TY - JOUR A1 - Asgill, Michael E. A1 - Groh, S. A1 - Niemax, Kay A1 - Hahn, D.W. T1 - The use of multi-element aerosol particles for determining temporal variations in temperature and electron density in laser-induced plasmas in support of quantitative laser-induced breakdown spectroscopy JF - Spectrochimica acta B N2 - Quantitative laser-induced breakdown spectroscopy (LIBS) analysis operates on the assumption that the sample is completely dissociated and diffused within the highly energetic plasma on time-scales of analyte analysis, resulting in analyte emission ideally at the bulk plasma temperature and a signal that is linear with analyte mass concentration. However, recent studies focusing on aerosol analysis have found the heat and mass diffusion rates within laser-induced plasmas to be finite, resulting in particle-rich, locally perturbed areas within the hot bulk plasma. The goal of this study is to observe any related plasma differences, by calculating the bulk and local (i.e. analyte rich regions) plasma temperatures and electron density, to better understand the time frame of equilibrium between the local and bulk plasma properties. This study also seeks to determine whether the presence of large quantities of a matrix element can significantly alter the local plasma conditions, thereby generating matrix effects. We report the temporal profiles of particle-derived species, adding additional insight into the effect of local perturbation of plasma properties, with the conclusion that significant plasma residence (tens of microseconds) is necessary to minimize such effects. KW - Laser-induced breakdown spectroscopy KW - LIBS KW - Matrix effects KW - Aerosol analysis PY - 2015 DO - https://doi.org/10.1016/j.sab.2015.04.005 SN - 0584-8547 SN - 0038-6987 VL - 109 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-33733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beushausen, H.-D. A1 - Taffe, Alexander A1 - Grosse, C.U. T1 - Zerstörungsfreie Prüfverfahren - Methoden und Anwendungsgebiete JF - Betonwerk international KW - Zerstörungsfreie Prüfung im Bauwesen KW - ZfPBau KW - Ultraschall KW - Impakt-Echo KW - Frischbeton KW - LIBS KW - Radar KW - Baustellenscanner PY - 2006 SN - 1439-7706 VL - 9 IS - 3 SP - 90 EP - 100 PB - ad-media-Verl. CY - Köln AN - OPUS4-12674 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beushausen, H.-D. A1 - Taffe, Alexander A1 - Grosse, C.U. T1 - Non destructive testing of hardened concrete - test methods, applications, limitations JF - Concrete plant international CPI KW - Non-destructive testing in civil engineering KW - NDT-CE KW - Ultrasonic KW - Impact-Echo KW - Fresh concrete KW - LIBS KW - Radar KW - On-site scanning system PY - 2006 SN - 1437-9023 VL - 9 IS - 3 SP - 90 EP - 100 PB - ad-media-Verl. CY - Köln AN - OPUS4-12675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Breit, W. A1 - Dauberschmidt, C. A1 - Gehlen, C. A1 - Sodeikat, C. A1 - Taffe, Alexander A1 - Wiens, U. T1 - Zum Ansatz eines kritischen Chloridgehaltes bei Stahlbetonbauwerken JF - Beton- und Stahlbetonbau N2 - Der Chloridgehalt, ab dem bei der Bewehrung im Beton mit Korrosion gerechnet werden muss, wird als kritischer Chloridgehalt bezeichnet. Die Höhe dieses kritischen Chloridgehaltes bestimmt in hohem Maße den Instandsetzungsumfang und damit die Instandsetzungskosten. Zahlreiche Labor- und Bauwerksuntersuchungen belegen, dass dieser kritische Chloridgehalt von einer Vielzahl von Parametern abhängt und deswegen kein fester Wert sein kann. Aus diesem Grund ist es sinnvoll, über Betrachtung von Korrosions- bzw. Depassivierungswahrscheinlichkeiten einen unteren kritischen Chloridgehalt zu bestimmen, bei dem bei gegebenen Randbedingungen nur mit einer geringen Wahrscheinlichkeit (z. B. 5%-Fraktilwert) Korrosion von Stahl in Beton zu erwarten ist. Die Auswertung von zahlreichen Untersuchungen zeigt, dass der Ansatz eines kritischen Chloridgehaltes von 0, 5 M.-% bezogen auf den Zementgehalt bei Einhaltung bestimmter Randbedingungen mit einer hinreichend geringen Korrosionswahrscheinlichkeit korreliert und somit auch in Übereinstimmung mit der Richtlinie 'Schutz und Instandsetzung von Betonbauteilen' des DAfStb als unterer kritischer Chloridgehalt unter Praxisbedingungen anzusetzen ist. KW - Dauerhaftigkeit KW - Instandsetzung KW - Korrosion KW - Lebensdauer KW - Parkhäuser KW - Tiefgaragen KW - Betontechnologie KW - LIBS KW - Alkalität KW - Bewehrungsoberfläche KW - Bohrkernproben KW - Bohrmehl KW - Chloridgehalt KW - Chloridinduzierte Korrosion KW - Chloridprofile KW - Dauerhaftigkeitsbemessungen KW - Depassivierung KW - Depassivierungswahrscheinlichkeiten KW - Lochfraßkorrosion KW - Monitoring KW - Passivität KW - Potentialfeldmessungen KW - Probenentnahme KW - Richtlinie für Schutz und Instandsetzung KW - RL-SIB;Schädigungen KW - Baustoffe KW - Bauwerkserhaltung/Sanierung KW - Bauwerksüberwachung KW - Bewehrung PY - 2011 DO - https://doi.org/10.1002/best.201100007 SN - 0005-9900 SN - 1437-1006 VL - 106 IS - 5 SP - 290 EP - 298 PB - Ernst CY - Berlin AN - OPUS4-23758 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ebell, Gino A1 - Burkert, Andreas A1 - Günther, Tobias A1 - Wilsch, Gerd T1 - Untersuchungen zum korrosionsauslösenden Chloridgehalt an nicht rostendem ferritischem Betonstahl in Mörtel JF - Bautechnik N2 - Der maßgebliche Korrosionsschutz von nicht rostendem Stahl in Beton basiert, anders als bei unlegiertem Betonstahl, auf der Ausbildung einer Chromoxidschicht. Die Chromoxidschicht ist in alkalischem und in carbonatisiertem Beton beständig, sodass nicht rostende Stähle in einem passiven Zustand vorliegen. Die Initiierung von Lochkorrosionserscheinungen ist dagegen auch an nicht rostenden Stählen in Beton möglich. Der korrosionsauslösende Chloridgehalt ist neben dem Gehalt an Legierungselementen (insbesondere dem Chromgehalt) und der Oberflächenbeschaffenheit auch vom Konzentrationsverhältnis von OH“ zu CI“ im Elektrolyten abhängig. Daher ist prinzipiell zu erwarten, dass in karbonatisierten Betonen geringere Chloridgehalte Korrosion initiieren können als in Betonen mit höheren pH-Werten. Dies gilt in besonderem Maße für nicht rostende Betonstähle mit geringen Chromgehalten, wie z. B. Produkte aus dem Werkstoff 1.4003 (X2CrNi12) mit seiner im Vergleich zu den Standardausteniten geringen Beständigkeit. Um den kritischen korrosionsauslösenden Chloridgehalt am Beispiel eines am Markt verfügbaren ferritischen Chromstahls zu bestimmen, wurden an der Bundesanstalt für Materialforschung und -prüfung (BAM) umfangreiche Untersuchungen zu beschleunigten Korrosionsversuchen in alkalischen und karbonatisierten Mörteln durchgeführt. Mittels Laser-induced Breakdown Spectroscopy (LIBS) konnten die korrosionsauslösenden Chloridgehalte im Phasengrenzbereich Betonstahl-Mörtel ermittelt werden. KW - Korrosion KW - Betonstahl KW - Nicht rostender KW - LIBS KW - Chloridgehalt KW - Kritischer PY - 2020 DO - https://doi.org/10.1002/bate.201900077 SN - 0932-8351 VL - 97 IS - 1 SP - 21 EP - 31 PB - Ernst & Sohn CY - Berlin AN - OPUS4-50247 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erler, A. A1 - Riebe, D. A1 - Beitz, T. A1 - Löhmannsröben, H.-G. A1 - Leenen, M. A1 - Pätzold, S. A1 - Ostermann, Markus A1 - Wójcik, M. T1 - Mobile Laser-Induced Breakdown Spectroscopy for Future Application in Precision Agriculture—A Case Study JF - Sensors N2 - In precision agriculture, the estimation of soil parameters via sensors and the creation of nutrient maps are a prerequisite for farmers to take targeted measures such as spatially resolved fertilization. In this work, 68 soil samples uniformly distributed over a field near Bonn are investigated using laser-induced breakdown spectroscopy (LIBS). These investigations include the determination of the total contents of macro- and micronutrients as well as further soil parameters such as soil pH, soil organic matter (SOM) content, and soil texture. The applied LIBS instruments are a handheld and a platform spectrometer, which potentially allows for the single-point measurement and scanning of whole fields, respectively. Their results are compared with a high-resolution lab spectrometer. The prediction of soil parameters was based on multivariate methods. Different feature selection methods and regression methods like PLS, PCR, SVM, Lasso, and Gaussian processes were tested and compared. While good predictions were obtained for Ca, Mg, P, Mn, Cu, and silt content, excellent predictions were obtained for K, Fe, and clay content. The comparison of the three different spectrometers showed that although the lab spectrometer gives the best results, measurements with both field spectrometers also yield good results. This allows for a method transfer to the in-field measurements KW - LIBS KW - Precision agriculture KW - Soil KW - Multivariate methods KW - Feature selection PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580777 DO - https://doi.org/10.3390/s23167178 VL - 23 IS - 16 SP - 1 EP - 17 PB - MDPI AG CY - Basel, Schweiz AN - OPUS4-58077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gaft, M. A1 - Nagli, L. A1 - Fasaki, I. A1 - Kompitsas, M. A1 - Wilsch, Gerd T1 - Laser-induced breakdown spectroscopy for on-line sulfur analyses of minerals in ambient conditions JF - Spectrochimica acta B KW - LIBS KW - Sulfur KW - Ambient condition KW - Mineral KW - On-line analysis PY - 2009 DO - https://doi.org/10.1016/j.sab.2009.07.010 SN - 0584-8547 SN - 0038-6987 VL - 64 IS - 10 SP - 1098 EP - 1104 PB - Elsevier CY - Amsterdam AN - OPUS4-20501 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gaft, M. A1 - Nagli, L. A1 - Gornushkin, Igor B. A1 - Raichlin, Y. T1 - Review on recent advances in analytical applications of molecular emission and modelling JF - Spectrochimica Acta Part B N2 - The review mainly deals with two topics that became important in applications of laser-induced breakdown spectroscopy (LIBS) in recent years: the emission of halogen- and rare-earth-containing molecules and selective excitation of molecules by molecular laser-induced fluorescence (MLIF). The first topic is related to the emission of alkaline-earth diatomic halides MX, M = Ca, Mg, Ba, Sr and X = F, Cl, Br, and I and rare-earth element (REE) oxides LaO, YO, and ScO. These molecules form in laser-induced plasma (LIP) soon after its ignition and persist for a long time, emitting broad bands in a visible part of the spectrum. They are best detected after relatively long delay times when emission from interfering plasma species (atoms and ions) has already been quenched. Such behavior of molecular spectra allows of using, for their detection, inexpensive CCD detectors equipped with simple electronic or mechanical shutters and low-resolution spectrometers. A main target for analysis by molecular spectroscopy is halogens; these elements are difficult to detect by atomic spectroscopy because their most intense atomic lines lie in the vacuum UV. Therefore, in many situations, emission from CaF and CaCl may provide a substantially more sensitive detection of F and Cl than emission from elemental F and Cl and their ions. This proved to be important in mining and concrete industries and even Mars exploration. A similar situation is observed for REEs; their detection by atomic spectroscopy sometimes fails even despite the abundance of atomic and ionic REEs' lines in the UV-VIS. For example, in minerals and rocks with low concentrations of REEs, emission from major and minor mineral elements hinders the weak emission from REEs. Many REEs do not form molecules that show strong emission bands in LIP but can still be detected with the aid of LIP. All REEs except La, Y, and Sc exhibit long-lived luminescence in solid matrices that is easily excited by LIP. The luminescence can be detected simultaneously with molecular emission of species in LIP within the same time and spectral window. The second topic is related to the combination of MLIF and LIBS, which is a technique that was proved to be efficient for analysis of isotopic molecules in LIP. For example, the characteristic spectral signals from isotopic molecules containing 10B and 11B are easier to detect with MLIF-LIBS than with laser ablation molecular isotopic spectrometry (LAMIS) because MLIF provides strong resonance excitation of only targeted isotopes. The technique is also very efficient in detection of halogen molecules although it requires an additional tunable laser that makes the experimental setup bulky and more expensive. KW - Plasma induced luminescence KW - Molecular emission KW - Laser induced plasma KW - Plasma modeling KW - Molecular analysis KW - LIBS PY - 2020 DO - https://doi.org/10.1016/j.sab.2020.105989 VL - 173 SP - 105989 PB - Elsevier B. V. AN - OPUS4-51420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gehlen, C.D. A1 - Wiens, E. A1 - Noll, R. A1 - Wilsch, Gerd A1 - Reichling, K. T1 - Chlorine detection in cement with laser-induced breakdown spectroscopy in the infrared and ultraviolet spectral range JF - Spectrochimica acta B N2 - A significant parameter to monitor the status of concrete buildings like bridges or parking garages is the determination of the depth profile of the chlorine concentration below the exposed concrete surface. This information is required to define the needed volume of restoration for a construction. Conventional methods like wet chemical analysis are time- and cost-intensive so an alternative method is developed using laser-induced breakdown spectroscopy (LIBS). The idea is to deploy LIBS to analyze drill cores by scanning the sample surface with laser pulses. Chlorine spectral lines in the infrared (IR) and ultraviolet (UV)-range were studied for chlorine detection in hydrated cement samples. The excitation energies of these spectral lines are above 9.2 eV. Hence high plasma temperatures and pulse energies in the range of some hundred millijoules are needed to induce sufficient line intensity levels at the required working distance. To further increase the line intensity and to lower the detection limit (LOD) of chlorine a measuring chamber is used where different ambient pressures and gases can be chosen for the measurements. The influences on the line intensity for pressures between 5 mbar and 400 mbar using helium as process gas and the influence of different laser burst modi like single and collinear double pulses are investigated. For the first time a LOD according to DIN 32 645 of 0.1 mass% was achieved for chlorine in hydrated cement using the UV line 134.72 nm. KW - Laser-induced breakdown spectroscopy KW - LIBS KW - Hydrated cement KW - Chlorine KW - Limit of detection PY - 2009 DO - https://doi.org/10.1016/j.sab.2009.07.021 SN - 0584-8547 SN - 0038-6987 VL - 64 IS - 10 SP - 1135 EP - 1140 PB - Elsevier CY - Amsterdam AN - OPUS4-20500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Dell’Aglio, M. A1 - Motto-Ros, V. A1 - Pelascini, F. A1 - De Giacomo, A. T1 - Investigation on the material in the plasma phase by high temporally and spectrally resolved emission imaging during Pulsed Laser Ablation (PLAL) in Liquid for NPs production and consequent considerations on NPs formation JF - Plasma Sources Science and Technology N2 - In this paper experimental temperature and density maps of the laser induced plasma in water during Pulsed Laser ablation in Liquid (PLAL) for the production of metallic nanoparticles (NPs) has been determined. A detection system based on the simultaneous acquisition of two emission images at 515 and 410 nm has been constructed and the obtained images have been processed simultaneously by imaging software. The results of the data analysis show a variation of the temperature between 4000 and 7000 K over the plasma volume. Moreover, by the study of the temperature distribution and of the number densities along the plasma expansion axis it is possible to observe the condensation zone of the plasma where NPs can be formed. Finally, the time associated to the electron processes is estimated and the plasma charging effect on NPs is demonstrated. The set of observations retrieved from these experiments suggests the importance of the plasma phase for the growth of NPs and the necessity of considering the spatial distribution of plasma parameters for the understanding of one of the most important issues of the PLAL process, that is the source of solid material in the plasma phase. KW - LIBS KW - Laser induced plasma KW - Plasma modeling KW - Plasma diagnostics KW - Nanoparticle formation PY - 2019 DO - https://doi.org/10.1088/1361-6595/ab369b VL - 28 IS - 8 SP - Article Number: 085017 PB - IOP Publishing AN - OPUS4-48753 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Kazakov, Alexander Ya. T1 - Kinetic model of stimulated emission created by resonance pumping of aluminum laser-induced plasma JF - Journal of Applied Physics N2 - Stimulated emission observed experimentally in an aluminum laser induced plasma is modeled via a kinetic approach. The simulated emission at several cascade transitions is created by a pump laser guided through the plasma at several microseconds after its creation and tuned in resonance with the strong 3s²3p-3s²4s transition at 266 nm. A two-dimensional space-time collisional radiative plasma model explains the creation of the Population inversion and lasing at wavelengths of 2100 nm and 396.1 nm. The population inversion for lasing at 2100 nm is created by depopulation of the ground 3s²3p state and population of the 3s²5s state via the absorption of the resonant radiation at 266 nm. The population inversion for lasing at 396.1 nm occurs during the laser pulse via the decay of the population of the pumped 3s²5s state to the excited 3s²4s state via cascade transitions driven optically and by collisions. In particular, efficient are the mixing transitions between neighboring states separated by small gaps on the order of kT at Plasma temperatures of 5000–10 000 K. The model predicts that the population inversion and corresponding gain may reach high values even at very moderate pump energy of several lJ per pulse. The efficiency of lasing at 2100 nm and 396.1 nm is estimated to be ~3% and 0.05%, correspondingly with respect to the pump laser intensity. The gain for lasing at 396.1 nm can reach as high as ~40 cm⁻¹. The polarization effect that the pump radiation at 266 nm imposes on the stimulated emission at 396.1 nm is discussed. The calculated results are favorably compared to experimental data. KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics KW - Lasers PY - 2017 DO - https://doi.org/10.1063/1.4984912 SN - 0021-8979 SN - 1089-7550 VL - 121 IS - 21 SP - 213303-1 EP - 213303-11 AN - OPUS4-40693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Merk, Sven A1 - Demidov, Alexandr A1 - Panne, Ulrich A1 - Shabanov, Sergej V. A1 - Smith, B.W. A1 - Omenetto, N. T1 - Tomography of single and double pulse laser-induced plasma using Radon transform technique JF - Spectrochimica acta B N2 - The Radon transform tomography is used for reconstruction of the emissivity distribution in single- (SP) and double-pulse (DP) laser induced plasmas in orthogonal geometry. The orthogonal DP plasma is intrinsically asymmetric and thus suitable for the Radon reconstruction. The DP plasma consists of two plasmas separated by a short time interval of ~ 1 µs. The first plasma is created in air near the surface of a Si wafer and is followed (pre-ablation mode) or preceded (post-ablation mode) by the second plasma induced on this surface. A spectrometer moves in a semi-circular path around the plasma keeping the plasma in the rotation center. The optical detection is arranged so that a thin plasma layer parallel to the target surface is monitored. The axial symmetry of the SP plasma is investigated by comparing data from the Abel inversion taken at different angles and Radon reconstruction. The multi-angle measurements are used to estimate errors of the Abel reconstruction due to asymmetries of the plasma. Time-resolved Radon reconstruction in white light is performed for the DP plasma in both pre- and post-ablation modes. In the former case, the effect of ablated aerosol on the formation of the air plasma is monitored. In the latter case, a formation of an asymmetric compression shock created by the target plasma inside the air plasma is visualized. This observation is supported by computer simulations. An interaction of the two plasmas is studied by spectrally resolved Radon reconstruction revealing a complex distribution of target and ambient species inside the plasma at all studied delay times. Overall, it is demonstrated that Radon-based tomography is an informative tool to study transient asymmetric laser induced plasmas. KW - Radon transform tomography of SP KW - DP laser induced plasma KW - LIBS KW - Orthogonal double pulse plasma PY - 2012 DO - https://doi.org/10.1016/j.sab.2012.06.033 SN - 0584-8547 SN - 0038-6987 VL - 76 SP - 203 EP - 213 PB - Elsevier CY - Amsterdam AN - OPUS4-27438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Panne, Ulrich A1 - Winefordner, J. D. T1 - Linear correlation for identification of materials by laser induced breakdown spectroscopy: Improvement via spectral filtering and masking JF - Spectrochimica acta B N2 - The purpose of this work is to improve the performance of a linear correlation method used for material identification in laser induced breakdown spectroscopy. The improved correlation procedure is proposed based on the selection and use of only essential spectral information and ignoring empty spectral fragments. The method is tested on glass samples of forensic interest. The 100% identification capability of the new method is demonstrated in contrast to the traditional approach where the identification rate falls below 100% for many samples. KW - Correlation analysis KW - Linear correlation KW - Material identification KW - Laser induced plasma KW - LIBS PY - 2009 DO - https://doi.org/10.1016/j.sab.2009.07.038 SN - 0584-8547 SN - 0038-6987 VL - 64 IS - 10 SP - 1040 EP - 1047 PB - Elsevier CY - Amsterdam AN - OPUS4-20621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. T1 - Geometrical effects in data collection and processing for calibration-free laser-induced breakdown spectroscopy JF - Journal of quantitative spectroscopy and radiative transfer N2 - Data processing in the calibration-free laser-induced breakdown spectroscopy (LIBS) is usually based on the solution of the radiative transfer equation along a particular line of sight through a plasma plume. The LIBS data processing is generalized to the case when the spectral data are collected from large portions of the plume. It is shown that by adjusting the optical depth and width of the lines the spectra obtained by collecting light from an entire spherical homogeneous plasma plume can be leastsquare fitted to a spectrum obtained by collecting the radiation just along a plume diameter with a relative error of 10−11 or smaller (for the optical depth not exceeding 0.3) so that a mismatch of geometries of data processing and data collection cannot be detected by fitting. Despite the existence of such a perfect least-square fit, the errors in the line optical depth and width found by a data processing with an inappropriate geometry can be large. It is shown with analytic and numerical examples that the corresponding relative errors in the found elemental number densities and concentrations may be as high as 50% and 20%, respectively. Safe for a few found exceptions, these errors are impossible to eliminate from LIBS data processing unless a proper solution of the radiative transfer equation corresponding to the ray tracing in the spectral data collection is used. KW - Plasma KW - LIBS KW - Plasma modeling PY - 2017 DO - https://doi.org/10.1016/j.jqsrt.2017.09.018 SN - 0022-4073 SN - 1879-1352 VL - 204 SP - 190 EP - 205 PB - Elsevier CY - New York, NY AN - OPUS4-42287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. T1 - Chemistry in laser‑induced plasmas at local thermodynamic equilibrium JF - Applied physics A N2 - The equation of state for plasmas containing negative and positive ions of elements and molecules formed by these elements is modeled under the assumption that all ionization processes and chemical reactions are at local thermal equilibrium and the Coulomb interaction in the plasma is described by the Debye–Hückel theory. The hierarchy problem for constants of molecular reactions is resolved by using three different algorithms for high, medium, and low temperatures: the contraction principle, the Newton–Raphson method, and a scaled Newton–Raphson method, respectively. These algorithms are shown to have overlapping temperature ranges in which they are stable. The latter allows one to use the developed method for calculating the equation of state in combination with numerical solvers of Navier–Stokes equations to simulate laser-induced Plasmas initiated in an atmosphere and to study formation of molecules and their ions in such plasmas. The method is applicable to a general chemical network. It is illustrated with examples of Ca–Cl and C–Si–N laser-induced plasmas. KW - Plasma KW - LIBS KW - Plasma modeling PY - 2018 DO - https://doi.org/10.1007/s00339-018-2129-9 SN - 1432-0630 SN - 0947-8396 VL - 124 IS - 10 SP - 716, 1 EP - 21 PB - Springer AN - OPUS4-46112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Smith, B.W. A1 - Panne, Ulrich A1 - Omenetto, N. T1 - Laser-induced breakdown spectroscopy combined with spatial heterodyne spectroscopy JF - Applied spectroscopy N2 - A spatial heterodyne spectrometer (SHS) is tested for the first time in combination with laser-induced breakdown spectroscopy (LIBS). The spectrometer is a modified version of the Michelson interferometer in which mirrors are replaced by diffraction gratings. The SHS contains no moving parts and the gratings are fixed at equal distances from the beam splitter. The main advantage is high throughput, about 200 times higher than that of dispersive spectrometers used in LIBS. This makes LIBS-SHS a promising technique for low-light standoff applications. The output signal of the SHS is an interferogram that is Fourier-transformed to retrieve the original plasma spectrum. In this proof-of-principle study, we investigate the potential of LIBS-SHS for material classification and quantitative analysis. Brass standards with broadly varying concentrations of Cu and Zn were tested. Classification via principal component analysis (PCA) shows distinct groupings of materials according to their origin. The quantification via partial least squares regression (PLS) shows good precision (relative standard deviation , 10%) and accuracy (within 6 5% of nominal concentrations). It is possible that LIBS-SHS can be developed into a portable, inexpensive, rugged instrument for field applications. KW - Spatial heterodyne spectroscopy KW - Laser-induced breakdown spectroscopy KW - Fourier transform spectroscopy KW - LIBS KW - Laser-induced plasma KW - Interferometry PY - 2014 DO - https://doi.org/10.1366/14-07544 SN - 0003-7028 SN - 1943-3530 VL - 68 IS - 9 SP - 1076 EP - 1084 PB - Society for Applied Spectroscopy CY - Frederick, Md. AN - OPUS4-32163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Völker, Tobias A1 - Kazakov, Alexander Ya. T1 - Extension and investigation by numerical simulations of algorithm for calibration-free laser induced breakdown spectroscopy JF - Spectrochimica Acta Part B N2 - Accuracy of calibration-free (CF) methods in laser-induced breakdown spectroscopy (LIBS) depends on experimental conditions and instrumental parameters that must match a CF LIBS model. Here, the numerical study is performed to investigate effects of various factors, such as the optical density, plasma uniformity, line overlap, noise, spectral resolution, electron density and path length on the results of CF-LIBS analyses. The effects are examined one-by-one using synthetic spectra of steel slag samples that fully comply with the mathematical model of the method. Also, the algorithm includes several new features in comparison with previously proposed CF algorithms. In particular, it removes limits on the optical thickness of spectral lines that are used for the construction of the Saha-Boltzmann plot; it retrieves the absorption path length (Plasma diameter) directly from spectral lines; it uses the more realistic Voigt line profile function instead of the Lorentzian function; and it employs the pre-calculated and tabulated thin-to-thick line ratios instead of approximating functions for selfabsorption correction. KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics KW - Calibration free LIBS PY - 2018 DO - https://doi.org/10.1016/j.sab.2018.06.011 SN - 0584-8547 VL - 147 SP - 149 EP - 163 PB - Elsevier B.V. AN - OPUS4-45340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gottlieb, C. A1 - Lierenfeld, M. B. A1 - Wilsch, Gerd A1 - Bohling, C. T1 - Es geht auch einfacher JF - B+B Bauen im Bestand N2 - Mit laserbasiertem Verfahren Zustand von Betonbauwerken erfassen: Die Laserinduzierte Breakdown Spektroskopie (LIBS) stellt eine Alternative zur nasschemischen Analyse dar, um den Zustand von Betonbauwerken zu erfassen. Bei diesem Verfahren laufen der Analysevorgang und die Auswertung automatisiert ab. Ein Prototyp für die mobile Anwendung auf der Baustelle steht zur Verfügung. So kann auf Knopfdruck ein schriftlicher Bericht erstellt werden, der einen genauen Wert für die Eindringtiefe eines relevanten Elements wie Chlorid ausgibt. KW - Beton KW - LIBS KW - Chlorid KW - Vor-Ort-Untersuchung PY - 2019 VL - 42 IS - 7 SP - 28 EP - 31 PB - Verlagsgesellschaft Rudolf Müller GmbH CY - Köln AN - OPUS4-50283 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gottlieb, Cassian A1 - Bohling, Christian A1 - Wilsch, Gerd T1 - New possibilities for concrete analysis 4.0 with the Laser-Induced Breakdown Spectroscopy (LIBS) JF - The e-journal of nondestructive testing & ultrasonics N2 - In civil engineering the damage assessment of concrete infrastructures is an important task to monitor and ensure the estimated life-time. The aging of concrete is caused by different damage processes like the chloride induced pitting corrosion of the reinforcement. The penetration depth and the concentration of harmful species are crucial factors in the damage assessment. As a highly cost and time-consuming standard procedure, the analysis of concrete drill cores or drilling by wet-chemistry is widely used. This method provides element concentration to the total mass as aggregates and binder are homogenized. In order to provide a method that is capable to detect the element concentration regarding the cement content only, the laser-induced breakdown spectroscopy (LIBS) will be presented. The LIBS method uses a focused pulsed laser on the sample surface to ablate material. The high-power density and the laser-material interaction causes a laser-induced plasma that emits elemental and molecular line emission due to energy transition of the excited species in the plasma during the cooling phase. As each element provides element-specific line emission, it is in principle possible to detect any element on the periodic table (spectroscopic fingerprint) with one laser shot. In combination with a translation stage the sample under investigation can be spatially resolved using a scan raster with a resolution up to 100 µm (element mapping). Due to the high spatial resolution, the element distribution and the heterogeneity of the concrete can be evaluated. By using chemometrics the non-relevant aggregates can be excluded from the data set and the element concentration can be quantified and referred to a specific solid phase like the binding matrix (cement) only. In order to analyze transport processes like diffusion and migration the twodimensional element distributions can provide deep insight into the transport through the pore space and local enrichments of elements. As LIBS is a multi-elemental method it is also possible to compare the ingress and transport process of different elements like Cl, Na, K, S, C, and Li simultaneously and evaluate cross-correlations between the different ions. Furthermore, the element mapping allows to visualize the transport along cracks. This work will show the state of the art in terms of hardware and software for an automated LIBS system as well as different application for a concrete analysis 4.0. Focus will be the application of LIBS for a fast concrete analysis. T2 - SMAR 2019 CY - Potsdam, Germany DA - 27.08.2019 KW - Damage KW - LIBS KW - Concrete KW - Mapping KW - Chlorine PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517282 UR - https://www.ndt.net/?id=24963 SN - 1435-4934 VL - 25 IS - 1 SP - 1 EP - 8 PB - NDT.net CY - Kirchwald AN - OPUS4-51728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gottlieb, Cassian A1 - Gojani, Ardian A1 - Völker, Tobias A1 - Günther, Tobias A1 - Gornushkin, Igor B. A1 - Wilsch, Gerd A1 - Günster, Jens T1 - Investigation of grain sizes in cement-based materials and their influence on laser-induced plasmas by shadowgraphy and plasma imaging JF - Spectrochimica Acta Part B: Atomic Spectroscopy N2 - The effect of particle grain sizes in different cement-based mixtures on the laser-induced plasma evolution is studied using two experimental methods: (i) temporal and spatial evolution of the laser-induced shock wave is investigated using shadowgraphy and two-dimensional plasma imaging, and (ii) temporal and spatial distribution of elements in the plasma is investigated using two-dimensional spectral imaging. This study is motivated by the interest in applying laser-induced breakdown spectroscopy (LIBS) for chemical analysis of concrete, and subsequently obtain information related to damage assessment of structures like bridges and parking decks. The distribution of grain sizes is of major interest in civil engineering as for making concrete different aggregate grain sizes defined by a sieving curve (64mm to 0.125 mm) are needed. Aggregates up to a size of 180 μm can be excluded from the data set, therefore only the amount of small aggregates with a grain size below 180 μm must be considered with LIBS. All components of the concrete with a grain size smaller than 0.125mm are related to the flour grain content. Tested samples consisted of dry and hardened cement paste (water-cement ratio w/z=0.5), which served as a reference. Aggregate mixtures were made by adding flour grains (size 40 μm) and silica fume (size 0.1 μm) in different ratios to cement: 10%, 30%, 50% and 60%, all combined to the remaining percentage of dry or hydrated cement. The visualization results show that a dependance in the evolution of the plasma as a function of sample grain size can be detected only in the initial stages of the plasma formation, that is, at the initial 3 μs of the plasma life. Spectral information reveals the elemental distribution of the silicon and calcium in plasma, in both neutral and ionized form. Here also, a significant effect is observed in the first 1 μs of the plasma lifetime. KW - LIBS KW - Cement-based materials KW - Particle size KW - Shadowgraphy KW - Plasma imaging PY - 2020 DO - https://doi.org/10.1016/j.sab.2020.105772 VL - 165 SP - 105772 PB - Elsevier B.V. AN - OPUS4-50319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gottlieb, Cassian A1 - Günther, Tobias A1 - Wilsch, Gerd T1 - Impact of grain sizes on the quantitative concrete analysis using laser-induced breakdown spectroscopy JF - Spectrochimica Acta Part B: Atomic Spectroscopy N2 - In civil engineering concrete is the most used building material for making infrastructures like bridges and parking decks worldwide. It is as a porous and multiphase material made of aggregates with a defined grain size distribution, cement and water as well as different additives and admixtures depending on the application. Different grain sizes are important to ensure the needed density and compressive strength. The resulting porous cement matrix contains a mixture of flour grains (aggregates with a grain size below 125 lm) and cement particles (particle size≈50lm). Harmful species like chlorides may penetrate together with water through the capillary pore space and may trigger different damage processes. The damage assessment of concrete structures in Germany is estimated due to the quantification of harmful elements regarding to the cement content only. In the evaluation of concrete using LIBS a two-dimensional scanning is necessary to consider the heterogeneity caused by the aggregates. Therefore, a LIBS system operating with a low energy NdCr:YAG laser, a pulse energy of 3 mJ, a wavelength of 1064 nm, a pulse width of 1.5 ns and a Repetition rate of 100 Hz has been used. Different Czerny-Turner spectrometers with CCD detectors in the UV and NIR range have been used for the detection. Large aggregates (macro-heterogeneity) can be excluded from the evaluation, whereas small aggregates in the range of the laser spot size (flour grains) cannot be spatially resolved. In this work the micro heterogeneity caused by flour grains and their impact on the quantification with LIBS will be discussed. To analyze the effect of changing grain sizes and ratios, the ablation behavior has been determined and compared. Samples with defined grain sizes were made and analyzed using LIBS. The grain size distributions were analyzed with laser diffraction (LDA). KW - LIBS KW - Concrete KW - Micro heterogeneity KW - Grain sizes PY - 2018 DO - https://doi.org/10.1016/j.sab.2018.02.004 SN - 0584-8547 SN - 0038-6987 VL - 142 SP - 74 EP - 84 PB - Elsevier AN - OPUS4-44595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gottlieb, Cassian A1 - Millar, Steven A1 - Grothe, S. A1 - Wilsch, Gerd T1 - 2D evaluation of spectral LIBS data derived from heterogeneous materials using cluster algorithm JF - Spectrochimica Acta Part B N2 - Laser-induced Breakdown Spectroscopy (LIBS) is capable of providing spatially resolved element maps in regard to the chemical composition of the sample. The evaluation of heterogeneous materials is often a challenging task, especially in the case of phase boundaries. In order to determine information about a certain phase of a material, the need for a method that offers an objective evaluation is necessary. This paper will introduce a cluster algorithm in the case of heterogeneous building materials (concrete) to separate the spectral information of non-relevant aggregates and cement matrix. In civil engineering, the information about the quantitative ingress of harmful species like Cl−, Na+ and SO2−4 is of great interest in the evaluation of the remaining lifetime of structures (Millar et al., 2015; Wilsch et al., 2005). These species trigger different damage processes such as the alkali-silica reaction (ASR) or the chloride-induced corrosion of the reinforcement. Therefore, a discrimination between the different phases, mainly cement matrix and aggregates, is highly important (Weritz et al., 2006). For the 2D evaluation, the expectation-maximizationalgorithm (EM algorithm; Ester and Sander, 2000) has been tested for the application presented in this work. The method has been introduced and different figures of merit have been presented according to recommendations given in Haddad et al. (2014). Advantages of this method will be highlighted. After phase separation, non-relevant information can be excluded and only the wanted phase displayed. Using a set of samples with known and unknown composition, the EM-clustering method has been validated regarding to Gustavo González and Ángeles Herrador (2007). KW - LIBS KW - Concrete KW - EM-clustering KW - Heterogeneity PY - 2017 DO - https://doi.org/10.1016/j.sab.2017.06.005 SN - 0584-8547 VL - 2017 IS - 134 SP - 58 EP - 68 PB - Elsevier B.V. AN - OPUS4-40644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gottlieb, Cassian A1 - Millar, Steven A1 - Günther, Tobias A1 - Wilsch, Gerd T1 - Revealing hidden spectral information of chlorine and sulfur in data of a mobile Laser-induced Breakdown Spectroscopy system using chemometrics JF - Spectrochimica Acta Part B - Atomic Spectroscopy N2 - For the damage assessment of reinforced concrete structures the quantified ingress profiles of harmful species like chlorides, sulfates and alkali need to be determined. In order to provide on-site analysis of concrete a fast and reliable method is necessary. Low transition probabilities as well as the high ionization energies for chlorine and sulfur in the near-infrared range makes the detection of Cl I and S I in low concentrations a difficult task. For the on-site analysis a mobile LIBS-system (k = 1064 nm, Epulse ≤ 3 mJ, t = 1.5 ns) with an automated scanner has been developed at BAM. Weak chlorine and sulfur signal intensities do not allow classical univariate analysis for process data derived from the mobile system. In order to improve the analytical performance multivariate analysis like PLS-R will be presented in this work. A comparison to standard univariate analysis will be carried out and results covering important parameters like detection and quantification limits (LOD, LOQ) as well as processing variances will be discussed (Allegrini and Olivieri, 2014 [1]; Ostra et al., 2008 [2]). It will be shown that for the first time a low cost mobile system is capable of providing reproducible chlorine and sulfur analysis on concrete by using a low sensitive system in combination with multivariate evaluation. KW - LIBS KW - Chemometrics KW - Building materials PY - 2017 DO - https://doi.org/10.1016/j.sab.2017.04.001 SN - 0584-8547 VL - 132 SP - 43 EP - 49 PB - Elsevier B.V. AN - OPUS4-40066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoehse, M. A1 - Paul, Andrea A1 - Gornushkin, Igor B. A1 - Panne, Ulrich T1 - Multivariate classification of pigments and inks using combined Raman spectroscopy and LIBS JF - Analytical and bioanalytical chemistry N2 - The authenticity of objects and artifacts is often the focus of forensic analytic chemistry. In document fraud cases, the most important objective is to determine the origin of a particular ink. Here, we introduce a new approach which utilizes the combination of two analytical methods, namely Raman spectroscopy and laser-induced breakdown spectroscopy (LIBS). The methods provide complementary information on both molecular and elemental composition of samples. The potential of this hyphenation of spectroscopic methods is demonstrated for ten blue and black ink samples on white paper. LIBS and Raman spectra from different inks were fused into a single data matrix, and the number of different groups of inks was determined through multivariate analysis, i.e., principal component analysis, soft independent modelling of class analogy, partial least-squares discriminant analysis, and support vector machine. In all cases, the results obtained with the combined LIBS and Raman spectra were found to be superior to those obtained with the individual Raman or LIBS data sets. KW - Pigments KW - Raman KW - LIBS KW - Chemometrics PY - 2012 DO - https://doi.org/10.1007/s00216-011-5287-6 SN - 1618-2642 SN - 1618-2650 VL - 402 IS - 4 SP - 1443 EP - 1450 PB - Springer CY - Berlin AN - OPUS4-25440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Höhse, Marek A1 - Mory, D. A1 - Florek, S. A1 - Weritz, Friederike A1 - Gornushkin, Igor B. A1 - Panne, Ulrich T1 - A combined laser-induced breakdown and Raman spectroscopy Echelle system for elemental and molecular microanalysis JF - Spectrochimica acta B N2 - Raman and laser-induced breakdown spectroscopy is integrated into a single system for molecular and elemental microanalyses. Both analyses are performed on the same ~ 0.002 mm² sample spot allowing the assessment of sample heterogeneity on a micrometric scale through mapping and scanning. The core of the spectrometer system is a novel high resolution dual arm Echelle spectrograph utilized for both techniques. In contrast to scanning Raman spectroscopy systems, the Echelle-Raman spectrograph provides a high resolution spectrum in a broad spectral range of 200-6000 cm- 1 without moving the dispersive element. The system displays comparable or better sensitivity and spectral resolution in comparison to a state-of-the-art scanning Raman microscope and allows short analysis times for both Raman and laser induced breakdown spectroscopy. The laser-induced breakdown spectroscopy performance of the system is characterized by ppm detection limits, high spectral resolving power (15,000), and broad spectral range (290-945 nm). The capability of the system is demonstrated with the mapping of heterogeneous mineral samples and layer by layer analysis of pigments revealing the advantages of combining the techniques in a single unified set-up. KW - LIBS KW - Raman KW - Echelle KW - Laser-induced breakdown spectroscopy KW - Hyphenated technique PY - 2009 DO - https://doi.org/10.1016/j.sab.2009.09.004 SN - 0584-8547 SN - 0038-6987 VL - 64 IS - 11-12 SP - 1219 EP - 1227 PB - Elsevier CY - Amsterdam AN - OPUS4-20493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klewe, Tim A1 - Völker, Tobias A1 - Landmann, Mirko A1 - Kruschwitz, Sabine T1 - LIBS‐ConSort: Development of a sensor‐based sorting method for construction and demolition waste JF - ce/papers N2 - AbstractA joint project of partners from industry and research institutions approaches the challenge of construction and demolition waste (CDW) sorting by investigating and testing the combination of laser‐induced breakdown spectroscopy (LIBS) with near‐infrared (NIR) spectroscopy and visual imaging. Joint processing of information (data fusion) is expected to significantly improve the sorting quality of various materials like concrete, main masonry building materials, organic components, etc., and may enable the detection and separation of impurities such as SO3‐cotaining building materials (gypsum, aerated concrete, etc.)Focusing on Berlin as an example, the entire value chain will be analyzed to minimize economic / technological barriers and obstacles at the cluster level and to sustainably increase recovery and recycling rates.The objective of this paper is to present current progress and results of the test stand development combining LIBS with NIR spectroscopy and visual imaging. In the future, this laboratory prototype will serve as a fully automated measurement setup to allow real‐time classification of CDW on a conveyor belt. T2 - 21st Ibausil - International Conference on Building Materials CY - Weimar, Germany DA - 13.09.2023 KW - NDT KW - Material cassification KW - Recycling KW - LIBS KW - Data fusion KW - Construction and demolition waste KW - Circular economy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-590734 DO - https://doi.org/10.1002/cepa.2866 SN - 2509-7075 VL - 6 IS - 6 SP - 973 EP - 976 PB - Ernst & Sohn GmbH AN - OPUS4-59073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lindner, H. A1 - Loper, K.H. A1 - Hahn, D.W. A1 - Niemax, Kay T1 - The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry JF - Spectrochimica acta B N2 - Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed. KW - Laser-particle interaction KW - LIBS KW - LA-ICP spectrometry PY - 2011 DO - https://doi.org/10.1016/j.sab.2011.01.002 SN - 0584-8547 SN - 0038-6987 VL - 66 IS - 2 SP - 179 EP - 185 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-26077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maher, C. A1 - Schazmann, B. A1 - Gornushkin, Igor B. A1 - Rurack, Knut A1 - Gojani, Ardian T1 - Exploring an Application of Principal Component Analysis to LaserInduced Breakdown Spectroscopy of Stainless-Steel Standard Samples as a Research Project JF - Journal of Chemical Education N2 - Laser-induced breakdown spectroscopy (LIBS) and principal component analysis (PCA) are frequently used for analytical purposes in research and industry, but they seldom are part of the chemistry Curriculum or laboratory exercises. This case study paper describes the combined application of LIBS and PCA during a research internship for an undergraduate student. The instructional method applied was based on a one-on-one mentorship, in which case the learner was engaged in a Research work. The learning activities included theoretical introductions to the LIBS and PCA methods, numerical simulation, experiments, and data analysis. The study covered three main topics: analysis of LIBS spectra, application of PCA for clustering, and use of PCA for experimental design. The realization of the study was instructive for all parties involved: from the mentorship point of view, it is concluded that the topics can be covered during an internship or developed into a one semester long research-based module of a chemistry program or a final year project. The student, on the other hand, developed profound technical skills in performing experiments and using PCA software for data analysis. KW - LIBS KW - PCA PY - 2021 DO - https://doi.org/10.1021/acs.jchemed.1c00563 VL - 98 SP - 3237 EP - 3244 PB - American Chemical Society Publications CY - USA AN - OPUS4-53515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Matiaske, Anna-Maria A1 - Gornushkin, Igor B. A1 - Panne, Ulrich T1 - Double-pulse laser-induced breakdown spectroscopy for analysis of molten glass JF - Analytical and bioanalytical chemistry N2 - A mobile double-pulse laser-induced breakdown spectroscopy system for industrial environments is presented. Its capabilities as a process analytical technique for the recovery of metals from molten inorganic wastes are investigated. Using low-melting glass doped with different amounts of additives as a model system for recycling slags, the optimum number of shots, laser inter-pulse and acquisition delay times are optimized for solid and liquid (1200 °C) glass. Limits of detection from 7 ppm (Mn) to 194 ppm (Zn) are achieved working at a distance of 75 cm from the sample. To simplify the quantification of molten samples in an industrial furnace, the possibility is examined of using solid standards for analysis of molten material. KW - Laser-induced breakdown spectroscopy KW - LIBS KW - Double-pulse LIBS KW - Molten glass KW - Recycling PY - 2011 DO - https://doi.org/10.1007/s00216-011-5165-2 SN - 1618-2642 SN - 1618-2650 VL - 402 IS - 8 SP - 2597 EP - 2606 PB - Springer CY - Berlin AN - OPUS4-23950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Merk, Sven A1 - Demidov, Alexandr A1 - Shelby, D. A1 - Gornushkin, Igor B. A1 - Panne, Ulrich A1 - Smith, B.W. A1 - Omenetto, N. T1 - Diagnostic of laser-induced plasma using Abel inversion and radiation modeling JF - Applied spectroscopy N2 - A method based on matching synthetic and experimental emissivity spectra was applied to spatially resolved measurements of a laser-induced plasma ignited in argon at atmospheric pressure. The experimental emissivity spectra were obtained by Abel inversion of intensity spectra measured from a thin plasma slice perpendicular to the plasma axis. The synthetic spectra were iteratively calculated from an equilibrium model of plasma radiation that included free free, free–bound, and bound–bound transitions. From both the experimental and synthetic emissivity spectra, spatial and temporal distributions of plasma temperature and number densities of plasma species (atoms, ions, and electrons) were obtained and compared. For the best-fit synthetic spectra, the temperature and number densities were read directly from the model; for experimental spectra, these parameters were obtained by traditional Boltzmann plot and Stark broadening methods. In both cases, the same spectroscopic data were used. Two approaches revealed a close agreement in electron number densities, but differences in plasma excitation temperatures and atom number densities. The trueness of the two methods was tested by the direct Abel transform that reconstructed the original intensity spectra for comparing them to the measured spectra. The comparison yielded a 9 and 13% difference between the reconstructed and experimental spectra for the numerical and traditional methods, respectively. It was thus demonstrated that the spectral fit method is capable of providing more accurate plasma diagnostics than the Boltzmann plot and Stark broadening methods. KW - Abel inversion KW - Laser-induced plasma KW - LIBS KW - Plasma spectrum analysis PY - 2013 DO - https://doi.org/10.1366/12-06929 SN - 0003-7028 SN - 1943-3530 VL - 67 IS - 8 SP - 851 EP - 859 PB - Society for Applied Spectroscopy CY - Frederick, Md. AN - OPUS4-30433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Merk, Sven A1 - Shabanov, Sergej V. A1 - Gornushkin, Igor B. A1 - Panne, Ulrich T1 - Laser-induced plasma tomography by the Radon transform JF - Journal of analytical atomic spectrometry N2 - The Radon transform is tested as a method for reconstruction of the emissivity distribution of asymmetric laser induced plasmas. Two types of experiments were carried out. First, the plasma asymmetry is introduced via focusing the laser by a cylindrical lens to create plasma plumes elongated along the symmetry axis of the lens. Second, an asymmetric power distribution across the laser beam is created by reflecting the latter from a damaged mirror. Various effects on the quality of the plasma emissivity reconstructed by the Radon tomography method are investigated. The understanding of these effects appears to be essential to design a proper experimental setup to study LIBS plasmas by the Radon tomography method. It is demonstrated that the Radon tomography can successfully be used for experimental studies of asymmetric LIBS plasmas. KW - Radon transform KW - Laser induced plasma KW - LIBS KW - Plasma tomography PY - 2011 DO - https://doi.org/10.1039/c1ja10187k SN - 0267-9477 SN - 1364-5544 VL - 26 SP - 2483 EP - 2492 PB - Royal Society of Chemistry CY - London AN - OPUS4-24889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Millar, Steven A1 - Gottlieb, Cassian A1 - Sankat, Nina A1 - Wilsch, Gerd A1 - Kruschwitz, Sabine T1 - Chlorine determination in cement-bound materials with Laser-induced Breakdown Spectroscopy (LIBS) – A review and validation JF - Spectrochimica Acta Part B-Atomic Spectroscopy N2 - The determination of chloride is still one of the main tasks for the evaluation of reinforced concrete structures. The corrosion of the reinforcement induced by the penetrating chlorides is the dominant damage process affecting the lifetime of concrete structures. In the recent years different research groups demonstrated that LIBS can be a fast and reliable method to quantify chlorine in cement-bound materials. Because chlorine in concrete can only occur as solved ions in the pore solution or bound in salts or hydrated cement phases, the detected emission of chlorine can be correlated with the chloride concentration determined e.g. with potentiometric titration. This work inter alia describes the production of reference samples and possible side effects during the production process. Due to transport processes in the porous matrix of the cement a misinterpretation of the concentrations is possible. It is shown how to overcome these effects and higher precisions of the single measurements can be realised. Using the calibration method, blank sample method and noise method, three different ways of calculating the limit of detection (LOD) and limit of quantification (LOQ) are compared. Due to the preparation of the reference samples a precision of the whole calibration model of sx0 = 0.023 wt% is determined. The validation of the model is based on different test sets, which are varying in their composition (different Cl-salts, water-to-cement ratios and additives). The determined mean error of the validation is 0.595 ± 0.063 wt%, which is comparable to standardised methods like potentiometric titration, direct potentiometry or photometry (0.40 ± 0.06 wt%) [1]. KW - LIBS KW - Chlorine KW - Cement KW - Calibration KW - Validation PY - 2018 DO - https://doi.org/10.1016/j.sab.2018.05.015 SN - 0584-8547 VL - 147 IS - September SP - 1 EP - 8 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-46558 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Millar, Steven A1 - Gottlieb, Cassian A1 - Wilsch, Gerd A1 - Eichler, Thorsten A1 - Bohling, C. A1 - Molkenthin, A. T1 - Laser induced breakdown spectroscopy (LIBS) - On-site investigatioons on a bridge with a mobile LIBS-system JF - The e-journal of nondestructive testing & ultrasonics N2 - LIBS is on the step from a laboratory application to on-site analysis. A validated mobile LIBS-system for on-site application on building materials is under development at BAM in cooperation with industrial partners (system developers and companies), who will use this technique for investigation on building structures like bridges and parking decks. The system is designed to measure the content of harmful species like chlorine, sulfur or alkalis, to give the engineer a tool for the estimation of the condition of concrete structures and for quality assurance during concrete repair work on-site. In these work results of on-site measurements on a chloride contaminated bridge are shown. Further work will focus on providing guidelines to establish LIBS as a standard procedure for chemical investigations of building materials. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 15.09.2015 KW - LIBS KW - Chlorides KW - Sulfur KW - Alkalis KW - Corrosion KW - ASR KW - Chemical analysis KW - Chloride KW - Elementanalyse KW - Natrium KW - Baustoffuntersuchungen KW - Baustoffe KW - Dauerhaftigkeit KW - Messsysteme KW - Mobiles LIBS PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-345795 UR - http://www.ndt.net/?id=18296 SN - 1435-4934 VL - 20 IS - 11 SP - 1 EP - 5 PB - NDT.net CY - Kirchwald AN - OPUS4-34579 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Millar, Steven A1 - Kruschwitz, Sabine A1 - Wilsch, Gerd T1 - Determination of total chloride content in cement pastes with laser-induced breakdown spectroscopy (LIBS) JF - Cement and Concrete Research N2 - The presented work discusses the accuracy of Laser Induced Breakdown Spectroscopy (LIBS) in determining the total chloride content in cement pastes. LIBS as an emission spectroscopy method is used to detect simultaneously several elements present in cement-based materials. By scanning surfaces the variability in the spatial distribution of elements can be visualised. However, for a quantification of the results, studies are necessary to characterise possible influences due to the wide variation of the chemical compositions in which cement can occur. It is shown how the calibration can be done, how the calibration samples were produced, and which statistical parameters are necessary to describe the precision of the regression. The performance of LIBS is estimated by detecting chloride in validation samples. Therefore, 55 samples and 7 ets with changing mix ompositions were produced. The presented study deals with possible influences of different mix compositions, ncluding different cations of chloride, varying w/c-ratios and the artial replacement of Portland cement with last furnace slag (50% BFS) and limestone (30% LS). Comparing the LIBS results with otentiometric titration, n accuracy of±0.05 wt%/total has been determined. KW - Spectroscopy KW - LIBS KW - Chloride KW - Quantification KW - Cement PY - 2019 DO - https://doi.org/10.1016/j.cemconres.2018.12.001 SN - 0008-8846 VL - 117 IS - March SP - 16 EP - 22 PB - Elsevier CY - Amsterdam AN - OPUS4-47059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Molkenthin, André A1 - Wilsch, Gerd A1 - Weritz, Friederike A1 - Taffe, Alexander A1 - Schaurich, Dieter T1 - Visualisierung des Anionen- und Kationentransportes sowie die Quantifizierung des Cl- und S-Gehaltes mittels Laserinduzierter Breakdown-Spektroskopie (LIBS) JF - Zement und Beton KW - LIBS KW - Beton KW - Alkali-Kieselsäure Reaktion KW - Tausalz KW - Ionen Transport KW - Chlorid KW - Sulfat PY - 2007 SN - 0514-2946 VL - 1 SP - 30 EP - 33 CY - Wien, Österreich AN - OPUS4-18632 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Maike A1 - Gornushkin, Igor B. A1 - Florek, S. A1 - Mory, D. A1 - Panne, Ulrich T1 - Approach to Detection in Laser-Induced Breakdown Spectroscopy JF - Analytical chemistry N2 - Gated detection with intensified detectors, e.g., ICCDs, is today the accepted approach for detection of plasma emission in laser-induced breakdown spectroscopy (LIBS). However, these systems are more cost-intensive and less robust than nonintensified CCDs. The objective of this paper is to compare, both theoretically and experimentally, the performance of an intensified (ICCD) and nonintensified (CCD) detectors for detection of plasma emission in LIBS. The CCD is used in combination with a mechanical chopper, which blocks the early continuum radiation from the plasma. The detectors are attached sequentially to an echelle spectrometer under the same experimental conditions. The laser plasma is induced on a series of steel samples under atmospheric conditions. Our results indicate that there is no substantial difference in the performance of the CCD and ICCD. Signal-to-noise ratios and limits of detection achieved with the CCD for Si, Ni, Cr, Mo, Cu, and V in steel are comparable or even better than those obtained with the ICCD. This result is further confirmed by simulation of the plasma emission signal and the corresponding response of the detectors in the limit of quantum (photon) noise. KW - LIBS KW - Detektorvergleich KW - ICCD CCD PY - 2007 DO - https://doi.org/10.1021/ac0621470 SN - 0003-2700 SN - 1520-6882 VL - 79 IS - 12 SP - 4419 EP - 4426 PB - American Chemical Society CY - Washington, DC AN - OPUS4-15044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nagli, L. A1 - Gaft, M. A1 - Raichlin, Y. A1 - Gornushkin, Igor B. T1 - Cascade generation in Al laser induced plasma JF - Optics Communications N2 - We found cascade IR generation in Al laser induced plasma. This generation includes doublet transitions 3s25s 2S1∕2→ 3s24p 2P1∕2,3∕2 → 3s24s 2S1∕2; corresponding to strong lines at 2110 and 2117 nm, and much weaker lines at 1312–1315 nm. The 3s25s2S 1∕2 starting IR generation level is directly pumped from the 3s23p 2P3∕2 ground level. The starting level for UV generation at 396.2 nm (transitions 3s24s 2S1∕2 → 4p 2P3∕2) is populated due to the fast collisional processes in the plasma plume. These differences led to different time and special dependences on the lasing in the IR and UV spectral range within the aluminum laser induced plasma. KW - Plasma diagnostics KW - Laser induced plasma KW - LIBS KW - Plasma modeling PY - 2018 DO - https://doi.org/10.1016/j.optcom.2018.01.041 VL - 415 SP - 127 EP - 129 PB - Elsevier B.V. AN - OPUS4-44274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ostermann, Markus A1 - Herzel, Hannes A1 - Kühn, A. A1 - Mory, D. A1 - Wedell, R. T1 - Prozessanalytik mit Online-RFA und Online-LIBS für die Regelung der Aufarbeitung von Klärschlammaschen T1 - Online Process Analytics with XRF and LIBS for the Control of the Recycling of Sewage Sludge Ashes JF - Chemie Ingenieur Technik N2 - Es wurde ein Online-Analysenverfahren zur Bestimmung von Elementgehalten in Klär-schlammaschen und deren Produkten aus einem thermochemischen Verfahren entwickelt. Durch das thermochemische Verfahren können Wertstoffe aus den Aschen wieder für die Kreislaufwirtschaft nutzbar gemacht und Schadstoffe sicher entfernt werden. Das Analysensystem ist eine Methodenkombination von Online-Laser induzierter Plasma Spektroskopie (LIBS) und Online-Röntgenfluoreszenzanalyse (RFA). Robustheit und modulare Bauweise des Verfahrens sind wichtige Anforderungen um auch für andere Anwendungen nutzbar zu sein. N2 - An online analysis method has been developed for the determination of element mass fractions in sewage sludge ashes and their products originating from a thermochemical process. Within this process resources from the sewage sludge ashes can be re-utilized for the recycling economy and pollutants can be removed. The applied analysis system is a method combination of Online-laser induced breakdown spectroscopy (LIBS) and online- X-ray fluorescence (XRF). Robustness and a modular construction are important demands for successful future applications. KW - Klärschlammasche KW - Phosphor KW - Prozessanalytik KW - Röntgenfluoreszenzanalyse KW - LIBS PY - 2016 DO - https://doi.org/10.1002/cite.201500186 SN - 1522-2640 VL - 88 IS - 6 SP - 786 EP - 792 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim, Germany AN - OPUS4-36334 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ostermann, Markus A1 - Schmid, Thomas A1 - Büchele, Dominique A1 - Rühlmann, Madlen T1 - In Echtzeit durch's Periodensystem JF - Laborpraxis N2 - Per Online-RFA und -LIBS Elementgehalte in Böden bestimmen. Die ortsspezifische Steuerung der Bodenfruchtbarkeit durch angepasste Düngung und andere Maßnahmen hilft die Bodenfunktionen zu verbessern und Umweltbelastungen zu vermindern. Dabei zeigt das Beispiel die hohe Relevanz schneller, robuster Vor-Ort-Analysen für viele umweltrelevante Fragestellungen. KW - RFA KW - LIBS KW - Online-Analytik KW - Boden PY - 2016 UR - https://files.vogel.de/vogelonline/vogelonline/issues/lp/7680.pdf SN - 0344-1733 VL - 40 IS - LP 12 SP - 22 EP - 24 PB - Vogel Business Media GmbH & Co. KG CY - Würzburg AN - OPUS4-38700 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Porizka, Pavel A1 - Demidov, Alexandr A1 - Kaiser, J. A1 - Keivanian, J. A1 - Gornushkin, Igor B. A1 - Panne, Ulrich A1 - Riedel, Jens T1 - Laser-induced breakdown spectroscopy for in situ qualitative and quantitative analysis of mineral ores JF - Spectrochimica acta B N2 - In this work, the potential of laser-induced breakdown spectroscopy (LIBS) for discrimination and analysis of geological materials was examined. The research was focused on classification of mineral ores using their LIBS spectra prior to quantitative determination of copper. Quantitative analysis is not a trivial task in LIBS measurement because intensities of emission lines in laser-induced plasmas (LIP) are strongly affected by the sample matrix (matrix effect). To circumvent this effect, typically matrix-matched standards are used to obtain matrix-dependent calibration curves. If the sample set consists of a mixture of different matrices, even in this approach, the corresponding matrix has to be known prior to the downstream data analysis. For this categorization, the multielemental character of LIBS spectra can be of help. In this contribution, a principal component analysis (PCA) was employed on the measured data set to discriminate individual rocks as individual matrices against each other according to their overall elemental composition. Twenty-seven igneous rock samples were analyzed in the form of fine dust, classified and subsequently quantitatively analyzed. Two different LIBS setups in two laboratories were used to prove the reproducibility of classification and quantification. A superposition of partial calibration plots constructed from the individual clustered data displayed a large improvement in precision and accuracy compared to the calibration plot constructed from all ore samples. The classification of mineral samples with complex matrices can thus be recommended prior to LIBS system calibration and quantitative analysis. KW - Laser-induced breakdown spectroscopy KW - LIBS KW - Chemometrics KW - Principal component analysis KW - Geochemical analysis PY - 2014 DO - https://doi.org/10.1016/j.sab.2014.08.027 SN - 0584-8547 SN - 0038-6987 VL - 101 SP - 155 EP - 163 PB - Elsevier CY - Amsterdam AN - OPUS4-32588 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Porizka, Pavel A1 - Klessen, Benjamin A1 - Kaiser, J. A1 - Gornushkin, Igor B. A1 - Panne, Ulrich A1 - Riedel, Jens T1 - High repetition rate laser-induced breakdown spectroscopy using acousto-optically gated detection JF - Review of scientific instruments N2 - This contribution introduces a new type of setup for fast sample analysis using laser-induced breakdown spectroscopy (LIBS). The novel design combines a high repetition rate laser (up to 50 kHz) as excitation source and an acousto-optical modulator (AOM) as a fast switch for temporally gating the detection of the emitted light. The plasma radiation is led through the active medium of the AOM where it is diffracted on the transient ultrasonic Bragg grid. The diffracted radiation is detected by a compact Czerny-Turner spectrometer equipped with a CCD line detector. Utilizing the new combination of high repetition rate lasers and AOM gated detection, rapid measurements with total integration times of only 10 ms resulted in a limit of detection (LOD) of 0.13 wt.% for magnesium in aluminum alloys. This short integration time corresponds to 100 analyses/s. Temporal gating of LIP radiation results in improved LODs and consecutively higher sensitivity of the LIBS setup. Therefore, an AOM could be beneficially utilized to temporally detect plasmas induced by high repetition rate lasers. The AOM in combination with miniaturized Czerny-Turner spectrometers equipped with CCD line detectors and small footprint diode pumped solid state lasers results in temporally gateable compact LIBS setups. KW - Laser Induced Breakdown Spectroscopy KW - LIBS KW - Aluminium KW - Charge coupled devices KW - Magnesium KW - Light diffraction PY - 2014 DO - https://doi.org/10.1063/1.4890337 SN - 0034-6748 SN - 1089-7623 VL - 85 IS - 7 SP - 073104-1 - 073104-8 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-31358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Gornushkin, Igor A1 - Griesche, Axel A1 - Kannengiesser, Thomas A1 - Treutler, Kai A1 - Wesling, Volker T1 - In situ chemical analysis of duplex stainless steel weld by laser induced breakdown spectroscopy JF - Spectrochimica Acta Part B N2 - The high corrosion resistance and good mechanical properties of duplex stainless steel (DSS) are due to its special chemical composition, which is a balanced phase ratio of ferrite (α) and austenite (γ). Many industrial applications require the integration of DSS components. For this, Gas tungsten arc welding (GTAW) is an excellent choice, as it allows an automated operation with high reproducibility. However, when the weld pool solidifies, critical ratios of α- and γ- phases can occur, which lead to solidification cracking, increased susceptibility to corrosion, and a decrease in ductility and critical strength. Previous studies have shown that these defects can be caused by the accumulation of manganese and chromium in the heat affected zone (HAZ), requiring ongoing monitoring of this accumulation. A suitable method for such monitoring is laser-induced breakdown spectroscopy (LIBS), which can be used in two operating modes: calibration using standard reference samples and calibration-free. Unlike conventional quantitative LIBS measurements, which require reference samples to generate a calibration curve, calibration-free LIBS (CF-LIBS) allows chemical compositions to be determined solely from the emission spectrum of the plasma. Numerous publications show that CF-LIBS is a fast and efficient analytical method for the quantitative analysis of metal samples. In this work, CF-LIBS is applied to spectra obtained during GTAW DSS welding and the result is compared with those obtained by PLS analysis. A good correlation was found between both types of analysis, demonstrating the suitability of the CF-LIBS method for this application. The CF-LIBS method has a significant advantage over conventional LIBS due to the rapid in situ measurement of concentrations of major alloying elements without calibration procedure. This, combined with fast feedback and appropriate adjustment of welding parameters, helps prevent welding defects. KW - Duplex stainless steels KW - In situ measurement KW - LIBS KW - GMAW PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597940 DO - https://doi.org/10.1016/j.sab.2024.106899 SN - 0584-8547 VL - 214 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-59794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Kannengießer, Thomas T1 - Spatially resolved EDS, XRF and LIBS measurements of the chemical composition of duplex stainless steel welds: A comparison of methods JF - Spectrochimica Acta Part B: Atomic Spectroscopy N2 - Duplex stainless steels (DSS) are used in all industries where corrosion problems play a major role. Examples include the chemical industry, the food industry and shipping industries. DSS have a balanced phase ratio of ferrite (α) and austenite (γ). Unlike single-phase stainless steels, DSS combine the advantages of these and can therefore fit many industry requirements, such as weight saving or high mechanical strength. When these steels are welded, alloying elements can burn off and condense as thin layers on cold surface regions. This loss of chemical elements can lead to changes in the microstructure. With the help of Laser-Induced Breakdown Spectroscopy (LIBS), chemical element distributions were visualized. The results were compared with those of conventional measurement methods, such as energy dispersive X-ray analysis (EDS) and X-ray fluorescence analysis (XRF), and the results from LIBS could be validated. LIBS is suitable as a fast, straightforward measurement method for producing line scans along the weld seam and provides spatially resolved information on accumulation phenomena of burned off alloying elements. LIBS is very well suited for the detection of sub-surface elements due to the exclusively superficial ablation of the material. In addition, the measurement method has been calibrated so that quantitative statements about element concentrations can also be made. T2 - EMSLIBS 2021 CY - Online Meeting DA - 25.11.2021 KW - LIBS KW - TIG welding KW - Duplex stainless steel KW - XRF KW - EDS PY - 2022 DO - https://doi.org/10.1016/j.sab.2022.106439 SN - 0584-8547 VL - 193 SP - 1 EP - 8 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-54837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Kannengießer, Thomas T1 - In situ investigation of chemical composition during TIG welding in duplex stainless steels using Laser-Induced Breakdown Spectroscopy (LIBS) JF - Forces in mechanics N2 - Many applications in industry require a material-to-material joining process of Duplex Stainless Steels (DSS). Therefore, it is essential to investigate the material’s properties during a welding process to control the weld quality. With the help of Laser-Induced Breakdown Spectroscopy (LIBS), the chemical composition during the Tungsten Inert Gas (TIG) welding process of DSS could be monitored in situ. The chemical composition could be quantitatively measured using pre-established calibration curves. Although the surface temperature and the welding plasma have a high influence on the spectral intensities, reliable composition measurements were possible. The concentration of alloying elements could be mapped during the TIG welding process. T2 - 2nd International Conference on Advanced Joining Processes CY - Sintra, Portugal DA - 21.10.2021 KW - LIBS KW - In situ measurement KW - WRC 1992 diagram KW - TIG welding KW - Duplex stainless steels PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542026 DO - https://doi.org/10.1016/j.finmec.2021.100063 SN - 2666-3597 VL - 6 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-54202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Kannengießer, Thomas T1 - Rapid solidification during welding of duplex stainless steels – in situ measurement of the chemical concentration by Laser-Induced Breakdown Spectroscopy (LIBS) JF - IOP Conference Series: Materials Science and Engineering N2 - Duplex stainless steels (DSS) are frequently used, especially in applications requiring high strength combined with high corrosion resistance in aggressive media. Examples include power plant components and maritime structures. During welding of these steels, local variations in chemical composition can occur. This results in ferritization of the material and negatively affects the mechanical properties of the components. In this work, tungsten inert gas (TIG) welding experiments were performed with DSS. Chemical composition analysis was realized in situ by using Laser Induced Breakdown Spectroscopy (LIBS). The aim of the work is to quantitatively measure the chemical composition in the weld seam of various DSS and to identify possible influences of welding parameters on the microstructure of the material. The chemical concentrations of the main alloying elements Cr, Ni, Mn on the surface of the sample during the welding process and the cooling process were measured. Mn and Ni are austenite stabilizers and their content increases during welding by using certain high alloyed filler material. Spectra were recorded every 1.3 s at a spacing of approximately 2 mm. During the cooling process the location of the measurement was not changed. The LIBS method is proofed to be suitable for the quantitative representation of the chemical compositions during the welding process. T2 - ICASP-6 CY - Le Bischenberg, France DA - 20.06.2022 KW - LIBS KW - In situ measurement KW - Duplex stainless steel KW - TIG welding KW - Evaporation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571308 DO - https://doi.org/10.1088/1757-899X/1274/1/012018 VL - 1274 SP - 1 EP - 8 PB - IOP Publishing CY - Bristol AN - OPUS4-57130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Nietzke, Jonathan A1 - Kannengießer, Thomas T1 - In situ measurement of hydrogen concentration in steel using laser‑induced breakdown spectroscopy (LIBS) JF - Welding in the World N2 - The ISO 3690 standard “Determination of hydrogen content in arc weld metal” requires a thermal activation of the diffusible hydrogen in a piece of weld metal for the subsequent ex situ concentration measurement by carrier gas hot extraction CGHE or thermal desorption spectroscopy (TCD). Laser-induced breakdown spectroscopy (LIBS) offers a time and spatially resolved, almost non-destructive, in situ measurement of hydrogen at surfaces without sample preparation. We measured hydrogen in steels, which were charged either electrochemically or by high-pressure hydrogen gas, and compared the results. Further, the feasibility of quantitative hydrogen line scan measurements with LIBS was demonstrated by measuring hydrogen at water jet cut surfaces. The hydrogen concentrations measured with the help of LIBS were compared with CGHE measurements. It was observed that hydrogen can be reliably measured with LIBS for concentrations larger than 2 wt.-ppm. The maximum hydrogen concentration achieved using electrochemical charging was 85.1 ppm. The results show that LIBS is a promising technique for time- and spatially resolved measurements of hydrogen in steels. T2 - IIW Annual Assembly 2023 CY - Singapore KW - LIBS KW - Hydrogen measurement KW - Welding KW - Stainless steel KW - Diffusible hydrogen PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593664 DO - https://doi.org/10.1007/s40194-023-01677-2 SP - 1 EP - 9 PB - Springer AN - OPUS4-59366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Riedel, Jens A1 - Hufgard, Josefin A1 - You, Yi T1 - LIBS at high duty-cycles: effect of repetition rate and temporal width on the excitation laser pulses JF - Frontiers in Physics N2 - Laser-induced breakdown spectroscopy (LIBS) is becoming a more mature technology every year with new variants such as laser ablation molecular isotopic spectrometry, reheating by various discharge techniques, and multiple pulse excitation schemes, in which sometimes lasers of different pulse lengths are used. However, lasers with inherent parameters like pulse length and repetition rate are still almost exclusively employed. Recent years have witnessed the advent of novel high-repetition-rate laser concepts for machining processes, like welding, milling, and engraving. Here, a comprehensive study of single-pulse LIBS spectra of a single aluminum target is presented to showcase the applicability of flexible high duty-cycle master oscillator power amplifier (MOPA) lasers. Although traditional flashlamp-pumped Fabry–Pérot lasers only permit a variation in the pulse energy and are operated at very low duty-cycles, MOPA lasers add repetition rate and pulse length as variable parameters. A thorough analysis of the temporal plasma behavior revealed the emission dynamic to closely match the excitation laser pulse pattern. An aluminum sample’s spectral response was shown to be significantly impacted by variations in both rate and length. Although the spectral emission strength of the elemental lines of Al, Sr, and Ca all peaked at slightly different parameter settings, the strongest impact was found on the relative abundance of molecular AlO bands. Unlike in previous laser ablation molecular isotopic spectrometry (LAMIS) publications, the latter could be readily detected with a good intensity and well-resolved spectral features without any temporal gating of the detector. This finding, together with the fact that MOPA lasers are both inexpensive and dependable, makes for a promising combination for future studies including the detection of diatomic band structures. KW - Laser-induced breakdown spectroscopy KW - LIBS PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-583300 DO - https://doi.org/10.3389/fphy.2023.1241533 SN - 2296-424X VL - 11 SP - 1 EP - 8 AN - OPUS4-58330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Savija, B. A1 - Schlangen, E. A1 - Pacheco, J. A1 - Millar, Steven A1 - Eichler, Thorsten A1 - Wilsch, Gerd T1 - Chloride ingress in cracked concrete: a laser induced breakdown spectroscopy (LIBS) study JF - Journal of advanced concrete technology N2 - Cracks are always present in reinforced concrete structures. In the presented research, influence of mechanical cracks on chloride ingress is studied. A compact reinforced concrete specimen was designed, mimicking the cracking behaviour of beam elements. Cracks of different widths were induced by means of mechanical loading. These cracked specimens were then subjected to weekly cycles of wetting and drying with NaCl solution. After the exposure, the specimens were cut, and chloride distributions were determined using Laser Induced Breakdown Spectroscopy (LIBS), an innovative technique which enables simultaneous determination of different elements with high spatial resolution and minimal specimen preparation. By combining element distributions of different elements, it is possible to discriminate between coarse aggregate particles, and the mortar matrix. It was found that the wider the crack is, the higher the ingress of chloride ions. This was, however, different for two tested concrete mixes. Due to highly inhomogeneous chloride distribution around the cracks, use of fine-scale experimental techniques for chloride mapping is advised, based on the presented study. KW - LIBS KW - Concrete KW - Chloride KW - Ingress KW - Cracks PY - 2014 DO - https://doi.org/10.3151/jact.12.425 SN - 1346-8014 VL - 12 IS - 10 SP - 425 EP - 442 CY - Tokyo AN - OPUS4-31932 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwarz, W. A1 - Wilsch, Gerd A1 - Katsumi, N. A1 - Ebell, Gino A1 - Völker, Tobias T1 - Ion distribution in concrete overlay, mapped by laser induced breakdown spectroscopy (LIBS), modified by an embedded zinc anode JF - MATEC web of conferences N2 - Galvanic corrosion protection by embedded zinc anodes is an accepted technique for the corrosion protection of reinforcing steel in concrete. Galvanic currents flow between the zinc anode and the steel reinforcement due to the potential difference that is in the range of a few hundred mV. The ion distribution was studied on two steel reinforced concrete specimens admixed with 3 wt.% chloride/wt. cement and galvanically protected by a surface applied EZ-anode. On both specimens, a zinc anode was embedded and glued to the concrete surface by a geo-polymer-based chloride-free binder. At one specimen, the EZ-anode was operated for 2,5 years, the EZ-anode at the other specimen was not electrically connected to the reinforcement, this specimen serves as a reference. Both specimens have been stored under identical conditions. The ion distribution between the anode (EZ-ANODE) and cathode (steel reinforcement) was studied by laser-induced breakdown spectroscopy (LIBS) after 7 months, 12 months, and 2,5 years. Results of the LIBS studies on the specimen with activated EZ-anode after 7 months, 12 months, and 2,5 years and of the reference specimen after 2,5 years are reported. Results show that diffusion of ions contributes to the changes in the ion distribution but migration, especially of chlorides towards the EZ-anode is significant despite the weak electric field – several hundred millivolts - generated by the galvanic current. Results show that chloride ions accumulate near the zinc-anode as in water-insoluble zinc-hydroxy chlorides - Simonkollite. T2 - ICCRRR 2022 CY - Capetown, South Africa KW - Corrosion KW - LIBS KW - Zinc KW - Anode PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560576 DO - https://doi.org/10.1051/matecconf/202236404023 SN - 2261-236X VL - 364 SP - 1 EP - 7 PB - EDP Sciences CY - Les Ulis AN - OPUS4-56057 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shabanov, Sergej V. A1 - Gornushkin, Igor B. T1 - Emission plasma tomography with large acceptance angle apertures relevant to laser induced plasma spectroscopy JF - Spectrochimica Acta B N2 - It is proposed to use apertures with large acceptance angles to reduce the integration time when studying the emissivity of laser induced plasmas by means of the Abel inversion method. The spatial resolution lost due to contributions of angled lines of sight to the intensity data collected along the plasma plume diameter is restored by a special numerical data processing. The procedure is meant for the laser induced plasma diagnostics and tomography when the integration time needed to achieve a reasonable signal to noise ratio exceeds a characteristic time scale of the plasma state variations which is short especially at early stages of the plasma evolution. It can also be used to improve the spatial resolution in a conventional experimental setup for plasma diagnostics. KW - Abel inversion KW - LIBS KW - Plasma tomography PY - 2011 DO - https://doi.org/10.1016/j.sab.2011.04.006 SN - 0584-8547 SN - 0038-6987 VL - 66 IS - 6 SP - 413 EP - 420 PB - Elsevier CY - Amsterdam AN - OPUS4-25827 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shabanov, Sergej V. A1 - Gornushkin, Igor B. T1 - Anions in laser-induced plasmas N2 - The equation of state for plasmas containing negative atomic and molecular ions (anions) is modeled. The model is based on the assumption that all ionization processes and chemical reactions are at local thermal equilibrium and the Coulomb interaction in the plasma is described by the Debye–Hu¨ckel theory. In particular, the equation of state is obtained for plasmas containing the elements Ca, Cl, C, Si, N, and Ar. The equilibrium reaction constants are calculated using the latest experimental and ab initio data of spectroscopic constants for the molecules CaCl2, CaCl, Cl2, N2, C2, Si2 , CN, SiN, SiC, and their positive and negative ions. The model is applied to laserinduced plasmas (LIPs) by including the equation of state into a fluid dynamic numerical model based on the Navier–Stokes equations describing an expansion of LIP plumes into an ambient gas as a reactive viscous flow with radiative losses. In particular, the formation of anions Cl-, C-, Si-, Cl2, Si2, C2 , CN-, SiC-, and SiN- in LIPs is investigated in detail. KW - Plasma modeling KW - Plasma KW - LIBS PY - 2016 DO - https://doi.org/10.1007/s00339-016-0175-8 VL - 2016 SP - Article Number: 676 PB - Applied Physics A, Springer AN - OPUS4-38771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shabanov, Sergej V. A1 - Gornushkin, Igor B. T1 - Geometrical effects in data collection and processing for calibration-free laser-induced breakdown spectroscopy JF - Journal of Quantitative Spectroscopy & Radiative Transfer N2 - Data processing in the calibration-free laser-induced breakdown spectroscopy (LIBS) is usually based on the solution of the radiative transfer equation along a particular line of sight through a plasma plume. The LIBS data processing is generalized to the case when the spectral data are collected from large portions of the plume. It is shown that by adjusting the optical depth and width of the lines the spectra obtained by collecting light from an entire spherical homogeneous plasma plume can be least-square fitted to a spectrum obtained by collecting the radiation just along a plume diameter with a relative error of 10 −11 or smaller (for the optical depth not exceeding 0.3) so that a mismatch of geometries of data processing and data collection cannot be detected by fitting. Despite the existence of such a perfect least-square fit, the errors in the line optical depth and width found by a data processing with an inappropriate geometry can be large. It is shown with analytic and numerical examples that the corresponding relative errors in the found elemental number densities and concentrations may be as high as 50% and 20%, respectively. Safe for a few found exceptions, these errors are impossible to eliminate from LIBS data processing unless a proper solution of the radiative transfer equation corresponding to the ray tracing in the spectral data collection is used. KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics PY - 2018 DO - https://doi.org/10.1016/j.jqsrt.2017.09.018 SN - 0022-4073 SN - 1879-1352 VL - 204 SP - 190 EP - 205 PB - Elsevier AN - OPUS4-43131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Taffe, Alexander A1 - Pohl, M. A1 - Roeser, W. A1 - Schwamborn, B. T1 - Betonkorrosion durch Schwefelsäure an Abwasserbauwerken - Innovative Schadensdiagnose JF - Beton- und Stahlbetonbau KW - Schadensdiagnose KW - Betonkorrosion KW - Kläranlagen KW - Biogene Schwefelsäure KW - Laser-induzierte breakdown Spektroskopie KW - LIBS KW - ZfPBau PY - 2007 DO - https://doi.org/10.1002/best.200700574 SN - 0005-9900 SN - 1437-1006 VL - 102 IS - 10 SP - 691 EP - 698 PB - Ernst CY - Berlin AN - OPUS4-15888 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Taparli, Ugur Alp A1 - Jacobsen, Lars A1 - Griesche, Axel A1 - Michalik, Katarzyna A1 - Mory, David A1 - Kannengießer, Thomas T1 - In situ laser-induced breakdown spectroscopy measurements of chemical compositions in stainless steels during tungsten inert gas welding JF - Spectrochimica Acta Part B: Atomic Spectroscopy N2 - A laser-induced breakdown spectroscopy (LIBS) system was combined with a bead-on-plate Tungsten Inert Gas (TIG) welding process for the in situ measurement of chemical compositions in austenitic stainless steels during welding.Monitoring the weld pool's chemical composition allows governing the weld pool solidification behavior, and thus enables the reduction of susceptibility to weld defects. Conventional inspection methods for weld seams (e.g. ultrasonic inspection) cannot be performed during the welding process. The analysis system also allows in situ study of the correlation between the occurrence ofweld defects and changes in the chemical composition in theweld pool or in the two-phase regionwhere solid and liquid phase coexist. First experiments showed that both the shielding Ar gas and the welding arc plasma have a significant effect on the selected Cr II, Ni II and MnII characteristicemissions, namely an artificial increase of intensity values via unspecific emission in the spectra. In situ investigations showed that this artificial intensity increase reached a maximum in presence of weld plume. Moreover, an explicit decay has been observedwith the termination of thewelding plumedue to infrared radiation during sample cooling. Furthermore, LIBS can be used after welding to map element distribution. For austenitic stainless steels,Mnaccumulations on both sides of theweld could be detected between the heat affected zone (HAZ) and the base material. T2 - th International Conference on Laser-Induced Breakdown Spectroscopy (LIBS) CY - Chamonix-Mont-Blanc, France DA - 12.09.2016 KW - LIBS KW - TIG KW - Welding KW - Austenitic KW - Stainless steels KW - Chemical composition KW - In situ KW - Measurement PY - 2018 UR - http://www.sciencedirect.com/science/article/pii/S0584854717301064 DO - https://doi.org/10.1016/j.sab.2017.11.012 SN - 0584-8547 VL - 139 SP - 50 EP - 56 PB - Elsevier CY - Amsterdam, Niederlande AN - OPUS4-43122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Taparli, Ugur Alp A1 - Kannengießer, Thomas A1 - Cieslik, K. A1 - Mory, D. A1 - Griesche, Axel T1 - In situ chemical composition analysis of a tungsten-inert-gas austenitic stainless steel weld measured by laser-induced breakdown spectroscopy JF - Spectrochimica Acta Part B: Atomic Spectroscopy N2 - The chemical composition of a weld metal determines the resulting solidification mode of stainless steel and the consequent weld metal quality. In this work tungsten inert gas (TIG) welding of EN grade 1.4435 austenitic stainless steel was monitored using laser-induced breakdown spectroscopy (LIBS) for the in situ measurement of chemical composition changes. This research aims to prototype a real-time chemical composition analysis system for welding applications and prove the feasibility of such quality control loop. LIBS was used to investigate in situ the monitoring of metal vaporization during TIG welding. We found Mn vapor formation above the weld pool and subsequent condensation of Mn on the weld metal surface using LIBS. Post-weld line scans were conducted by LIBS on various welds produced with different welding currents. Local changes of Ni and Mn were observed at higher welding currents. The results are in good agreement with the literature and proved that LIBS can be used in situ to inspect the TIG welding process. T2 - 10th Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy CY - Brünn, Czechia DA - 08.09.2019 KW - LIBS KW - Welding KW - Austenitic stainless steel KW - Metal vapor KW - In situ measurement PY - 2020 DO - https://doi.org/10.1016/j.sab.2020.105826 SN - 0584-8547 VL - 167 SP - 105826 PB - Elsevier B.V. CY - Amsterdam, Niederlande AN - OPUS4-50582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tognoni, E. A1 - Cristoforetti, G. A1 - Legnaioli, S. A1 - Palleschi, V. A1 - Salvetti, A. A1 - Müller, Maike A1 - Panne, Ulrich A1 - Gomushkin, I. T1 - A numerical study of expected accuracy and precision in Calibration-Free Laser-Induced Breakdown Spectroscopy in the assumption of ideal analytical plasma JF - Spectrochimica acta B N2 - Calibration-Free Laser-Induced Breakdown Spectroscopy (CF-LIBS) has been proposed several years ago as an approach for quantitative analysis of Laser-Induced Breakdown Spectroscopy spectra. Recently developed refinement of the spectral processing method is described in the present work. Accurate quantitative results have been demonstrated for several metallic alloys. However, the degree of accuracy that can be achieved with Calibration-Free Laser-Induced Breakdown Spectroscopy analysis of generic samples still needs to be thoroughly investigated. The authors have undertaken a systematic study of errors and biasing factors affecting the calculation in the Calibration-Free Laser-Induced Breakdown Spectroscopy spectra processing. These factors may be classified in three main groups: 1) experimental aberrations (intensity fluctuations and inaccuracy in the correction for spectral efficiency of a detection system), 2) inaccuracy in theoretical parameters used for calculations (Stark broadening coefficients and partition functions) and 3) plasma non-ideality (departure from thermal equilibrium, spatial and temporal inhomogeneities, optical thickness, etc.). In this study, the effects of experimental aberrations and accuracy of spectral data were investigated, assuming that the analytical plasma is ideal. Departure of the plasma conditions from ideality will be the object of future work. The current study was based on numerical simulation. Two kinds of metallic alloys, iron-based and aluminum-based, were studied. The relative weight of the error contributions was found to depend on the sample composition. For the here-investigated samples, the experimental aberrations contribute to the overall uncertainty on the quantitative results more than theoretical parameters. The described simulation method can be applied to the Calibration-Free Laser-Induced Breakdown Spectroscopy analysis of any other kind of sample. KW - LIBS KW - Quantitative analysis KW - Standard-less analysis KW - Accuracy KW - Precision PY - 2007 DO - https://doi.org/10.1016/j.sab.2007.10.005 SN - 0584-8547 SN - 0038-6987 VL - 62 IS - 12 SP - 1287 EP - 1302 PB - Elsevier CY - Amsterdam AN - OPUS4-16566 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Tobias A1 - Gornushkin, Igor B. T1 - Extension of the Boltzmann plot method for multiplet emission lines JF - Journal of Quantitative Spectroscopy and Radiative Transfer N2 - The Boltzmann plot method is widely used to determine the temperature of laser induced plasma. It involves the use of individual lines that are not easy to find in complex spectra and/or in the spectral range available. If the number of such lines is not enough to build a reliable Boltzmann plot, overlapping lines are often used, which are separated by software. However, line separation is a rather imprecise procedure, which, in addition, requires significant computational costs. This study proposes an extension of the Boltzmann plot method that allows a specific group of unresolved lines to be included in a Boltzmann plot without the need to separate them. This group of lines are multiplets, lines of the same element with similar upper and lower transition states. The multiplet lines along with the individual lines are included in the algorithm, which also includes a correction for self-absorption and is used to determine the plasma temperature. The algorithm is tested on synthetic spectra which are consistent with the model of a homogeneous isothermal plasma in local thermodynamic equilibrium and is shown to be superior to the standard Boltzmann plot method both in more accurate determination of the plasma temperature and in a significant reduction in the computational time. The advantages and disadvantages of the method are discussed in the context of its applications in laser induced breakdown spectroscopy. KW - LIBS KW - Spectroscopy KW - Boltzmann plot KW - Multiplet KW - Spectral overlap PY - 2023 DO - https://doi.org/10.1016/j.jqsrt.2023.108741 SN - 1879-1352 VL - 310 SP - 1 EP - 5 PB - Elsevier AN - OPUS4-58058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Tobias A1 - Gornushkin, Igor B. T1 - Investigation of a method for the correction of self-absorption by Planck function in laser induced breakdown spectroscopy JF - Journal of Analytical Atomic Spectrometry N2 - The electron density and temperature of a laser-induced plasma can be determined from the width and intensity of the spectral lines, provided that the corresponding optical transitions are optically thin. However, the lines in laser induced plasma are often self-absorbed. One of the methods of correction of this effect is based on the use of the Planck function and an iterative numerical calculation of the plasma temperature. In this study, the method is further explored and its inherent errors and limitations are evaluated. For this, synthetic spectra are used that fully correspond to the assumed conditions of a homogeneous isothermal plasma at local thermodynamic equilibrium. Based on the error analysis, the advantages and disadvantages of the method are discussed in comparison with other methods of self-absorption correction. KW - LIBS KW - Self-absorption KW - Planck function PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572677 DO - https://doi.org/10.1039/D2JA00352J SN - 0267-9477 SP - 1 EP - 6 PB - Royal Society of Chemistry (RSC) AN - OPUS4-57267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Tobias A1 - Gornushkin, Igor B. T1 - Mass and mole fractions in calibration-free LIBS JF - Journal of Analytical Atomic Spectrometry N2 - This technical note highlights the fact that CF-LIBS algorithms work in mole fractions, while results of spectrochemical analysis are usually reported in mass fractions or mass percent. Ignoring this difference and not converting mole fractions to mass fractions can lead to errors in reported concentrations determined by the CF-LIBS method and inadequate comparison of these concentrations with certified concentrations. Here, the key points of the CF-LIBS algorithm are reproduced and the formulae for converting a mole fraction to a mass fraction and vice versa are given. Several numerical examples are also given, which show that the greater the difference between the molar mass of an individual element in a sample and the average molar mass, the greater the discrepancy between the mole and mass fractions. KW - Spectroscopy KW - Analytical Chemistry KW - LIBS KW - Calibration PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598611 DO - https://doi.org/10.1039/d4ja00028e SN - 0267-9477 VL - 39 IS - 4 SP - 1030 EP - 1032 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Tobias A1 - Gottlieb, Cassian A1 - Kapteina, Gesa A1 - Wilsch, Gerd A1 - Millar, Steven A1 - Reichling, Kenji T1 - Neues DGZfP-Merkblatt B14: Quantifizierung von Chlorid in Beton mittels LIBS JF - Beton- und Stahlbetonbau N2 - Bei der Erhaltung von Stahlbetonbauwerken ist der Chloridgehalt im Beton ein wichtiger Parameter zur Festlegung geeigneter Instandsetzungsmaßnahmen. Die bisher etablierten Verfahren basieren auf der nasschemischen Analyse einer Probe, Bohrmehl oder aufgemahlener Segmente eines Bohrkerns. Das Verfahren liefert einen Chloridgehalt je Tiefensegment, was mit einer starken Homogenisierung der Probe einhergeht, wodurch detaillierte Informationen zu Chloridunterschieden im Millimeterbereich verloren gehen. Eine alternative Methode ist die laserinduzierte Plasmaspektroskopie (LIBS), die nicht nur die quantitative ortsaufgelöste Bestimmung des Chloridgehalts im Bezug zur Zementmasse ermöglicht, sondern auch simultan detaillierte Informationen über die Verteilung vieler anderer chemischer Elemente liefert. Die räumliche Auflösung liegt in der Regel im Bereich von einigen Millimetern, kann aber bei Bedarf auf 0,1 mm oder weniger erhöht werden. Das neue Merkblatt B14 „Quantifizierung von Chlorid in Beton mit der laserinduzierten Plasmaspektroskopie (LIBS)“ der Deutschen Gesellschaft für Zerstörungsfreie Prüfungen (DGZfP) regelt und vereinheitlicht erstmals die zuverlässige und reproduzierbare Ermittlung des Chloridgehalts mit LIBS. In diesem Beitrag wird das Merkblatt vorgestellt und anhand praktischer Anwendungsbeispiele das Potenzial von LIBS für Fragestellungen in der Betonerhaltung verdeutlicht. KW - LIBS KW - Chlor KW - Chlorid KW - Beton KW - Bauwerksdiagnostik PY - 2024 DO - https://doi.org/10.1002/best.202400014 SP - 1 EP - 7 AN - OPUS4-60005 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Tobias A1 - Millar, Steven A1 - Strangfeld, Christoph A1 - Wilsch, Gerd T1 - Identification of type of cement through laser-induced breakdown spectroscopy JF - Construction and Building Materials N2 - The composition of concrete determines its resistance to various degradation mechanisms such as ingress of ions, carbonation or reinforcement corrosion. Knowledge of the composition of the hardened concrete is therefore helpful to assess the remaining service life of an existing structure or evaluate the damage observed during inspections. For example, for most existing concrete structures the type of cement originally used is not known and must therefore be determined afterwards. This paper presents a preliminary study on the application of laser-induced breakdown spectroscopy (LIBS) to identify the type of cement. For this purpose, ten different types of cement were investigated. For every type, three cement paste prisms were produced: (i) prisms dried, ground and pressed into tablets, (ii) prisms dried and (iii) prisms untreated. LIBS measurements were performed with a diode-pumped low energy laser (1064 nm, 3 mJ, 1.5 ns, 100 Hz) in combination with two compact spectrometers which cover the UV and NIR spectral range. A reduced subset of spectral features was used to build a classification model based on linear discriminant analysis. The results show that the classification of homogenized pressed cement powder samples provides a high accuracy, however, factors such as a different sample matrix and moisture content can affect the accuracy of the classification. The study demonstrates that LIBS is a promising tool to identify the type of cement. KW - Spectroscopy KW - LIBS KW - Cement KW - Classification KW - Identification PY - 2020 DO - https://doi.org/10.1016/j.conbuildmat.2020.120345 VL - 258 SP - 120345 PB - Elsevier Ltd. AN - OPUS4-51157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Tobias A1 - Wilsch, Gerd A1 - Gornushkin, Igor B. A1 - Kratochvilo, L. A1 - Pořízka, P. A1 - Kaiser, J. A1 - Millar, S. A1 - et al., T1 - Interlaboratory comparison for quantitative chlorine analysis in cement pastes with laser induced breakdown spectroscopy JF - Spectrochimica Acta Part B N2 - Concrete structures experience severe damage during service, for example due to pitting corrosion of rebars caused by the ingress of chlorine (Cl) into the porous concrete structure. The ingress can be monitored using laser-induced breakdown spectroscopy (LIBS), a recently introduced civil engineering technique used to detect Cl in concrete structures in addition to conventional wet chemistry methods. The key advantages of LIBS are high spatial resolution, which is important when analyzing heterogeneous concrete samples, as well as the almost complete absence of sample preparation. To assess LIBS as a reliable analytical method, its accuracy and robustness must be carefully tested. This paper presents the results of an interlaboratory comparison on the analysis of Cl in cement paste samples conducted by 12 laboratories in 10 countries. Two sets of samples were prepared with Cl content ranging from 0.06 to 1.95 wt% in the training set and 0.23–1.51 wt% in the test set, with additional variations in the type of cement and Cl source (salt type). The overall result shows that LIBS is suitable for the quantification of the studied samples: the average relative error was generally below 15%. The results demonstrate the true status quo of the LIBS method for this type of analysis, given that the laboratories were not instructed on how to perform the analysis or how to process the data. KW - LIBS KW - Interlaboratory comparison KW - Round robin test KW - Cement KW - Chlorine PY - 2023 DO - https://doi.org/10.1016/j.sab.2023.106632 SN - 0584-8547 VL - 202 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-57102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weise, Frank A1 - Millar, Steven A1 - Wilsch, Gerd T1 - Analyse des Tausalzeintrags in Fahrbahndeckenbetone mit neuartiger Prüftechnik T1 - Analysis of De-icing Salt in Concrete Pavement with a new type of Test Technology JF - Beton- und Stahlbetonbau N2 - In den letzten Jahren sind im deutschen Bundesautobahnnetz vermehrt AKR-Schäden an Betonfahrbahndecken aufgetreten. Ursächlich hierfür ist die Verwendung alkaliempfindlicher Gesteinskörnung. Dies führt bei gleichzeitiger Anwesenheit von Wasser infolge der Exposition der Fahrbahndecke und des alkalischen Milieus durch den Einsatz alkalireicher Portlandzemente bei der Betonherstellung zu einer Alkali-Kieselsäure-Reaktion (AKR). Zusätzlich wird der AKR-Schädigungsprozess in Betonfahrbahndecken durch den externen Tausalzeintrag (primär NaCl) im Winter begünstigt. Vor diesem Hintergrund kommt der Ermittlung des Tausalzeintrags in den Fahrbahndeckenbeton eine große Bedeutung zu. Die Analyse des Tausalzeintrags erfolgte bisher ausschließlich nasschemisch an gemahlenen Bohrkernsegmenten. Nachteilig sind hierbei der relativ hohe prüftechnische Aufwand und die eingeschränkte Ortsauflösung. Der alternative Einsatz von LIBS (Laser-induced breakdown spectroscopy) eröffnet in diesem Kontext neue Möglichkeiten. So wird in diesem Beitrag anhand von Bohrkernen aus einem repräsentativen AKR-geschädigten BAB-Abschnitt exemplarisch die Vorgehensweise bei der LIBS-Analyse zur Ermittlung der Na- und Cl-Verteilung an vertikalen Schnittflächen von Bohrkernen aufgezeigt. Da der Tausalzeintrag primär über den Zementstein erfolgt, wurde der verfälschende Na-Grundgehalt der Gesteinskörnung mittels eines Ausschlusskriteriums (Ca-Gehalt) eliminiert. Vergleichend durchgeführte Cl-Mappings mit Mikroröntgenfluoreszenzanalyse sowie nasschemische Analysen belegen die Güte der durchgeführten LIBS-Messungen. Allerdings bedarf es bei der quantitativen Ermittlung des Natriumgehaltes in der Betonfahrbahndecke noch weitergehender Untersuchungen. N2 - Analysis of the intrusion of de-icing salt into concrete pavements by a novel test method In recent years the German motorway network has seen an increase in the occurrence of damage in concrete pavements. This has been caused by the use of alkali-sensitive aggregates. Given the exposure of the concrete pavement to water and the alkaline environment caused by the use of Portland cement during concrete mixing, this environment can lead to an alkali-silica reaction (ASR) process. This ASR-damage process in concrete pavements is further exacerbated by the external application of de-icing salt in winter. Against this background, the evaluation of the intrusion of de-icing salt becomes of great importance. Until now, the analysis of the intrusion of de-icing salt was carried out in a wet-chemistry process on finely ground segments of drilling cores. The disadvantages of this method are the relatively arduous testing process and the limited depth resolution. The alternative application of LIBS (laser-induced breakdown spectroscopy) offers new possibilities in this context. In this paper, the procedure for the LIBS analysis of sodium and chloride distribution on vertical cut surfaces of drilling cores taken from representative ASR-damaged concrete pavements is presented. Because the intrusion of de-icing salt takes place primarily in the cement matrix, the distorting effect of the sodium content in the aggregates was eliminated by an exclusion criteria (namely, the calcium content). The comparable chloride mappings by micro X-ray fluorescence spectroscopy and wet-chemical analysis confirm the quality of the LIBS measurements. However, additional investigations are necessary for the quantitative analysis of sodium content in concrete pavements. KW - Betonfahrbahndecke KW - Alkali-Kieselsäure-Reaktion KW - Tausalz KW - LIBS KW - MRFA KW - Nasschemie KW - ZfP PY - 2018 DO - https://doi.org/10.1002/best.201800033 SN - 0005-9900 SN - 1437-1006 VL - 113 IS - 9 SP - 656 EP - 666 PB - Wilhelm Ernst & Sohn, Verlag für Architektur und technische Wissenschaften GmbH & Co. KG CY - Berlin AN - OPUS4-46171 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weritz, Friederike A1 - Schaurich, Dieter A1 - Taffe, Alexander A1 - Wilsch, Gerd T1 - Effect of heterogeneity on the quantitative determination of trace elements in concrete JF - Analytical and bioanalytical chemistry N2 - Laser-induced breakdown spectroscopy has been used for quantitative measurement of trace elements, e.g. sulfur and chlorine, in concrete. Chloride and sulfate ions have a large effect on the durability of concrete structures, and quantitative measurement is important for condition assessment and quality assurance. Concrete is a highly heterogeneous material in composition and grain-size distribution, i.e. the spatial distribution of elements. Calibration plots were determined by use of laboratory-made reference samples consisting of pressings of cement powder, hydrated cement, cement mortar, and concrete, in which the heterogeneity of the material is increasing because of the aggregates. Coarse aggregate and cement paste are distinguishable by the intensity of the Ca spectral lines. More advanced evaluation is necessary to account for the effect of the fine aggregate. The three series of reference samples enable systematic study of the effects of heterogeneity on spectral intensity, signal fluctuation, uncertainty, and limits of detection. Spatially resolved measurements and many spectra enable statistical evaluation of the data. The heterogeneity has an effect on measurement of the sulfur and chlorine content, because both occur mainly in the cement matrix. Critical chloride concentrations are approximately 0.04% (m/m). The chlorine spectral line at 837.6 nm is evaluated. The natural sulfur content of concrete is approximately 0.1% (m/m). The spectral line at 921.3 nm is evaluated. One future application may be simultaneous determination of the amount of damaging trace elements and the cement content of the concrete. KW - LIBS KW - Heterogeneity KW - Concrete KW - Chlorine KW - Sulfur PY - 2006 DO - https://doi.org/10.1007/s00216-006-0362-0 SN - 1618-2642 SN - 1618-2650 VL - 385 IS - 2 SP - 248 EP - 255 PB - Springer CY - Berlin AN - OPUS4-12206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weritz, Friederike A1 - Schaurich, Dieter A1 - Wilsch, Gerd T1 - Detector comparison for sulfur and chlorine detection with laser induced breakdown spectroscopy in the near-infrared-region JF - Spectrochimica acta B N2 - Laser-induced breakdown spectroscopy has been employed for the investigation of the sulfur and chlorine content of building materials. Both, chloride and sulfate ions are major damaging species affecting the stability and lifetime of a structure. Chlorine and sulfur are mostly detected in the VUV and the NIR. In case of building materials the main elements like calcium or iron have many strong spectral lines over the whole spectral range, so that trace elements can only be detected in spectral windows unaffected from these lines. With regard to a preferably simply, robust against dust and vibrations and portable setup only the NIR spectral features are used for civil engineering applications. Most detectors, mainly CCD cameras have rapidly decreasing quantum efficiency in the NIR. Also the quantum efficiency of the photocathode of CCD-Detectors with image intensifier is decreasing in the NIR. Different CCD-detectors were tested with respect to high quantum efficiency and high dynamic range, which is necessary for simultaneous detection of weak spectral lines from trace elements and intense spectral lines from main elements. The measurements are made on reference samples consisting of cement, hydrated cement, cement mortar and concrete with well-defined amounts of the trace elements. Experimental conditions are chosen for an optimum intensity of the trace element spectral lines. The detector systems are compared by limit of detections and the signal to noise ratio. KW - LIBS KW - Sulfur KW - Chlorine KW - NIR KW - Building materials KW - Concrete KW - Detector comparison PY - 2007 DO - https://doi.org/10.1016/j.sab.2007.10.017 SN - 0584-8547 SN - 0038-6987 VL - 62 IS - 12 SP - 1504 EP - 1511 PB - Elsevier CY - Amsterdam AN - OPUS4-16507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiggenhauser, Herbert A1 - Taffe, Alexander T1 - Garant für gute Qualität, Werkzeug für fundierte Analysen - Was leisten zerstörungsfreie Prüfverfahren im Bauwesen? JF - Deutsches Ingenieur-Blatt KW - Zerstörungsfreie Prüfung im Bauwesen KW - ZfPBau KW - Übersichtsartikel KW - Bildgebende Darstellung KW - Baustellenscanner KW - LIBS KW - Validierung PY - 2006 SN - 0946-2422 IS - 7/8 SP - 22 EP - 28 PB - Bundesingenieurkammer CY - Berlin AN - OPUS4-12648 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yuan, Huan A1 - Gornushkin, Igor B. A1 - Gojani, Ardian A1 - Wang, X. H. A1 - Rong, Ming Zhe T1 - Laser-induced plasma imaging for low-pressure detection JF - Optics Express N2 - A novel technique based on laser induced plasma imaging is proposed to measure residual pressure in sealed containers with transparent walls, e.g. high voltage vacuum interrupter in this paper. The images of plasma plumes induced on a copper target at pressure of ambient air between 10−2Pa and 105Pa were acquired at delay times of 200ns, 400ns, 600ns and 800ns. All the plasma images at specific pressures and delay times showed a good repeatability. It was found that ambient gas pressure significantly affects plasma shape, plasma integral intensities and expansion dynamics. A subsection characteristic method was proposed to extract pressure values from plasma images. The method employed three metrics for identification of high, intermediate and low pressures: the distance between the target and plume center, the integral intensity of the plume, and the lateral size of the plume, correspondingly. The accuracy of the method was estimated to be within 15% of nominal values in the entire pressure range between 10−2Pa and 105Pa. The pressure values can be easily extracted from plasma images in the whole pressure range, thus making laser induced plasma imaging a promising technique for gauge-free pressure detection. KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics PY - 2018 DO - https://doi.org/10.1364/OE.26.015962 SN - 1094-4087 VL - 26 IS - 12 SP - 15962 EP - 15971 PB - Optical Society of America under the terms of the OSA Open Access Publishing Agreement AN - OPUS4-45219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -