are optimizing a prototype X-ray backscatter to reach NDT requirements, and thereafter to apply it for process monitoring. Moreover, we studied the capability of a radiography approach to detect artificial defects in AM components made by laser powder bed fusion (L-PBF). T2 - Workshop on Additive Manufacturing: Process, materials, simulation & implants CY - Berlin, Germany DA - 13.05.2019 KW - Additive manufacturing KW - NDT KW - Radiological inspections PY - 2019 AN - OPUS4-48515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Gleim, Tobias A1 - Gradt, Thomas A1 - Wille, Frank T1 - Friction coefficients for wood-wood and wood-steel interfaces in impact limiters for transport casks N2 - Wood is widely used in impact limiters of transport casks for radioactive material. Encapsulated by an outer and inner steel structure, spruce wood is often applied in layers of alternating direction. The friction at the interfaces between these layers is of crucial importance for the impact and energy absorption e.g., at an accidental impact of a cask against a hard target. In order to get detailed information for corresponding numerical calculations, in this study the friction coefficient for the combinations wood-wood and wood-steel was measured in the temperature range between -40°C and 90°C according to the relevant stress conditions for such casks. Results show decreasing friction with increasing temperature, ranging from 0.43 at -40°C to 0.22 for 90°C for wood-steel combinations and from 0.3 at -40°C to 0.24 at 90°C to for a wood-wood combination. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 22) CY - Juan-les-Pins, France DA - 11.06.2023 KW - Wood KW - Friction KW - Transport cask PY - 2023 AN - OPUS4-57702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nietzke, Jonathan A1 - Konert, Florian A1 - Poka, Konstantin A1 - Merz, Benjamin A1 - Sobol, Oded A1 - Böllinghaus, Thomas T1 - Performance of Conventional and Additive Manufactured Austenitic Stainless Steels under Gaseous Hydrogen Environment using in-situ Hollow Specimen Technique N2 - Hydrogen and its derivatives (e.g. ammonia) are considered as a suitable energy carrier in the future supply of renewable energy. Hydrogen transportation systems require pipes, valves and fittings, among other components. In this sense, austenitic stainless steels are commonly used structural materials for pure hydrogen applications. Stable austenitic alloys, like AISI 316L, are often assumed to be practically unsusceptible to hydrogen embrittlement. At the same time, a number of studies show the influence of hydrogen even in 316L under some circumstances. Some other studies state that this embrittlement could be avoided by using steel grades with a higher nickel equivalent which contributes to a more stable austenitic phase. Nonetheless, 316L is widely used in hydrogen atmospheres since many years because of lower costs and positive practical experience. For these reasons, not only 316L but also 304 could be further utilized by identifying the exact constraints. With increasing demand for components regarding hydrogen applications, additive manufacturing technologies are getting increasingly important complementary to conventional manufacturing. In the context of additive manufacturing, 316L is a common material as well. The manufacturing process offers great advantages due to higher freedoms in design and the possibility for customized components in small batches. For example, valves with improved flow characteristics and reduced component weight can be produced. Nevertheless, there is still lack of experience and experimental results concerning additively manufactured parts under hydrogen service. Therefore, the influence on the material properties for additively manufactured parts in hydrogen environments needs to be further investigated. In the present work, slow strain rate testing (SSRT) has been applied using hollow specimens. This testing procedure allows to perform practicable and faster in-situ tests in comparison to tests in autoclaves and investigate the influence of hydrogen on the mechanical properties. Conventional AISI 304 and 316L specimens as well as additively manufactured 316L specimens were tested at room temperature and a pressure of 200 bar. Elongation at fracture and relative reduction of area (RRA) have been used to evaluate the influence of hydrogen. It is shown that the influence of hydrogen is more pronounced in 304 than in 316L. Furthermore, potentially influencing factors such as surface roughness, microstructure and porosity are discussed. T2 - International Hydrogen Conference CY - Park City, Utah, USA DA - 17.09.2023 KW - Hydrogen KW - Hollow Specimen Technique KW - Additive Manufacturing KW - Austenitic Steels PY - 2023 AN - OPUS4-58776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nietzke, Jonathan A1 - Konert, Florian A1 - Rhode, Michael A1 - Mente, Tobias A1 - Kannengießer, Thomas T1 - Experimental and numerical characterization of hydrogen diffusion in thick-walled submerged arc welded joint of S420G2+M offshore steel grade N2 - Offshore wind turbines are an important goal in national energy strategies worldwide. Foundation structures are manufactured from submerged arc welded (SAW) plates with thicknesses up to 200 mm. In that connection, high-strength steels like the S420G2+M are more and more applied offering the possibility for increased stability and load-bearing capacity of the foundations. These offshore steel grades can show a susceptibility for delayed hydrogen assisted cold cracking of the weld joints. For that purpose, a minimum waiting time (MWT) of up to 48 h (dependent on applied standards) is recommended before non-destructive testing is allowed and conducted. But this concept is based on older steel grades that have been used for three or more decades. Nowadays, the metallurgical improvements (clean steels, proper rolling, and heat treatment) of base materials and well as welding consumables must be anticipated. Hence, the MWT concept should be critically discussed as it is assumed to be very conservative. For that reason, the focus of this study was to investigate the diffusion behavior in S420G2+M steel and its multi-layer SAW joint. Electrochemical permeation experiments were carried at room temperature. Boundary conditions were anticipated in terms of using different sample thicknesses. From the experimental data, hydrogen diffusion coefficients and absorbed diffusible hydrogen concentrations had been calculated. It was shown that hydrogen diffusion in the base material is increased compared to the weld metal. In addition, the sample thickness had a significant on the calculated diffusion coefficients. The minimum and maximum diffusion coefficients had been used for numerical modelling of the hydrogen diffusion in the welding joint. It became clear that a MWT must be always regarded together with a critical initial diffusible hydrogen concentration for the evaluation of a possible delayed cracking as diffusion times were mostly > 48 h due to the thick plates. T2 - 4th International Conference on Metals and Hydrogen - Steely & Hydrogen 2022 CY - Ghent, Belgium DA - 11.10.2022 KW - Hydrogen KW - Submerged arc welding KW - Minimum Waiting Time KW - Cold Cracking KW - Offshore steel grade PY - 2022 AN - OPUS4-56008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfretzschner, Beate T1 - Characterization of texture in SLM IN 718 samples using monochromatic neutron radiography N2 - Additive Manufacturing (AM) offers the opportunity to produce easier geometrically complex parts compared to traditional production technologies. An important AM technology for metals is selective laser melting (SLM) where a part is produced by melting and solidifying powder in layers. This technique is known to cause a pronounced texture in the produced AM products due to the specific heat flow and the associated solidification of the material during SLM deposition. In order to evaluate the influence of the deposition hatch length during SLM of nickel based superalloy Inconel 718 samples on the texture and in order to identify any preferred crystallographic direction, we performed monochromatic neutron radiography scans (using wavelength from 1.6 Å to 4.4 Å, step size 0.05 Å) to image the samples while rotating it through 90°. Samples produced with short hatch length showed fine textured columnar grains oriented along the sample building direction in high-resolution radiographs. Whereas processing the sample using a ten-fold longer hatch length reduced the texture. The neutron radiographic experiments were accompanied by scanning electron microscopy including electron back-scattered diffraction to visualize and verify the microstructure and texture. T2 - German Conference for Research with Synchrotron Radiation, Neutrons and Ion Beams at Large Facilities CY - Garching, Germany DA - 17.09.2018 KW - Bragg-edge KW - Neutron KW - Texture KW - Additive manufacturing PY - 2018 AN - OPUS4-47260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pignatelli, Giuseppe A1 - Strasse, Anne A1 - Gornushkin, Igor B. A1 - Gumenyuk, Andrey T1 - Optical Sensor for Monitoring Quality of 3D Metal Printing N2 - Additive Manufacturing (AM) becomes widespread in many technological fields including the precise machining of steel. To assure quality of final products, thorough monitoring of online process is required. We test several monitoring techniques during the AM printing to quickly detect and possibly correct flaws while building a workpiece. Here we show how optical emission spectroscopy can be used to recognize defects that are artificially introduced on a steel printing substrate. T2 - Scix 2020 CY - Online meeting DA - 12.10.2020 KW - Additive manufacturing KW - Spectroscopy KW - Analytical chemistry PY - 2020 AN - OPUS4-51858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Kannengießer, Thomas T1 - Measurement of hydrogen concentration in steels by laser-induced breakdown spectroscopy (LIBS) N2 - Current efforts to achieve lightweight construction and the required reduction in CO2 emissions and an increase in energy and resource efficiency call for the increasing use of high-strength fine-grain structural steels. However, as the strength of higher-strength fine-grain structural steels increases, so do the associated joining challenges. Particular attention must be paid to hydrogen-assisted cold cracking. The influence of hydrogen reveals itself less in the strength but has a significant effect on the deformability [1, 2]. The degradation of the material properties can lead to zero ductility, where the values of the yield strengths coincide with the tensile strengths. Laser-induced breakdown spectroscopy (LIBS) is a spectroscopic technique that can be used to determine elemental compositions without pre-treatment of the samples. Short, high-energy laser pulses ablate a small volume (< 0.1 mm3) of the examined material and ionize it to form a plasma. The decaying plasma emits element-specific light. This light is spectroscopically analysed and allows to detect qualitatively the present elements and to quantify them with help of a standardization routine. The simple experimental set-up and the fast, nearly non-destructive analysis procedure characterize the LIBS analysis. The LIBS method allows a time and spatially resolved in situ measurement of steel components in use. Even low hydrogen concentrations (~ 1 wt.-ppm) in steel can be measured with the LIBS method and can be quantified with help of certified reference materials. The results are compared with results gained with the well-established carrier gas hot extraction method. T2 - MaterialsWeek 2021 CY - Online Meeting DA - 07.09.2021 KW - LIBS KW - Hydrogen KW - Stainless steel KW - Diffusion PY - 2021 AN - OPUS4-53234 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kromm, Arne A1 - Mente, Tobias A1 - Brackrock, Daniel A1 - Kannengießer, Thomas T1 - Component test for the assessment of hydrogen assisted cracking susceptibility of thick-walled submerged arc welded offshore steels N2 - Offshore wind turbines (OWT) are a key factor of the sustainable energy generation of tomorrow. The continuously increasing installation depths and weight of the OWTs require suitable foundation concepts like monopiles or tripods. Typically, mild steels like the S420ML are used with plate thicknesses up to several hundreds of mm causing high restraints in the weld joints. Due to the large plate thickness, submerged arc welding (SAW) with multiple wires is the state-of-the-art welding procedure. As a result of the very high stiffness of the construction, a certain susceptibility for time-delayed hydrogen-assisted cracking (HAC) may occur. The evaluation of crack susceptibility is very complex due to the component size and stiffness of real offshore structures. For this purpose, a near-component test geometry was developed to transfer the real stiffness conditions to laboratory (i.e., workshop) scale. The investigated mock-up, weighing 350 kg, comprised heavy plates (thickness 50 mm, seam length 1,000 m) joined by a 22-pass submerged arc weld. Additional stiffeners simulated the effect of high restraint or shrinkage restraint of the weld. Extreme scenarios of hydrogen absorption during welding were simulated via the use of welding fluxes in dry (HD < 5 ml/100g Fe) and moisture condition (HD > 15 ml/100g Fe). The residual stresses were determined by a robot X-ray diffractometer. Areas of critical tensile residual stress (at the level of the yield strength) were found in the weld metal and heat affected zone. To identify possible delayed cracking, the welds were tested by phased array ultrasonic testing (PAUT) after 48 h. Summarized, no significant occurrence of HAC was detected, indicating the high crack resistance of the welded joint, i.e., a suitable combination of base material, welding consumable and welding parameters. T2 - AJP 2023: 3rd International Conference on Advanced Joining Processes 2023 CY - Braga, Portugal DA - 19.10.2023 KW - Hydrogen assisted cracking KW - Submerged arc welding KW - Component test KW - NDT KW - Waiting time PY - 2023 AN - OPUS4-58672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Madia, Mauro T1 - Investigation of residual stresses and microstructure effects on the fatigue behaviour of a L-PBF AlSi10Mg alloy N2 - Al-Si alloys produced by Laser Powder Bed Fusion (L-PBF) techniques allow the fabrication of lightweight free-shape components. Due to the high cooling rates occurring during the building process, L-PBF AlSi10Mg alloys exhibit an ultra-fine microstructure that leads to superior mechanical properties in the as-built condition compared to conventional cast Al-Si materials. Nevertheless, L-PBF processing induces high thermal gradients, leading to deleterious residual stress. In order to relax detrimental residual stress and to increase the ductility, post-processing stress relief treatments are performed. The objective of the contribution is to investigate, under different heat treatment condition, the evolution of microstructure and residual stresses in view of optimizing the fatigue performance of the alloy. To this purpose various heat treatments in a range of temperatures between 265°C and 300°C for a duration between 15 minutes and 2 hours are performed. T2 - Fatigue Design 2021 CY - Senlis, France DA - 17.11.2021 KW - AlSi10Mg KW - Additive manufacturing KW - L-PBF KW - Residual stress KW - Heat treatment PY - 2021 AN - OPUS4-53794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Madia, Mauro T1 - Effect of heat treatment on the microstructure, residual stress state and fatigue properties of PBF-LB/M AlSi10Mg N2 - Al-Si alloys produced by Laser Powder Bed Fusion (PBF-LB/M) techniques allow the fabrication of lightweight free-shape components. Due to the extremely heterogeneous cooling and heating, PBF-LB/M induces high magnitude residual stress (RS) and a fine Si microstructure. As the RS can be deleterious to the fatigue resistance of engineering components, great efforts are focused on understanding their evolution before and after post-process heat treatments (HT). T2 - Alloys for Additive Manufacturing Symposium 2022 (AAMS22) CY - Munich, Germany DA - 12.09.2022 KW - Neutron diffraction KW - X-ray diffraction KW - Crack propagation PY - 2022 AN - OPUS4-55871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Nolze, Gert A1 - Böllinghaus, Thomas A1 - Unger, Wolfgang T1 - Analysis of deuterium in austenitic stainless steel AISI 304L by Time-of-Flight Secondary Ion Mass Spectrometry N2 - Due to their excellent combination of ductility, strength and corrosive resistance, austenitic stainless steels (ASS) are widely used in many industrial applications. Thus, these steel grades can be found as structural components in the (petro-)chemical industry, in offshore applications and more recent for storage and transport of hydrogen fuel. Steels employed for these applications are exposed to aggressive environments and hydrogen containing media. The ingress and accumulation of hydrogen into the microstructure is commonly observed during service leading to a phenomenon called “hydrogen embrittlement”. A loss in ductility and strength, the formation of cracks and phase transformations are typical features of this hydrogen-induced degradation of mechanical properties. Although, great efforts are made to understanding hydrogen embrittlement, there is an ongoing debate of the underlying mechanisms. This knowledge is crucial for the safe use and durability of components on the one side and the development of new materials on the other. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was proven to be a powerful tool for depicting the distribution of the hydrogen isotope deuterium in the microstructure of austenitic and duplex steels. The combination with imaging techniques such as electron backscatter diffraction (EBSD) and scanning electron microscopy (SEM), delivering structural and morphological information, creates a comprehensive picture of the hydrogen/deuterium-induced effects in the materials. All the gathered data is treated with principal component analysis (PCA) and data fusion to enhance the depth of information. The mobility of hydrogen and deuterium in a steel microstructure is affected by external mechanical stress. To investigate the behaviour of deuterium in a strained microstructure, a new in situ experimental approach was developed. This gives the possibility of analysing samples in the SIMS instrument simultaneously to four-point-bending-tests. Specimens made from ASS AISI 304L were electrochemically charged with deuterium instead of hydrogen. This necessity stems from the difficulty to separate between artificially charged hydrogen and hydrogen existing in the pristine material or adsorbed from the rest gas in the analysis chamber. Nonetheless, similar diffusion, permeation and solubility data allow to draw qualitative conclusions from the experiments, which are relevant for the application addressed. T2 - SIMS Europe 2018 CY - Münster, Germany DA - 16.09.2018 KW - Hydrogen KW - Deuterium KW - Austenitic stainless steel KW - SIMS PY - 2018 AN - OPUS4-46029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - In-situ observation of the hydrogen behaviour in austenitic stainless steel by time-of-flight secondary ion mass spectrometry during mechanical loading N2 - The reduction of harmful emissions to the environment is one of the most urgent challenges of our time. To achieve this goal, it is inevitable to shift from using fossil fuels to renewable energy sources. Within this transition, hydrogen can play a key role serving as fuel in transportation and as means for energy storage. The storage and transport of hydrogen using austenitic stainless steels as the infrastructure, as well as the use of these grades in hydrogen containing aggressive environments, remains problematic. The degradation of the mechanical properties and the possibility of phase transformation by ingress and accumulation of hydrogen are the main drawbacks. Advanced studies of the behaviour of hydrogen in austenite is necessary to fully understand the occurring damage processes. This knowledge is crucial for the safe use of components in industry and transportation facilities of hydrogen. A powerful tool for depicting the distribution of hydrogen in steels, with high accuracy and resolution, is time-of-flight secondary ion mass spectrometry (ToF-SIMS). We here present a comprehensive research on the hydrogen degradation processes in AISI 304L based on electrochemical charging and subsequent ToF-SIMS experiments. To obtain furthermore information about the structural composition and cracking behaviour, electron-backscattered diffraction (EBSD) and scanning electron microscopy (SEM) were performed afterwards. All the gathered data was treated employing data fusion, thus creating a thorough portrait of hydrogen diffusion and its damaging effects in AISI 304L. Specimens were charged with deuterium instead of hydrogen. This necessity stems from the difficulty to separate between artificially charged hydrogen and traces existing in the material or adsorbed from the rest gas in the analysis chamber. Similar diffusion and permeation behaviour, as well as solubility, allow nonetheless to draw onclusions from the experiments. T2 - International Conference on Metals and Hydrogen; Steely Hydrogen 2018 CY - Ghent, Belgium DA - 29.05.2018 KW - Hydrogen KW - Deuterium KW - ToF-SIMS KW - AISI 304L PY - 2018 AN - OPUS4-45079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schaupp, Thomas A1 - Rhode, Michael A1 - Yahyaoui, Hamza A1 - Kannengießer, Thomas T1 - Hydrogen distribution in multi-layer welds of steel S960QL N2 - High-strength low-alloyed (HSLA) steels with yield strength ≥ 690 MPa have increasing im-portance in steel construction and civil engineering. However, weld processing of those steels is a major challenge. The susceptibility for degradation of mechanical properties of weld joints sig-nificantly increases in presence of hydrogen and can result in hydrogen assisted cracking (HAC). Generally, risk for HAC increases with increasing yield strength of HSLA steels. To min-imize the incidence of HAC, it is essential to gain knowledge about both the (1) absorbed hydro-gen amount and its distribution in the weld seam and (2) options to lower the amount of intro-duced hydrogen. Existing standards recommend heat treatment procedures (interpass tempera-ture or post weld heat treatment) to reduce the diffusible hydrogen concentration in weldments. In this context, different weld seam geometries should be considered. For HSLA steel fabrication weld processing with seam opening angles of 45° to 60° is typical. Modern weld technologies allow welding with seam opening angles of 30° - reduced welding time and costs. In the present study, the hydrogen distribution in multi-layer welds of a 960 MPa HSLA steel was analysed. Influence of different seam opening angles as well as heat input, interpass temperature and post weld heat treatments were investigated. The welded samples were quenched in ice water imme-diately after welding and subsequently stored in liquid nitrogen. After defined warming up, small specimens were machined from the weld seam by water jet cutting. The diffusible hydrogen concentration was measured by carrier gas hot extraction with coupled mass spectrometer. The results showed, that low heat input and post weld heat treatment procedures can lower hydrogen concentrations in welds. Furthermore, a gradient of the hydrogen concentration was identified with increasing weld pool depth. By varying the seam opening angles different hydrogen concen-trations were measured. T2 - 3rd International Conference on Metals & Hydrogen CY - Ghent, Belgium DA - 29.05.2018 KW - Hydrogen KW - Welding KW - High-strength steels KW - Heat treatment KW - Carrier gas hot extraction PY - 2018 AN - OPUS4-45076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schaupp, Thomas A1 - Yahyaoui, Hamza A1 - Schröder, Nina A1 - Kannengießer, Thomas T1 - Kaltrissprüfung hochfester Feinkornbaustähle beim Schweißen mit modifiziertem Sprühlichtbogen N2 - Sind in Stahlkonstruktionen hohe Tragfähigkeiten bei geringem Eigengewicht gefordert, finden hochfeste Feinkornbaustähle mit Streckgrenzen ≥ 960 MPa Anwendung. In der Vergangenheit wurde der konventionelle Übergangslichtbogen (Konv. LB) zur schweißtechnischen Fertigung von hochfesten Stählen eingesetzt. In den letzten Jahren wurde der modifizierte Sprühlichtbogen (Mod. SLB) entwickelt, welcher reduzierte Nahtöffnungswinkel bei erhöhter Abschmelzleistung ermöglicht. Jedoch treten höhere Wasserstoffkonzentrationen verbunden mit Mikro-(Kalt-)rissen unter reduziertem Nahtöffnungswinkel mit Mod. SLB auf. In diesem Beitrag wird die Kaltrissempfindlichkeit des hochfesten Feinkornbaustahles S960QL mit artgleichem Schweißzusatzwerkstoff untersucht. T2 - Tagung Werkstoffprüfung CY - Neu-Ulm, Germany DA - 03.12.2019 KW - Hochfester Feinkornbaustahl KW - Kaltrissprüfung KW - TEKKEN-Test KW - Implant-Test KW - Eigenspannungen PY - 2019 AN - OPUS4-49925 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schirdewahn, S. A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Merklein, M. T1 - Tribological performance of localized dispersed X38CrMoV5-3 surfaces for hot stamping of Al-Si coated 22MnB5 sheets N2 - Over the last years, the weight of modern car bodies has risen significantly due to the increasing customers’ demand for comfort and safety equipment. However, this ongoing trend leads to an increasing fuel consumption and thus to higher carbon dioxide emissions. In order to counteract these problems, hot stamping has been established in the automotive industry as a key technology for lightweight construction, regarding the manufacturing of safety-relevant car body components. Hot stamped parts are commonly made out of boron-manganese steel 22MnB5, which is initially austenized and subsequently formed and quenched in one process step. As a result, geometrical complex structures with an ultimate tensile strength of 1500 MPa are generated. The surfaces of the workpieces are coated with an Al-Si layer to avoid oxide scale formation and to ensure corro-sion protection. However, the coating system leads to an increased adhesive wear on the tool sur-face due to the high thermo-mechanical tool stresses. Therefore, a time and cost consuming rework of the hot stamping tools is required. The aim of this study is to increase the tribological perfor-mance of hot stamping tools by using a laser implantation process. This technique allows the ma-nufacturing of separated, elevated and dome-shaped microstructures on the tool surface in conse-quence of a localized dispersing of hard ceramic particles by pulsed laser radiation. The generated surface features offer great potential for reducing the tribological load, due to their high hardness and wear resistance. For this purpose, the friction coefficient of unmodified and laser implanted tool surfaces were examined and compared by using a modified pin-on-disk test. In addition, the surfaces were analyzed by optical measurements in order to quantify the amount of wear. T2 - 7th International Conference on Hot Sheet Metal Forming of High-Performance Steel CHS2-2019 CY - Lulea, Sweden DA - 02.06.2019 KW - Laser implantation KW - Surface texturing KW - Hot stamping PY - 2019 AN - OPUS4-48323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, M. A1 - Schlingmann, T. A1 - Schmidt, J. A1 - Bettge, Dirk A1 - Hilgenberg, Kai A1 - Binder, M. A1 - Klöden, B. T1 - A Round Robin Test To Investigate The Printing Quality Of PBF LB/M Processed AlSi10Mg N2 - When it comes to higher accuracies, new technologies and real applications in additive manufacturing, there is one topic which cannot be avoided: The material response on the chosen processing parameters and its agreement and correspondence with literature data of the wrought material grade counterpart. In industrial Additive Manufacturing (AM) standards in terms of printing parameters, protection gas atmospheres or powder handling instructions are not obligatory. Therefore, the question must be answered whether the AM process is reproducible and reliable over different printing companies. This was the motivation to realize a round robin test between 8 European printing companies and academic partners. The consortium had printed and tested fatigue and tensile testing bars under plant-specific conditions. A commonly used cast aluminum alloy, AlSi10Mg, was chosen as test material for the PBF-LB/M process. Differences of the results between the partners and the scatter itself were discussed in detail. T2 - World PM2022 CY - Lyon, France DA - 09.10.2022 KW - Additive manufacturing KW - AlSi10Mg KW - Laser powder bed fusion KW - Round robin KW - Reproducibility PY - 2022 AN - OPUS4-56303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schob, Daniela A1 - Tabin, Jakub A1 - Kowalko, Jakub A1 - Roszak, Robert A1 - Ziolkowski, Grzegorz A1 - Ziegenhorn, Matthias A1 - Hilgenberg, Kai T1 - Comparative Analysis FFF vs. cold rolled 316L Samples N2 - This study provides insights into the properties of 316L stainless steel produced by additive manufacturing using fused filament fabrication (FFF). One key finding is particularly noteworthy: in significant contrast to cold-rolled 316L, FFF316L develops a pronounced martensite phase after fabrication. The comprehensive comparative analysis shows that FFF316L not only retains the ferrite volume content, but that this is also significantly influenced by the build-up direction. Despite the sintering process, which typically involves densification of the material, a pore volume fraction of 8.45 % remains, which influences the mechanical properties. Although FFF316L has lower elastic modulus and tensile strength values compared to cold-rolled 316L, its ductility is still competitive. The study further reveals that deformation-induced martensite forms at the intersections of the deformation twins and ferrite islands form at the grain boundaries during the compression and sintering phases. These findings highlight the challenges associated with FFF316L in specific application fields and signal the need to continue to carefully evaluate and improve the development of manufacturing technologies. T2 - 4th Symposium on Materials and Additive Manufacturing - Additive 2024 CY - Berlin, Germany DA - 12.06.2024 KW - Additive manufacturing KW - Fused Filament Fabrication KW - Computed Tomography KW - 316L Stainless Steel KW - Deformation-Induced Martensite PY - 2024 AN - OPUS4-60302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Witte, Julien A1 - Hübler, Daniela A1 - Börner, Andreas A1 - Kannengießer, Thomas T1 - Wear behavior of innovative niobium carbide cutting tools in ultrasonic-assisted finishing milling N2 - The resources of niobium exceed the ones of tungsten by an order of magnitude. With 92%, Brazil is today the main global producer of niobium. Hence, niobium carbides (NbC) are a sustainable and economic alternative to conventionally used cutting materials, especially tungsten carbides (WC). Moreover, NbC can be used in Ni alloy matrix and thus offer significant advantages by substituting WC in Co matrix as cutting materials in terms of health risks and raw material price and supply risk. Based on recent studies which found an increased performance of NbC compared to WC cutting tools in machining higher strength steels, the composition NbC12Ni4Mo4VC was chosen for finish machining of a high-strength steel S960QL in this study. The experiments were carried out on an ultrasonic-assisted 5-axis milling machine using NbC tools specially made to benchmark them with commercially available coated WC cutting inserts. In addition, the influence of a coating system for the NbC inserts is tested and evaluated for its performance in the cutting process. Tool wear and cutting force analyses are implied to identify optimal parameter combinations as well as tool properties for the novel NbC tool. Together with the oscillation of ultrasonic-assisted milling, the loads on the component surface and the tool can be reduced and the wear behavior of the novel NbC tool can be refined. These milling tests are accompanied by standardized wear tests, i.e., pin-on-disc, between the aforementioned material combinations, and the results are correlated with each other. Finally, the behavior when using hard-to-cut materials such as Ni alloys, or innovative materials such as iron aluminide is also being tested, as these are constantly in the focus of machining optimization. With this strategy, comprehensive knowledge is achievable for future efficient application of NbC for milling tools, which have already been researched for decades using WC. T2 - 24th International Conference on Wear of Materials CY - Banff, Canada DA - 16.04.2023 KW - Cutting tool KW - Niobium carbide KW - Tool wear KW - Ultrasonic-assisted milling PY - 2023 AN - OPUS4-59258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Witte, Julien A1 - Kannengießer, Thomas T1 - Minimization of tool wear in milling of iron aluminides using ultrasonic-assisted process N2 - Presentation of key results from the ZIM cooperation project "TEWUFEAL" on tool development for ultrasonic-assisted milling of iron aluminide alloys cast in gravity die casting. T2 - 24th International Conference on Wear of Materials CY - Banff, Canada DA - 16.04.2023 KW - Iron aluminides KW - Ultrasonic-assisted milling KW - Surface integrity KW - Tool wear PY - 2023 AN - OPUS4-59259 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shapovalov, Oleg A1 - Gaal, Mate A1 - Hönig, Gerald A1 - Gradt, Thomas A1 - Weiss, S. T1 - Temperature dependence of the propagation speed of a longitudinal wave in different solids for use as a wedge material in an extreme temperature resistant ultrasonic transducer N2 - In special cases of angle beam ultrasonic measurement the applied transducer has to withstand extreme temperatures. Since the irradiation angle depends on the speed of sound in both the wedge material and the tested object, the developer must take into account the speed of Sound in a wedge material over the whole temperature range of transducers application. T2 - 23rd International Congress on Acoustics CY - Aachen, Germany DA - 09.09.2019 KW - Ultrasonic Transducer KW - Speed of sound KW - Longitudinal Wave KW - Temperature PY - 2019 AN - OPUS4-48982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded A1 - Röhsler, Andreas A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - Sputtering derived artefacts in austenitic steel during Time-of-Flight Secondary Ion Mass Spectrometry analyses N2 - Among the very few techniques to localize hydrogen (H) at the microscale in steels, Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was proven to be a reliable tool. The necessity to detect hydrogen stems from its deleterious effects in metals, that are often used as structural components and to obtain better understanding of the underlying metallurgical mechanisms of hydrogen embrittlement (HE) which are still unclear. Austenitic stainless steels are nowadays commonly used in a wide variety of application, from hydrogen transport and storage facilities to petrochemical and offshore applications where they are exposed to aggressive environments and therefore prone to HE. One of the greater risks in the austenitic class is the embrittlement of the material due to the instability of the γ austenite and its transformation into a brittle α martensitic phase. This transformation takes place due to the local stresses that are induced by the uptake of hydrogen during service. Nonetheless, it was shown that this transformation can occur as an artefact during SIMS analysis itself where Cs-sputtering is necessary not only to remove surface contaminations but mainly to enhance H/D secondary ion yield. In the following contribution we show the influence of different sputtering conditions on AISI 304L austenitic stainless steel in order to distinguish the artefact from the hydrogen induced transformation. The material was charged electrochemically in a deuterium based electrolyte. Deuterium (D) must be in these experiments as a replacement for hydrogen which cannot be used because adsorbed hydrogen superimposes hydrogen originating from charging the sample in the SIMS images. ToF-SIMS analyses were conducted by ToF SIMS IV (IONTOF GmbH, Münster, Germany). The experiments were carried out on deuterium charged and non-charged samples. The structural characterization was carried out by SEM and EBSD examinations before and after charging, both with a Leo Gemeni 1530VP field-emission scanning electron microscope and a Zeiss Supra 40 instrument (Carl Zeiss Microscopy GmbH, Oberkochen, Germany). The results showed that the use of 1keV Cs+ beam induces stacking faults while higher sputter beam energies results in γ→α transformation. T2 - SIMS Europe 2018 CY - Münster, Germany DA - 16.09.2018 KW - Austenitic steel KW - Hydrogen KW - ToF-SIMS KW - Artefact PY - 2018 AN - OPUS4-46701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Mohr, Gunther A1 - Kromm, Arne A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Using Neutron Diffraction to Monitor Stress Relaxation in Additively Manufactured 316L N2 - The relaxation of residual stress in laser powder bed fused stainless steel 316L parts was monitored using monochromatic and time-of-flight neutron diffraction. T2 - ISIS student meeting CY - Online meeting DA - 26.10.2020 KW - Stainless Steel KW - Residual Stress KW - Additive Manufacturing PY - 2020 AN - OPUS4-51469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian A1 - Kromm, Arne A1 - Evans, Alexander A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Heat treatment induced residual stress relaxation in additively manufactured L-PBF 316L stainless steel N2 - Residual stress relaxation as a function of heat treatment strategies in laser based powder bed fused 316l samples. T2 - Eleventh Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 04.12.2019 KW - Additive Manufacturing KW - Residual Stress KW - Neutron Diffraction KW - 316L PY - 2019 AN - OPUS4-49851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stajanca, Pavol A1 - Baensch, Franziska A1 - Baer, Wolfram A1 - Chruscicki, Sebastian A1 - Homann, Tobias A1 - Seifert, Stefan A1 - Schmidt, Dirk A1 - Weltschev, Margit A1 - Wossidlo, Peter A1 - Habib, Abdel Karim T1 - Monitoring of pipes by distributed acoustic fibre optic sensors – A large-scale test on a pipeline under realistic operation conditions N2 - The monitoring of oil and gas pipelines by means of distributed fibre optic sensors is becoming common. The most recent development in the field of fibre optic sensing is the distributed acoustic sensing (DAS), which allows to detect and to localize third party threats to pipelines. For this purpose, fibre optic telecommunication cables located close to the pipelines are usually used. However, DAS carries a far greater potential for continuous condition monitoring of pipelines. The interdisciplinary research project AGIFAMOR (Ageing Infrastructures – Fibre Optic Monitoring of Pipes) at BAM investigates a new technical approach to extend the application field of DAS towards the detection and localization of acoustic signals that indicate critical alterations and certain damage scenarios originated from within the pipeline or the pipe wall. Therefore, the optical fibre sensors are applied onto the pipe itself and the application procedure towards an optimal acoustic signal transduction is optimized. A number of laboratory scale experiments were performed focusing on the signal transmission of acoustic signals as well as the detection of damage in the pipe wall by means of DAS. Furthermore, real-scale tests on a pipeline DN100 of 38 m length have been carried out at the BAM test site for technical safety (BAM-TTS) to study the detection and localization of leaks and of changing flow profiles due to corrosion or sedimentation processes. T2 - 13th Pipeline Technology Conference CY - Berlin, Germany DA - 12.03.2018 KW - Pipeline monitoring KW - Distributed acoustic sensing KW - Fiber optic sensing PY - 2018 AN - OPUS4-44517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Altenburg, Simon A1 - Pignatelli, Giuseppe A1 - Baensch, Franziska A1 - Rethmeier, Michael T1 - Laser Metal Deposition (LMD) in ProMoAM N2 - During the last years Additive Manufacturing (AM) became increasingly important. That becomes clear, while looking at the advantages like a high degree of freedom concerning the geometry of the parts, low waste rates and a reduction of postprocessing, to name just three. Laser Metal Deposition (LMD) is one of those AM- methods. It can be used for different kinds of applications, e.g. repair weldings of used parts, coatings to increase the corrosion resistance or to build up new components. But for all applications, the production of defect free parts is crucial. Therefore, different kinds of non-destructive monitoring techniques were tested for the LMD-process to identify their potential to detect imperfections in-situ. T2 - Workshop on Additive Manufacturing: Process, materials, testing, simulation & implants CY - Berlin, Germany DA - 13.05.2019 KW - Acoustic Emission KW - LMD KW - Thermography KW - Optical Emission Spectroscopy PY - 2019 AN - OPUS4-49657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Taparli, Ugur Alp A1 - Griesche, Axel A1 - Michalik, K. A1 - Mory, D. A1 - Kannengießer, Thomas T1 - In situ Tungsten inert gas welding monitoring by LIBS N2 - TIG welding process was monitored using LIBS for the in situ measurement of chemical compositions in austenitic stainless steels. This research aims to prototype a real-time chemical composition analysis system for welding applications and prove the feasibility of such a quality control loop. The chemical compositions of the weld pool, considering the welding metallurgy, is the most critical parameter for any occurring weld defects, e.g. hot cracking. Hence, controlling the weld pool chemical composition allows governing of the weld pool solidification behavior by monitoring and adjusting the respective welding parameters, e.g. welding current. LIBS measurements were conducted during a TIG-welding process. The effect of the welding plasma on the LIBS signal was thoroughly investigated by varying various LIBS settings, e.g. delay and exposure time. Quantification of the main alloying elements Cr and Ni in the weld pool during welding was achieved by univariate calibration procedure. T2 - 10th Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy CY - Brünn, Czech Republic DA - 08.09.2019 KW - LIBS TIG welding KW - Austenitic stainless steels KW - Chemical composition KW - In situ measurement, PY - 2019 AN - OPUS4-48996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Benchmarking of polymer materials for tribological applications in hydrogen N2 - The focus of this study is to evaluate the influence of hydrogen on the friction and wear behavior of a wide range of polymer materials. Thereby, the tribological performance of filled und unfilled polymers from different suppliers were compared at room temperature in air and hydrogen gas (H2) as well as in liquid hydrogen at -235°C (LH2). T2 - 23rd International Conference on Wear of Materials CY - Online meeting DA - 26.04.2021 KW - Polymers KW - Hydrogen KW - Friction KW - Wear PY - 2021 AN - OPUS4-52651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Altenburg, Simon A1 - Mohr, Gunther T1 - The Influence of the Temperature Gradient on the Distribution of Residual Stresses in AM AISI 316L N2 - Steep temperature gradients and solidification shrinkage are the main contributors to the formation of residual stresses in additively manufactured metallic parts produced by laser beam melting. The aim of this work was to determine the influence of the temperature gradient. Diffraction results show a similar pattern for both specimens, indicating the shrinkage to be more dominant for the distribution of residual stresses than the temperature gradient. Thermography results imply that a higher energy input result in higher compressive residual stresses in the bulk. T2 - Workshop on Additive Manufacturing: Process, materials, simulation & implants CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Computed tomography KW - Online Process Monitoring KW - Additive Manufacturing KW - Powder Bed Fusion KW - Selected Laser Melting KW - Neutron Diffraction PY - 2019 AN - OPUS4-48075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Altenburg, Simon A1 - Mohr, Gunther T1 - µCT as Benchmark for Online Process Monitoring N2 - µCT is used to validate the capability of online monitoring for in-situ detection of defects during the L-PBF build process, which is a focus of the TF project ProMoAM. Our first experiments show that online monitoring using thermography and optical tomography cameras are able to detect defects in the built part. But further research is needed to understand root cause of the correlation. T2 - Workshop on Additive Manufacturing: Process, materials, simulation & implants CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Computed tomography KW - Online Process Monitoring KW - Additive Manufacturing KW - Powder Bed Fusion KW - Selected Laser Melting PY - 2019 AN - OPUS4-48073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Altenburg, Simon A1 - Sprengel, Maximilian A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Fritsch, Tobias A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Evans, Alexander A1 - Hofmann, Michael A1 - Bruno, Giovanni T1 - Separation of the Formation Mechanisms of Residual Stresses in LPBF 316L N2 - Rapid cooling rates and steep temperature gradients are characteristic of additively manufactured parts and important factors for the residual stress formation. This study examined the influence of heat accumulation on the distribution of residual stress in two prisms produced by Laser Powder Bed Fusion (LPBF) of austenitic stainless steel 316L. The layers of the prisms were exposed using two different border fill scan strategies: one scanned from the centre to the perimeter and the other from the perimeter to the centre. The goal was to reveal the effect of different heat inputs on samples featuring the same solidification shrinkage. Residual stress was characterised in one plane perpendicular to the building direction at the mid height using Neutron and Lab X-ray diffraction. Thermography data obtained during the build process were analysed in order to correlate the cooling rates and apparent surface temperatures with the residual stress results. Optical microscopy and micro computed tomography were used to correlate defect populations with the residual stress distribution. The two scanning strategies led to residual stress distributions that were typical for additively manufactured components: compressive stresses in the bulk and tensile stresses at the surface. However, due to the different heat accumulation, the maximum residual stress levels differed. We concluded that solidification shrinkage plays a major role in determining the shape of the residual stress distribution, while the temperature gradient mechanism appears to determine the magnitude of peak residual stresses. T2 - MLZ User Meeting 2020 CY - Online meeting DA - 08.12.2020 KW - Computed tomography KW - Neutron diffraction KW - X-ray diffraction KW - Additive manufacturing KW - Residual stress KW - Thermography KW - LPBF KW - Laser Powder Bed Fusion PY - 2020 AN - OPUS4-51793 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe T1 - Investigation on short crack propagation in additive manufactured steel N2 - The assessment of high cycle fatigue in additive manufactured (AM) components is a challenge due to complex microstructure, anisotropic material behavior, residual stresses and porosity / lack-of-fusion defects. Due to the statistical distribution of defects, a high scatter band of S-N-curves is expected. The fracture mechanics-based fatigue assessment of additive manufactured components must consider the propagation of short cracks emanating from defects. In this work, the fatigue crack propagation resistance in the short and large crack regimes of additive and conventionally manufactured AISI 316L stainless steel is examined experimentally based on the cyclic R-curve. However, remaining residual stresses in the AM specimen lead to unexpected and dramatic crack-growth during the pre-cracking procedure. T2 - Workshop on Additive Manufacturing CY - BAM Berlin, Germany DA - 13.05.2019 KW - Fatigue crack growth KW - Additive Manufacturing KW - 316L KW - Cyclic R-curve KW - Laser Powder Bed Fusion KW - AM KW - L-PBF PY - 2019 AN - OPUS4-49419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, M. A1 - Hilgenberg, K. A1 - Gärtner, F. A1 - Klassen, T. T1 - Structural Integrity of Cold Spray Repaired aerospace components N2 - Components in aircrafts are usually replaced when critical defects are present. An alternative approach is repairing using gas dynamic cold spraying: metal particles are shot at a surface at supersonic speeds to selectively rebuild damaged material. Compared to other material-deposition techniques, its advantage is the small thermal impact on the component, preserving its mechanical properties. Component-repair can save considerable amounts of energy and resources. However, its industrial application at large scale needs reproducible, good repair-material properties to guarantee a safe component life. The aim of this project is the development of safe, automatized repair-procedures considering the mechanical fatigue properties of the repair. T2 - ICEAF VII Conference 2023 CY - Spetses, Greece DA - 21.06.2023 KW - Cold Spray KW - Repair KW - Fatigue KW - Fatigue Crack Growth KW - Slow Strain Rate Testing PY - 2023 AN - OPUS4-57784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Sonnenburg, Elke T1 - Comparison of the fatigue behavior of wrought and additively manufactured AISI 316L N2 - Additively Manufactured (AM) parts are still far from being used in safety-relevant applications, mainly due to a lack of understanding of the feedstock-process-propertiesperformance relationship. This work aims at providing a characterization of the fatigue behavior of the additively manufactured AISI 316L austenitic stainless steel and a direct comparison with the fatigue performance of the wrought steel. A set of specimens has been produced by laser powder bed fusion (L-PBF) and a second set of specimens has been machined out of hot-rolled plates. The L-PBF material shows a higher fatigue limit and better finite life performance compared to the wrought material, accompanied by an extensive amount of cyclic softening. T2 - Fatigue Design 2021 CY - Online meeting DA - 17.11.2021 KW - Additive Manufacturing KW - AM KW - 316L KW - Fatigue KW - High Cycle Fatigue KW - Low Cycle Fatigue PY - 2021 AN - OPUS4-53780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wolter, Christian A1 - Gradt, Thomas T1 - Metallsulfide als Reibungsstabilisatoren in Bremsbelägen - tribologische Untersuchungen an Modellsystemen N2 - Der Posterbeitrag handelt davon, wie das Reibverhalten und die Temperaturabhängikgeit durch den Einsatz von Metallsulfiden maßgeblich beeinflusst wird und zur Stabilität beiträgt. T2 - 59. Tribologie-Fachtagung CY - Goettingen, Germany DA - 24.09.2018 KW - Metallsulfide KW - Bremsbeläge KW - Tribologie PY - 2018 AN - OPUS4-46187 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yu, C.-H. A1 - Sprengel, Maximilian A1 - Schröder, Jakob A1 - Serrano Munoz, Itziar A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Kromm, Arne A1 - Peng, R. L. A1 - Kannengießer, Thomas A1 - Bruno, Giovanni A1 - Moverare, J. T1 - Distribution of subsurface residual stress as a function of wall thickness in stainless steel 316L LPBF structures N2 - The subsurface residual stress in laser powder bed fused 316L structures was analyzed using X-ray diffraction (XRD) and layer removal. The influence of varying structure thicknesses was investigated. In this study the importance of combining surface roughness measurements with XRD was shown. Moreover, a clear relation between the structure thickness and the subsurface residual stress profiles was observed. T2 - The 11th International Conference on Residual Stress CY - Nancy, Frankreich DA - 28.03.2022 KW - AGIL KW - Residual Stress KW - X-ray Diffraction KW - Additive Manufacturing PY - 2022 AN - OPUS4-54581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila, Luis A1 - Rehmer, Birgit A1 - Graf, B. A1 - Ulbricht, Alexander A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Assessing the low cycle fatigue behaviour of additively manufactured Ti-6Al-4V: Challenges and first results N2 - The understanding of process-microstructure-property-performance (PMPP) relationships in additive manufacturing (AM) of metals is highly necessary to achieve wide-spread industrial application and replace conventionally manufactured parts, especially regarding safety-relevant applications. To achieve this understanding, reliable data and knowledge regarding material’s microstructure-property relationships (e.g. the role of defects) is needed, since it represents the base for future more targeted process optimizations and more reliable calculations of performance. However, producing reliable material data and assessing the AM material behaviour is not an easy task: big challenges are e.g. the actual lack of standard testing methods for AM materials and the occasional difficulties in finding one-to-one comparable material data for the conventional counterpart. This work aims to contribute to end this lack of reliable material data and knowledge for the low cycle fatigue behaviour of the most used titanium alloy in aerospace applications (Ti-6Al-4V). For this purpose, two sets of test specimens were investigated. The first set was manufactured from cylindrical rods produced by an optimized DED-L process and the second was manufactured from a hot formed round bar. The test specimens were cyclically loaded until failure in the low-cycle-fatigue (LCF) regime. The tests were carried out according to ISO 12106 between 0.3 to 1.0 % axial strain amplitude from room temperature up to 400°C. The LCF behaviour is described and compared between materials and with literature values based on cyclic deformation curves and strain-based fatigue life curves. Besides, the parameters of Manson-Coffin-Basquin relationship were calculated. The microstructures (initial and after failure) and fracture surfaces were comparative characterized. Thereby, the focus lied on understanding the role of grain morphology and defects on the failure mechanisms and fatigue lifetimes. For this latter characterization, optical microscopy (OM), scanning electron microscopy (SEM) and micro computed tomography (µCT) were used. T2 - 4th International Symposium on Fatigue Design and Material Defects CY - Online meeting DA - 26.05.2020 KW - Ti-6Al-4V KW - Additive manufacturing KW - Low cycle fatigue KW - Micro computed tomography KW - Microstructure PY - 2020 AN - OPUS4-50893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -