TY - CONF A1 - Shaheen, Sabahat T1 - Coherent heterodyne OTDR based on geometric phase N2 - Results showing a Distributed Acoustic Sensing setup based on Geometric Phase as opposed to the traditionally measured Dynamic Phase. T2 - Meeting on PhD progress CY - Online Meeting DA - 09.08.2022 KW - Coherent Heterodyne KW - Distributed Acoustic Sensing KW - Geometric Phase PY - 2022 AN - OPUS4-55717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shaheen, Sabahat T1 - Geometric phase in distributed fiber sensing N2 - Introduction to Geometric Phase in time and space domain. Results showing successful detection of Geometric Phase using a distributed fiber optic sensor setup are presented. T2 - Detecting Geometric Phase CY - Online Meeting DA - 10.05.2022 KW - Coherent Heterodyne KW - Geometric Phase KW - Distributed Fiber Optic Sensor PY - 2022 AN - OPUS4-55708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shaheen, Sabahat A1 - Konstantin, Hicke T1 - Measurement of Geometric Phase using a φ-OTDR setup N2 - Geometric phase showing sensitivity to changes in polarisation state (SOP) and intensity of backscattered light is measured using a novel φ-OTDR setup based on coherent heterodyne detection. Principle is demonstrated using a polarisation scrambler inline a fiber-under-test. T2 - 27th Optical Fiber Sensors conference CY - Alexandria, United States DA - 29.08.2022 KW - Coherent Heterodyne KW - Geometric Phase KW - Distributed Fiber Optic Sensor PY - 2022 AN - OPUS4-55710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shaheen, Sabahat T1 - Distributed fiber optic sensing for earthquake monitoring N2 - Earthquake monitoring using geometric phase. Planned foeld measurements at Horstwalde (BAM TTS) are discussed with Professor Serge Shapiro of Free University for a possible collaboration. T2 - Invitation for coolaboration on Earthquake Monitoring project CY - Online Meeting DA - 15.09.22 KW - Coherent Heterodyne KW - Geometric Phase KW - Distributed Fiber Optic Sensor PY - 2022 AN - OPUS4-55767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shaheen, Sabahat T1 - Earth's near surface characterisation using phi-OTDR based on Geometric Phase N2 - A novel DAS setup based on geometric phase is used to measure surface waves of the Earth. They carry useful information about the structure and material of the Earth. T2 - Optica Sensing Congress CY - Munich, Germany DA - 30.07.2023 KW - Geometric Phase KW - Distributed Fiber Optic Sensor KW - Surface waves KW - Coherent Heterodyne KW - Geophysics PY - 2023 AN - OPUS4-58043 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shaheen, Sabahat A1 - Hicke, Konstantin A1 - Krebber, Katerina T1 - Earth‘s near surface characterisation using DAS based on geometric phase N2 - Results obtained from field measurements using a novel distributed acoustic sensor based on geometric phase. The target application is Seismology where we attempt to characterise the Earth's subsurface. T2 - Colaboration on Earthquake Monitoring project with Freue University CY - Berlin, Germany DA - 18.09.2023 KW - Geometric Phase KW - Distributed Fiber Optic Sensor KW - Seismology KW - Coherent Heterodyne KW - Subsurface KW - Earth KW - Surface waves KW - Geophysics PY - 2023 AN - OPUS4-58460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shaheen, Sabahat A1 - Hicke, Konstantin A1 - Krebber, Katerina T1 - ɸgOTDR utilizing Geometric Phase for Earthquake Monitoring N2 - Geometric phase measured per beat period1 in a ɸ-OTDR based on coherent heterodyne detection2 is used to measure strain3, instead of the traditionally measured dynamic phase. The new setup is referred to as a ɸgOTDR. Results are verified using a piezo-electric transducer inline a fiber-undertest. T2 - European Workshop on Optical Fibre Sensors (EWOFS 2023) CY - Mons, Belgium DA - 23.05.2023 KW - Geometric Phase KW - Distributed Fiber Optic Sensor KW - Coherent Heterodyne PY - 2023 AN - OPUS4-57607 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shaheen, Sabahat A1 - Hicke, Konstantin T1 - Measurement of Geometric Phase using a φ-OTDR setup T2 - 27th conference on Optical Fiber Sensors N2 - Geometric phase showing sensitivity to changes in polarisation state and intensity of backscattered light is measured using a novel φ-OTDR setup based on coherent heterodyne detection. Principle is demonstrated using a polarisation scrambler inline a fiber-under-test. T2 - Optical Fiber Sensors 2022 CY - Alexandria, Virginia, United States DA - 29.08.2022 KW - Coherent Heterodyne KW - Geometric Phase KW - Distributed Fiber Optic Sensor PY - 2022 SN - 978-1-957171-14-2 SP - W4.72 AN - OPUS4-56116 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shaheen, Sabahat A1 - Hicke, Konstantin A1 - Krebber, Katerina T1 - Earth’s near-surface characterisation using phi-OTDR based on geometric phase N2 - Phase-sensitive OTDR based on geometric phase for the first time detects surface waves generated by quarry blasts of 25 kg explosives. Inversion of dispersion curves provides depth profiles of shear-wave velocities of surface waves. T2 - Optica Sensing Congress CY - Munich, Germany DA - 30.07.2023 KW - Geophysics KW - Geometric Phase KW - Distributed Fiber Optic Sensor KW - Coherent Heterodyne KW - Surface waves PY - 2023 SP - 1 EP - 2 AN - OPUS4-58044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shaheen, Sabahat A1 - Hicke, Konstantin A1 - Krebber, Katerina T1 - phi-g OTDR utilizing geometric phase T2 - Phase-sensitive optical time domain reflectometry based on geometric phase measurement N2 - Geometric phase measured per beat period in a ϕ-OTDR based on coherent heterodyne detection is used to measure strain. Proposed method is robust to polarisation mismatch fading as a polarisation mismatch between interfering beams is not a hindrance to the measurement of the geometric phase. The Geometric phase is a function of the intensities of the interfering beams as well as the envelope of the beat signal. Its calculation does not require phase unwrapping and accordingly does not suffer the phase unwrapping errors. It is required to be equated with the traditionally measured phase by applying a scaling factor. The spatial resolution of the measured strain is reduced as it is calculated per beat period. Results are verified using a piezo-electric transducer inline a fiber-under-test. T2 - European Workshop on Optical Fibre Sensors (EWOFS 2023) CY - Mons, Belgium DA - 23.05.23 KW - Coherent Heterodyne KW - Geometric Phase KW - Distributed Fiber Optic Sensor PY - 2023 DO - https://doi.org/10.1117/12.2678295 SP - 1 EP - 5 PB - SPIE AN - OPUS4-57551 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -