TY - CONF A1 - Ozcan, Ozlem T1 - MAPz@BAM Material Acceleration Plattform Zentrum @ BAM N2 - Die Material Acceleration Platform der BAM (MAPz@BAM) bündelt unsere Automatisierungs-Expertise auf dem Gebiet der Materialwissenschaft und -prüfung. Wir entwickeln modulare Experimentmodule, automatische Prüf- und Auswerteverfahren und setzen künstliche Intelligenz für eine effiziente und autonome Versuchsplanung, - vorhersage und Datenanalyse ein. T2 - Kick off Meeting / EnerMAC ZIM Network CY - Berlin, Germany DA - 07.12.2023 KW - Material Acceleration Platforms (MAPs) KW - Self-driving-labs (SDLs) KW - MAPz@BAM PY - 2023 AN - OPUS4-59411 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ozcan, Ozlem T1 - Material acceleration platforms (MAPs) - Global activities and developments at BAM N2 - Die Material Acceleration Platform der BAM (MAPz@BAM) bündelt unsere Automatisierungs-Expertise auf dem Gebiet der Materialwissenschaft und -prüfung. Wir entwickeln modulare Experimentmodule, automatische Prüf- und Auswerteverfahren und setzen künstliche Intelligenz für eine effiziente und autonome Versuchsplanung, - vorhersage und Datenanalyse ein. T2 - WPFM Expert Group on Structural Materials (EGSM) CY - Online meeting DA - 23.05.2023 KW - Material Acceleration Platforms (MAPs) KW - MAPz@BAM KW - Self-driving-labs PY - 2023 AN - OPUS4-59409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohring, W. A1 - Karafiludis, Stephanos A1 - Manzoni, Anna M. A1 - Laplanche, G. A1 - Schneider, M. A1 - Stephan-Scherb, C. T1 - High-Temperature Corrosion of High- and Medium-Entropy Alloys CrMnFeCoNi and CrCoNi Exposed to a Multi-Oxidant Atmosphere H2O–O2–SO2 N2 - AbstractThe high-temperature corrosion behaviors of the equimolar CrCoNi medium-entropy alloy and CrMnFeCoNi high-entropy alloy were studied in a gas atmosphere consisting of a volumetric mixture of 10% H2O, 2% O2, 0.5% SO2, and 87.5% Ar at 800 °C for up to 96 h. Both alloys were initially single-phase fcc with a mean grain size of ~ 50 μm and a homogeneous chemical composition. The oxide layer thickness of CrMnFeCoNi increased linearly with exposure time while it remained constant at ~ 1 μm for CrCoNi. A Cr2O3 layer and minor amounts of (Co,Ni)Cr2O4 developed on the latter while three oxide layers were detected on the former, i.e., a thin and continuous chromium rich oxide layer at the oxide/alloy interface, a dense (Mn,Cr)3O4 layer in the center and a thick and porous layer of Mn3O4 and MnSO4 at the gas/oxide interface. Additionally, a few metal sulfides were observed in the CrMnFeCoNi matrix. These results were found to be in reasonable agreement with thermodynamic calculations. KW - high entropy alloys KW - corrosion KW - oxidation KW - scanning electron microscopy KW - sulfidation KW - CrMnFeCoNi PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594189 DO - https://doi.org/10.1007/s44210-023-00026-8 SP - 1 EP - 17 PB - Springer Science and Business Media LLC AN - OPUS4-59418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg T1 - Röntgenstrahlungsexposition bei der Anwendung von Ultrakurzpulslasern in der Medizin N2 - Die Laserbearbeitung von Materialien mit ultrakurzen Laserpulsen kann zu einer sekundären Emission gefährlicher Röntgenstrahlen führen. Dieser Effekt wurde bisher bei der Bearbeitung von technischen Materialien wie Metallen beobachtet. Die Röntgenemission bei der abtragenden Bearbeitung von biologischen Geweben ist noch weitgehend unerforscht. Der Vortrag präsentiert erste Untersuchungen und Ergebnisse des radiologischen Gefährdungspotentials bei der medizinischen Anwendung von Ultrakurzpulslasern am Menschen. T2 - Bayerische Laserschutztage 2024 CY - Nuremberg, Germany DA - 17.01.2024 KW - Ultrakurzpulslaser KW - Laser-induzierte Röntgenstrahlung KW - Medizinische Anwendung KW - Auge KW - Zahn PY - 2024 AN - OPUS4-59399 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yesilcicek, Yasemin A1 - Wetzel, Annica A1 - Witt, Julia A1 - Dimper, Matthias A1 - Ozcan, Ozlem T1 - Correlation of corrosion and mechanical properties of Fe-Ni-Cr-Mn alloy synthesized by diffusion multiples N2 - The efficient exploration of novel alloy compositions is crucial for advancing the development of new materials. One widely utilized approach for creating phase diagrams is the use of diffusion-controlled synthesis for gradient alloys. This method is also an effective means for rapidly identifying potential material combinations. The present study focusses on the exploration of quaternary multi-principle-element alloys (MPEAs) using diffusion multiples. We established a diffusion system by combining an equimolar ternary alloy (FeNiCr) with single diffusing elements Mn and Mo. Using ThermoCalc simulations, we determined suitable temperature ranges where we can expect the formation of single-phase alloys. Depending on the diffusion constants of the selected metals, diffusion times were adjusted to obtain diffusion zones with a depth of greater than 50 μm. Microstructural and compositional information was gathered via scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) and correlated to local mechanical properties evaluated by means of nanoindentation. Local corrosion properties were examined using Atomic Force Microscopy (AFM) and Scanning Electrochemical Microscopy (SECM). Our results indicate that the ThermoCalc simulations have a good predictive power for crystallographic phases. However, especially with the Mn-FeNiCr system, formation of Cr-rich secondary phases were observed, which led to Cr-depletion and thus to localized corrosion processes in the matrix at the vicinity of the secondary phases. Based on the results of the local electrochemical tests, we have selected single-phase compositions along the diffusion zone and synthesized these alloys in bulk for corrosion studies by means of potentiodynamic polarization and SECM. The presentation will summarize our methodology using diffusion couples as an efficient tool for exploring compositional spaces of MPEAs in the search for novel single-phase alloys and the results of our correlative study on the mechanical and corrosion properties of these materials. T2 - EUROCORR2023 CY - Brussels, Belgium DA - 27.08.2023 KW - Chemically Complex Materials KW - CCMat KW - Corrosion PY - 2023 AN - OPUS4-59408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yesilcicek, Yasemin A1 - Wetzel, Annica A1 - Witt, Julia A1 - Dimper, Matthias A1 - Ozcan, Ozlem T1 - Corrosion and mechanical properties of multi principal element alloys designed by using diffusion couples N2 - The efficient exploration of novel alloy chemistries is crucial for advancing the development of new materials. Diffusion-controlled synthesis of gradient alloys is an intelligent approach for creating phase diagrams and to effectively identify potential material combinations with tailored properties. This project focusses on the design of quaternary multi-principle-element alloys (MPEAs) using diffusion couples. Our diffusion system contains an equimolar ternary alloy (FeNiCr) and additional single diffusing elements e.g. Mn and Mo. We determined the optimal temperature ranges for the diffusion thermal treatment by means of ThermoCalc simulations with the aim to form single-phase MPEAs. Microstructure and chemical characterization of the diffusion couples were performed by means of scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). For most alloy couples, the diffusion zone contained a single-phase alloy matrix with diffusion-induced compositional gradient as well as precipitation phases. This heterogeneity makes the diffusion couples interesting materials to investigate local mechanical and corrosion properties. Thus, local corrosion properties were examined using Atomic Force Microscopy (AFM) and Scanning Electrochemical Microscopy (SECM). Nanoindentation was used for the analysis of local mechanical properties. Based on the results of the local corrosion analysis, we have selected single-phase alloy chemistries along the diffusion zone and reproducibly synthesized these alloys in bulk for detailed corrosion studies by means of potentiodynamic polarization and SECM. The presentation will briefly summarize our methodology and motivation for using diffusion couples as an efficient tool for exploring phase diagrams of MPEAs in the search for new alloy chemistries and the results of our correlative study on the mechanical and corrosion properties of these materials. T2 - 244th ECS Meeting CY - Gothenburg, Sweden DA - 08.10.2023 KW - Chemically Complex Materials KW - CCMat KW - Corrosion PY - 2023 AN - OPUS4-59407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wetzel, Annica A1 - Yesilcicek, Yasemin A1 - Witt, Julia A1 - Ozcan, Ozlem T1 - Old materials, new life: Using diffusion-controlled synthesis for discovery of novel alloy systems N2 - Multi principal element alloy (MPEAs) concept allows us to rethink how we develop application-tailored, sustainable materials. The vast composition space leads to nearly indefinite material combinations and will facilitate finding Pareto optimal materials with lower CO2 footprint and avoidance of critical minerals as design criteria. To probe this large compositional space efficiently, the use high-throughput screening methods is inevitable. Diffusion-controlled synthesis of gradient materials is the optimal technique for screening complex compositional materials that would otherwise require comprehensive modelling or experimental efforts. In this study, we have used a series of diffusion couples of pure metals and alloys with the aim to create a materials library with correlated data on composition and microstructure. With future recycling prospects in mind, and possible applications of Cu containing alloys in electrocatalytic carbon dioxide reduction and antimicrobial alloys we have generated diffusion couples of brass (Cu63Zn37) and bronze (Cu89Sn11) with either pure metals (Fe, Ni, etc.) or with binary or ternary alloys (FeNi, FeNiCr etc.). For different diffusion times and temperatures, we calculated diffusion constants for the material combinations. Following a detailed characterisation of the gradient materials, we have investigated general and local corrosion properties, electrocatalytic activity for oxygen evolution reaction (OER) and carbon dioxide reduction reaction (CRR) as well as mechanical properties (hardness, elastic modulus) on single-phase alloys synthesized in bulk by means of vacuum arc-melting based on the selected local compositions. In most cases, due to the short diffusion times, the contact between the diffusion couples lead to two separate diffusion zones and thus, different alloy families on both sides. Especially with ternary alloys, interesting selective diffusion processes and unexpected repulsion effects were observed. The presentation will provide an overview of the gradient materials with a focus on the functional properties of single-phase alloy families derived from them. T2 - MRS Spring 2023 CY - San Francisco, California, USA DA - 10.04.2023 KW - Chemically Complex Materials KW - CCMat KW - Corrosion KW - Electrocatalysis PY - 2023 AN - OPUS4-59406 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wetzel, Annica A1 - Morell, D. A1 - Ozcan, Ozlem A1 - Witt, Julia T1 - The Interplay of Anodic Passivation and Oxygen Evolution of Medium Entropy Alloys in Aqueous NaCl Electrolytes at Different pH N2 - Due to their favorable mechanical and anti-corrosion properties, medium entropy alloys (MEA) are of high academic and industrial interest as novel materials for engineering and catalytic applications. Previous studies on general corrosion behavior indicate high current densities at high anodic potentials for MEAs. Further investigations of the underlying transpassive dissolution and local corrosion behavior remain scarce. To understand the passivation behavior of MEAs CrCoNi and FeCrNi at high anodic potentials, the mechanisms of transpassive dissolution and the oxygen evolution reaction were investigated in this project. Scanning electrochemical microscopy (SECM) was applied in the interrogative mode for the detection of evolving metal species and oxygen. By means of ICP-MS analysis, dissolved metal species were quantified to provide a fundamental understanding on the transpassive dissolution. As the oxygen evolution reaction (OER) may contribute a large percentile to the observed current at high anodic potentials, SECM measurements were employed to analyze the onset of the OER. Potentiodynamic, potentiostatic and chronoamperometric techniques as well as different electrolytes were used to induce precisely controlled corrosion loads during the SECM experiments and for the ICP-MS analysis. Macroscopic corrosion properties of the alloys, electrical and chemical properties of the passive films were studied by means of potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and X-Ray Photoelectron Spectroscopy (XPS), respectively. Finally, the analysis of the corrosion morphology and the potential of the surface before, during and after passivity breakdown was carried out by means of in-situ atomic force microscopy (AFM) and scanning Kelvin probe force microscopy (SKPFM). The presentation will summarize our results on the interplay of anodic passivation and oxygen evolution of MEAs in aqueous NaCl electrolytes. T2 - MRS Spring 2023 CY - San Francisco, California, USA DA - 10.04.2023 KW - Chemically Complex Materials KW - CCMat KW - Corrosion PY - 2023 AN - OPUS4-59405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yesilcicek, Yasemin A1 - Wetzel, Annica A1 - Witt, Julia A1 - Stephan-Scherb, C. A1 - Ozcan, Ozlem T1 - Investigation on gradient Fe-Ni-Cr-Mn alloy using diffusion multiples N2 - The high-throughput synthesis and characterization of potential material combinations plays an important role in accelerating the development of new materials. Diffusion controlled synthesis of gradient alloys is widely used to create phase diagrams, and it is also one of the most effective combinatorial approaches for rapid realization of potential material combinations. This study focuses on the synthesis and investigation of the quaternary multi-principle-element alloy (MPEA) FeNiCrMn by means of diffusion multiples, the correlation of their microstructural and chemical characterization data with their application relevant properties like local mechanical and corrosion properties. A diffusion system was set up by combining an equimolar ternary alloy (FeNiCr) with a single diffusing metallic component (Mn) with the highest interdiffusion coefficient. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) were used to collect microstructural and compositional information which were correlated to local mechanical properties studied with nanoindentation. Local corrosion properties were investigated by means of Atomic Force Microscopy (AFM) and Scanning Electrochemical Microscopy (SECM). We have observed that a >50 μm deep homogeneous diffusion zone was formed the thickness of which scales with the duration of the thermal treatment. Beyond the Mn-concentration gradient in the FeNiCr matrix, a distinct Cr-rich secondary phase, characterized by high hardness and elastic modulus values appeared. We synthesized MPEAs with selected compositions from the diffusion zone as well as the Cr-rich phase as bulk alloys for electrochemical corrosion studies under different environmental conditions. The presentation will summarize the results of our correlative study on the mechanical properties and corrosion resistance of the quaternary multi-principle-element alloy (MPEA) FeNiCrMn family. T2 - MRS Spring 2023 CY - San Francisco, California, USA DA - 10.04.2023 KW - Chemically Complex Materials KW - CCMat KW - Diffusion multiples PY - 2023 AN - OPUS4-59404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sediqi, Salmin A1 - Ozcan, Ozlem A1 - Witt, Julia T1 - Multi-principal element alloy nanoparticle (MPEA-NP) electrocatalysts prepared by pulsed laser ablation for electroreduction of CO2 N2 - The motivation and overall objective of the project are to develop electrocatalysts that are free of noble metals (e.g., Pt or Au) and are instead based on medium and high entropy alloys (MEA\HEA) of transition metals for the electrochemical reduction of CO2. The MEA\HEA are multi principal element alloys (MPEAs) consisting of more than three elements with almost equal alloying proportions, forming solid solutions without intermetallic phases. In such a crystal structure, the individual elements are well mixed, and each atom has different nearest neighbours. In catalysis, especially in selectivity, it is precisely this atomic chaos that matters. Due to the large number of possible combinations of elements, these materials offer excellent conditions to tune their functional properties for specific applications. Especially, catalyst systems in which Cu is combined with another metallic component show a significant increase in catalytic efficiency compared to monometallic systems. Since the catalytic activity, selectivity, and stability of electrocatalysts strongly depend on the size and surface, systematic studies on the influence of the organic stabilizers on heterogeneous catalysis are also of interest. The focus of this project is to design Cu-based MEA\HEA electrocatalysts on the atomic level. For this purpose, base alloys will be prepared, processed into high-purity nanoparticles by pulsed laser ablation, and tested as electrocatalysts. T2 - Tag der Chemie 2023 CY - Berlin, Germany DA - 05.07.2023 KW - Chemically Complex Materials KW - CCMat KW - Electrocatalysis PY - 2023 AN - OPUS4-59403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sediqi, Salmin A1 - Ozcan, Ozlem A1 - Witt, Julia T1 - Multi-principal element alloy nanoparticle (MPEA-NP) electrocatalysts prepared by pulsed laser ablation for electroreduction of CO2 N2 - Multi-principal element alloy (MPEA) nanoparticle electrocatalysts have the potential to provide a cost-effective and efficient alternative to noble metal electrocatalysts. The chemically complex nature and the high configurational entropy of MPEAs offer advantages in tailoring catalytic activity, product selectivity, and improved stability under harsh reaction conditions. Cu-containing bimetallic catalyst systems have already been demonstrated to lead to a significant increase in catalytic efficiency compared to monometallic systems. Thus, this project aims at the design of Cu-containing MPEAs and nanoparticle electrocatalysts for carbon dioxide reduction reaction. In this project, base alloys were prepared by means of arc melting with subsequent homogenization treatments and processed by pulsed laser ablation in water and organic solvents into high-purity nanoparticles. The nanoparticles were characterized by means of transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX). Electrochemical testing was performed both on bulk alloy samples and nanoparticle film coated glassy carbon electrodes by means of cyclic voltammetry (CV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). Nanoparticle coated electrodes have been investigated by means of atomic force microscopy (AFM) and scanning kelvin probe force microscopy (SKPFM) to assure a homogeneous distribution on the electrode surface. The presentation will summarize our initial results on the electrocatalytic activity of Cu-MPEA system for carbon dioxide reduction. T2 - OPERANDO SPM 2023 CY - Berlin DA - 15.11.2023 KW - Chemically Complex Materials KW - CCMat KW - Electrocatalysis PY - 2023 AN - OPUS4-59402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pérez Blanes, H. A1 - Ghiasi, P. A1 - Sandkühler, J. A1 - Yesilcicek, Yasemin A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Prinz, Carsten A1 - Al-Sabbagh, Dominik A1 - Thünemann, Andreas A1 - Ozcan, Ozlem A1 - Witt, Julia T1 - High CO2 reduction activity on AlCrCoCuFeNi multi-principal element alloy nanoparticle electrocatalysts prepared by means of pulsed laser ablation N2 - Noble metal-free nanoparticles (NPs) based on multi-principal element alloys (MPEAs) were synthesized using a one-step pulsed laser ablation in liquids (PLALs) method for the electrochemical reduction of CO2. Laser ablation was performed in pure water or poly-(diallyldimethylammonium chloride) (PDADMAC)-containing an aqueous solution of Al8Cr17Co17Cu8Fe17Ni33 MPEA targets. Transmission electron microscopy (TEM) measurements combined with energy dispersive X-ray (EDX) mapping were used to characterize the structure and composition of the laser-generated MPEA nanoparticles (MPEA-NPs). These results confirmed the presence of a characteristic elemental distribution of a core-shell phase structure as the predominant NP species. The electrocatalytic performance of the laser-generated MPEA-NPs was characterized by linear sweep voltammetry (LSV) demonstrating an enhanced electrocatalytic CO2 activity for PDADMAC-stabilized NPs. The findings of these investigations indicate that MPEAs have great potential to replace conventional, expensive noble metal electrocatalysts. KW - Multi-principal element alloys KW - Chemically Complex Materials KW - CCMat KW - Electrocatalysis KW - Carbon dioxide reduction KW - Pulsed laser ablation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594018 DO - https://doi.org/10.1016/j.jmrt.2023.05.143 VL - 24 SP - 9434 EP - 9440 PB - Elsevier BV AN - OPUS4-59401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Maxi B. A1 - Böhmert, Linda A1 - Thünemann, Andreas A1 - Loeschner, Katrin A1 - Givelet, Lucas A1 - Fahrenson, Christoph A1 - Braeuning, Albert A1 - Sieg, Holger T1 - Influence of artificial digestion on characteristics and intestinal cellular effects of micro-, submicro- and nanoplastics N2 - The production of plastics is rising since they have been invented. Micro, submicro- and nanoplastics are produced intentionally or generated by environmental processes, and constitute ubiquitous contaminants which are ingested orally by consumers. Reported health concerns include intestinal translocation, inflammatory response, oxidative stress and cytotoxicity. Every digestive milieu in the gastrointestinal tract does have an influence on the properties of particles and can cause changes in their effect on biological systems. In this study, we subjected plastic particles of different materials (polylactic acid, polymethylmethacrylate, melamine formaldehyde) and sizes (micro- to nano-range) to a complex artificial digestion model consisting of three intestinal fluid simulants (saliva, gastric and intestinal juice). We monitored the impact of the digestion process on the particles by performing Dynamic Light Scattering, Scanning Electron Microscopy and Asymmetric Flow Field-Flow Fractionation. An in vitro model of the intestinal epithelial barrier was used to monitor cellular effects and translocation behavior of (un)digested particles. In conclusion, artificial digestion decreased cellular interaction and slightly increased transport of all particles across the intestinal barrier. The interaction with organic matter resulted in clear differences in the agglomeration behavior. Moreover, we provide evidence for polymer-, size- and surface-dependent cellular effects of the test particles. KW - Toxicology KW - Nanoparticles KW - Dynamic Light Scattering KW - Nanoplastics KW - Microplastics KW - Reference Method KW - Reference Material PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593947 DO - https://doi.org/10.1016/j.fct.2023.114423 VL - 184 SP - 1 EP - 16 PB - Elsevier BV AN - OPUS4-59394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, Holger A1 - Schaar, Caroline A1 - Fouquet, Nicole A1 - Böhmert, Linda A1 - Thünemann, Andreas A1 - Braeuning, Albert T1 - Particulate iron oxide food colorants (E 172) during artificial digestion and their uptake and impact on intestinal cells N2 - Iron oxide of various structures is frequently used as food colorant (E 172). The spectrum of colors ranges from yellow over orange, red, and brown to black, depending on the chemical structure of the material. E 172 is mostly sold as solid powder. Recent studies have demonstrated the presence of nanoscaled particles in E 172 samples, often to a very high extent. This makes it necessary to investigate the fate of these particles after oral uptake. In this study, 7 differently structured commercially available E 172 food colorants (2 x Yellow FeO(OH), 2 x Red Fe2O3, 1 x Orange Fe2O3 + FeO(OH) and 2 x Black Fe3O4) were investigated for particle dissolution, ion release, cellular uptake, crossing of the intestinal barrier and toxicological impact on intestinal cells. Dissolution was analyzed in water, cell culture medium and artificial digestion fluids. Small-angle X-ray scattering (SAXS) was employed for determination of the specific surface area of the colorants in the digestion fluids. Cellular uptake, transport and toxicological effects were studied using human differentiated Caco-2 cells as an in vitro model of the intestinal barrier. For all materials, a strong interaction with the intestinal cells was observed, albeit there was only a limited dissolution, and no toxic in vitro effects on human cells were recorded. KW - Toxicology KW - Nanoparticles KW - Small-angle X-ray scattering KW - SAXS PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593935 DO - https://doi.org/10.1016/j.tiv.2024.105772 VL - 96 SP - 1 EP - 12 PB - Elsevier BV AN - OPUS4-59393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Silbernagl, Dorothee A1 - Szymoniak, Paulina A1 - Tavasolyzadeh, Zeynab A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - Interpenetrating Polymer Networks with Tuned Thermal and Mechanical Properties by Multiphoton Lithography N2 - Multiphoton lithography (MPL) has recently attracted significant research interest as a versatile tool capable of fabricating 2D and 3D micro- and nanoscopic features with high spatial resolution. The integrity of MPL microstructures, or their ability to respond to external stimuli, is of critical importance. Often, the mechanically flexible micro-objects are expected to be capable of shape morphing, bending, or other motion to ensure their functionality. However, achieving the desired properties of MPL-manufactured micro components for a specific application still remains challenging. In this work, we present new MPL materials based on epoxy-acrylate interpenetrating networks (IPNs). We aim at fabrication 3D microstructures, whose properties can be easily tuned by varying the ratio of the IPN components and fabrication parameters. The studied mixtures consist of polyethylene glycol diacrylate (PEGDA) and cycloaliphatic epoxide functional groups. Consequently, tryarylsylfonium salt and cyclopentanone photoinitiator tailored for MPL were used to ensure cationic and radical polymerization, respectively. The resulting library of 3D microstructures was investigated for their thermal and mechanical properties using highly sensitive space-resolved methods. For the first time, we were able to evaluate the glass transition behavior of 3D MPL microstructures using fast scanning calorimetry. The influence of both IPN composition and fabrication parameters on glass transition temperature and material fragility was demonstrated. AFM force-distance curve and intermodulation methods were used to characterize the micromechanical properties with lateral resolution of the techniques in the range of 1 micron and 4 nm, respectively. The elastic-plastic behavior of the microarchitectures was evaluated and explained in terms of IPN morphology and thermal properties. The fabricated 3D IPN microstructures exhibit higher structural strength and integrity compared to PEGDA. In addition, IPNs exhibit high to full elastic recovery (up to 100%) with bulk modulus in the range of 4 to 6 MPa. This makes IPNs a good base material for modeling microstructures with intricate 3D designs for biomimetics and scaffold engineering. The effects of composition and MPL microfabrication parameters on the resulting IPN properties give us a better understanding of the underlying mechanisms and microfabrication-structure-property relationships. Moreover, our funding supports the further development of IPN systems as versatile and easily tunable MPL materials. T2 - Material Research Society Meeting CY - Boston, Massachusetts, USA DA - 26.11.2023 KW - Multiphoton Lithography KW - Two-photon polymerisatio KW - Interpenetrating polymer network PY - 2023 SP - 1 AN - OPUS4-59382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans R. A1 - Weidner, Steffen T1 - Ring-ring equilibration (RRE) of cyclic poly(L-lactide)s by means of cyclic tin catalysts N2 - With 2,2-dibutyl-2-stanna-1,3-dithiolane (DSTL) and 2-stanna-1,3-dioxa-4,5,6,7-dibenzoxepane (SnBiPh) as catalysts ring-expansion polymerizations (REP) were performed either in 2 M solution using three different solvents and two different temperatures or in bulk at 140 and 120 ◦C. A kinetically controlled rapid REP up to weight average molecular masses (Mẃs) above 300 000 was followed by a slower degradation of the molecular masses at 140 ◦C, but not at 120 ◦C Furthermore, a low molecular mass cyclic poly(L-lactide) (cPLA) with a Mn around 16 000 was prepared by polymerization in dilute solution and used as starting material for ring-ring equilibration at 140 ◦C in 2 M solutions. Again, a decrease of the molecular mass was detectable, suggesting that the equilibrium Mn is below 5 000. The degradation of the molecular masses via RRE was surprisingly more effective in solid cyclic PLA than in solution, and a specific transesterification mechanism involving loops on the surface of crystallites is proposed. This degradation favored the formation of extended-ring crystallites, which were detectable by a “saw-tooth pattern” in their MALDI mass spectra. KW - Organic Chemistry KW - Polymers and Plastics KW - MALDI-TOF MS KW - Materials Chemistry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593819 DO - https://doi.org/10.1016/j.eurpolymj.2024.112765 SN - 0014-3057 VL - 206 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-59381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinekamp, Christian A1 - Kneiske, Sönke A1 - Guilherme Buzanich, Ana A1 - Ahrens, Mike A1 - Braun, Thomas A1 - Emmerling, Franziska T1 - A fluorolytic sol-gel route to access an amorphous Zr fluoride catalyst: A useful tool for C-F bond activation N2 - A route to a ZrF4 catalyst active in room temperature Friedel–Crafts and dehydrofluorination reactions was developed via a fluorolytic sol–gel route, which was followed by a postfluorination step using a stream of CHClF2. The behaviour of different Zr(IV) precursors in a sol–gel reaction with anhydrous isopropanol/HF solution was investigated. The subsequent post-fluorination step was optimised in its temperature ramp and confirmed the necessity of a fluorination of the generated xerogels to obtain catalytic activity. The process is discussed in the context of the analysis of the materials using Brunauer–Emmett–Teller analysis (BET), powder X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The local structure of the amorphous catalyst was elucidated by extended X-ray absorption fine structure spectroscopy (EXAFS). KW - Catalysis KW - Heterogeneous catalysis KW - C-F bond activation KW - Postfluorination PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593433 DO - https://doi.org/10.1039/D3CY01439H SN - 2044-4761 SP - 1 EP - 8 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grundmann, Jana A1 - Ermilova, Elena A1 - Hertwig, Andreas A1 - Klapetek, Petr A1 - Pereira, Silvania F. A1 - Rafighdoost, Jila A1 - Bodermann, Bernd T1 - Optical and Tactile Measurements on SiC Sample Defects N2 - The different defect types on SiC samples are measured with various measurement methods including optical and tactile methods. The defect types investigated include particles, carrots and triangles and they are analyzed with imaging ellipsometry, coherent Fourier scatterometry and atomic force microscopy. Each of these methods measures different properties of the defects and they all together contribute to a complete analysis. T2 - SMSI 2023 - Sensor and Measurement Science International CY - Nuremberg, Germany DA - 08.05.2023 KW - Defects KW - Silicon carbide KW - Imaging ellipsometry KW - Atomic force microscopy KW - Coherent Fourier scatterometry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593397 SN - 978-3-9819376-8-8 DO - https://doi.org/10.5162/SMSI2023/D5.2 VL - 2023/D5 SP - 233 EP - 234 PB - AMA Service CY - Wunstorf AN - OPUS4-59339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rosen, Andrew S. A1 - Gallant, Max A1 - George, Janine A1 - Riebesell, Janosh A1 - Sahasrabuddhe, Hrushikesh A1 - Shen, Jimmy-Xuan A1 - Wen, Mingjian A1 - Evans, Matthew L. A1 - Petretto, Guido A1 - Waroquiers, David A1 - Rignanese, Gian-Marco A1 - Persson, Kristin A. A1 - Jain, Anubhav A1 - Ganose, Alex M. T1 - Jobflow: Computational Workflows Made Simple N2 - Jobflow is a free, open-source library for writing and executing workflows. Complex workflows can be defined using simple python functions and executed locally or on arbitrary computing resources using the FireWorks workflow manager. Some features that distinguish jobflow are dynamic workflows, easy compositing and connecting of workflows, and the ability to store workflow outputs across multiple databases. KW - Automation KW - Workflows KW - Computational Materials Science PY - 2024 DO - https://doi.org/10.5281/zenodo.10466868 PB - Zenodo CY - Geneva AN - OPUS4-59313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hildebrandt, R. A1 - Seifert, M. A1 - George, Janine A1 - Blaurock, S. A1 - Botti, S. A1 - Krautscheid, H. A1 - Grundmann, M. A1 - Sturm, C. T1 - Determination of acoustic phonon anharmonicities via second-order Raman scattering in CuI N2 - We demonstrate the determination of anharmonic acoustic phonon properties via second-order Raman scattering exemplarily on copper iodide single crystals. The origin of multi-phonon features from the second-order Raman spectra was assigned by the support of the calculated 2-phonon density of states. In this way, the temperature dependence of acoustic phonons was determined down to 10 K. To determine independently the harmonic contributions of respective acoustic phonons, density functional theory in quasi-harmonic approximation was used. Finally, the anharmonic contributions were determined. The results are in agreement with earlier publications and extend CuI’s determined acoustic phonon properties to lower temperatures with higher accuracy. This approach demonstrates that it is possible to characterize the acoustic anharmonicities via Raman scattering down to zero-temperature renormalization constants of at least 0.1 cm⁻¹. KW - Thermoelectrics KW - Thermal transport KW - Phonon interactions KW - Density functional theory KW - Phonons PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593164 DO - https://doi.org/10.1088/1367-2630/ad1141 SN - 1367-2630 VL - 25 IS - 12 SP - 1 EP - 12 PB - IOP Publishing CY - London AN - OPUS4-59316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, Y. A1 - Gruner, A. A1 - Aboud, D. G. K. A1 - Bonse, Jörn A1 - Schille, J. A1 - Loeschner, U. A1 - Kietzig, A.-M. T1 - Polarization effects on laser-inscribed angled micro-structures N2 - The polarization of the laser beam exhibits more substantial differences in laser micromachining as the angle of incidence deviates from zero. In the reported work, our focus was to explore the effects of circularly, p- and s-polarized laser on angled ultrashort pulse laser micromachining of micropillar arrays. The examination encompassed laser process factors, including angles of incidence, microstructure dimensions, and inter-pillar spacing. A comparison between the resulting structures demonstrated that p-polarized laser beam was the most efficient in material removal in angled laser micromachining, followed by circularly polarized laser. While the s-polarized beam exhibited the lowest ablation efficiency among the three. Such distinction is mainly attributed to the distinguishing reflectivity of the three states of polarization on tilted planes. The development of structural heights during ablation processes was examined, and potential defects in laser processing methodologies were interpreted. The dependency of structural heights on inter-pillar spacing was analyzed. This study bridges the gap between existing studies on angled ultrashort pulse laser machining and the influences of polarization on laser machining. The comparison between structures produced using laboratory-scale and industrial-scale laser systems also yielded pertinent recommendations for facilitating a smooth transition of angled laser micromachining from laboratory-scale research to industrial applications. KW - Laser processing KW - Laser-induced periodic surface structures (LIPSS) KW - Microstructures KW - Nanostructures PY - 2024 UR - https://www.sciencedirect.com/science/article/pii/S0169433223028714 DO - https://doi.org/10.1016/j.apsusc.2023.159191 SN - 0169-4332 VL - 649 SP - 1 EP - 15 PB - Elsevier AN - OPUS4-59329 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ermilova, Elena A1 - Hertwig, Andreas A1 - Weise, Matthias A1 - Grundmann, Jana A1 - Bodermann, Bernd A1 - Klapetek, Petr A1 - Hoffmann, Johannes A1 - de Preville, Sophie T1 - Imaging spectroscopic ellipsometry for investigation of energy materials and materials for nano-electronics N2 - Ellipsometry is a very powerful tool used for accurate material investigation in a wide wavelength range. It is a non-destructive and fast method. Imaging ellipsometry as a combination of optical microscopy and ellipsometry enables spatially resolved measurements when determining the layer thickness and dielectric properties of thin layers. It is known for its high polarisation sensitivity and high contrast for the surface structures. In this contribution we show the application of the imaging ellipsometry for detection of defects in energy materials and quality validation of possible reference materials for nano-electronics. Defects in wide bandgap semiconductors, in homoepitaxial SiC and heteroepitaxial GaN layers on transparent SiC substrates, can be successfully detected and classified by means of imaging ellipsometry. Correlation of imaging ellipsometry results with results from complementary techniques such as white light interference microscopy as well as atomic force microscopy contribute to understanding of surface topography and defect formation mechanisms. We discuss the potential of different methods for analysing ellipsometric map data for monitoring the defect densities. Electric properties of materials at the nanoscale can be investigated by means of scanning probe microscopy methods such as scanning microwave microscopy and conductive atomic force microscopy. However, development of new robust and easy-to-use calibration methods and calibration standards is essential to increase the traceability of these methods and allow their broad application in industry. We show how imaging spectroscopic ellipsometry can be used for development and monitoring of processing quality of patterned reference samples based on indium tin oxide (ITO) layer with different thickness and conductivity. T2 - 12th Workshop on Spectroscopic Ellipsometry (WSE) CY - Prague, Czech Republic DA - 18.09.2023 KW - Ellipsometry KW - Thin Films KW - Transparent Conductive Oxides KW - Energy materials KW - White light interference microscopy KW - Nanoelectronics KW - Wide-bandgap semiconductors PY - 2023 AN - OPUS4-59340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rosen, Andrew S. A1 - Gallant, Max A1 - George, Janine A1 - Riebesell, Janosh A1 - Sahasrabuddhe, Hrushikesh A1 - Shen, Jimmy-Xuan A1 - Wen, Mingjian A1 - Evans, Matthew L. A1 - Petretto, Guido A1 - Waroquiers, David A1 - Rignanese, Gian-Marco A1 - Persson, Kristin A. A1 - Jain, Anubhav A1 - Ganose, Alex M. T1 - Jobflow: Computational Workflows Made Simple N2 - We present Jobflow, a domain-agnostic Python package for writing computational workflows tailored for high-throughput computing applications. With its simple decorator-based approach, functions and class methods can be transformed into compute jobs that can be stitched together into complex workflows. Jobflow fully supports dynamic workflows where the full acyclic graph of compute jobs is not known until runtime, such as compute jobs that launch other jobs based on the results of previous steps in the workflow. The results of all Jobflow compute jobs can be easily stored in a variety of filesystem- and cloud-based databases without the data storage process being part of the underlying workflow logic itself. Jobflow has been intentionally designed to be fully independent of the choice of workflow manager used to dispatch the calculations on remote computing resources. At the time of writing, Jobflow workflows can be executed either locally or across distributed compute environments via an adapter to the FireWorks package, and Jobflow fully supports the integration of additional workflow execution adapters in the future. KW - Automation KW - Workflow KW - Computational Materials Science KW - Computations KW - Software PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593104 DO - https://doi.org/10.21105/joss.05995 VL - 9 IS - 93 SP - 1 EP - 7 PB - The Open Journal AN - OPUS4-59310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Maxi B. A1 - Böhmert, Linda A1 - Thünemann, Andreas A1 - Loeschner, Katrin A1 - Givelet, Lucas A1 - Fahrenson, Christoph A1 - Braeuning, Albert A1 - Sieg, Holger T1 - Influence of artificial digestion on characteristics and intestinal cellular effects of micro-, submicro- and nanoplastics N2 - The production of plastics is rising since they have been invented. Micro, submicro- and nanoplastics are produced intentionally or generated by environmental processes, and constitute ubiquitous contaminants which are ingested orally by consumers. Reported health concerns include intestinal translocation, inflammatory response, oxidative stress and cytotoxicity. Every digestive milieu in the gastrointestinal tract does have an influence on the properties of particles and can cause changes in their effect on biological systems. In this study, we subjected plastic particles of different materials (polylactic acid, polymethylmethacrylate, melamine formaldehyde) and sizes (micro- to nano-range) to a complex artificial digestion model consisting of three intestinal fluid simulants (saliva, gastric and intestinal juice). We monitored the impact of the digestion process on the particles by performing Dynamic Light Scattering, Scanning Electron Microscopy and Asymmetric Flow Field-Flow Fractionation. An in vitro model of the intestinal epithelial barrier was used to monitor cellular effects and translocation behavior of (un)digested particles. In conclusion, artificial digestion decreased cellular interaction and slightly increased transport of all particles across the intestinal barrier. The interaction with organic matter resulted in clear differences in the agglomeration behavior. Moreover, we provide evidence for polymer-, size- and surface-dependent cellular effects of the test particles. KW - Toxicology KW - General Medicine KW - Food Science KW - Nanoplastics KW - Nanoparticle KW - Dynamic Light Scattering KW - DLS PY - 2024 DO - https://doi.org/10.1016/j.fct.2023.114423 VL - 184 SP - 1 EP - 16 PB - Elsevier AN - OPUS4-59298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mrkwitschka, Paul A1 - Rühle, Bastian A1 - Kuchenbecker, Petra A1 - Löhmann, Oliver A1 - Lindemann, Franziska A1 - Hodoroaba, Vasile-Dan T1 - Embedding and cross-sectioning as a sample preparation procedure for accurate and representative size and shape measurement of nanopowders N2 - Reliable measurement of the size of polydisperse, complex-shaped commercial nanopowders is a difficult but necessary task, e.g., for regulatory requirements and toxicity risk assessment. Suitable methods exist for the accurate characterization of the size of non-aggregated, stabilized, spherical and monodisperse nanoparticles. In contrast, industrial nanoscale powders usually require dedicated sample preparation procedures developed for the analysis method of choice. These nano-powders tend to agglomerate and/or aggregate, a behavior which in combination with an innate broad particle size distribution and irregular shape often significantly alters the achievable accuracy of the measured size parameters. The present study systematically tests two commercially available nanoscale powders using different sample preparation methods for correlative analysis by scanning electron microscopy, dynamic light scattering, Brunauer–Emmet–Teller method and differential mobility analysis. One focus was set on the sample preparation by embedding nanoparticles in carbon-based hot-mounting resin. Literature on this topic is scarce and the accuracy of the data extracted from cross sections of these particles is unclearly stated. In this paper systematic simulations on the deviation of the size parameters of well-defined series of nanoparticles with different shapes from the nominal value were carried out and the contributing factors are discussed. KW - Nanopowder KW - Electron microscopy KW - Sample preparation KW - Cross-sectioning KW - Cerium oxide KW - Zinc oxide PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593289 DO - https://doi.org/10.1038/s41598-023-51094-0 SN - 2045-2322 VL - 14 SP - 1 EP - 10 PB - Springer Nature CY - London AN - OPUS4-59328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Falkenhagen, Jana A1 - Kricheldorf, H. R. T1 - Polycondensations and Cyclization of Poly(L-lactide) Ethyl Esters in the Solid State N2 - The usefulness of seven different Tin catalysts, Bismuth subsalicylate and Titan tetra(ethoxide) for the polycondensation of ethyl L-lactate (ELA) was examined at 150 °C/6 d. Dibutyltin bis(phenoxides) proved to be particularly effective. Despite the low reactivity of ELA, weight average molecular masses (Mw) up to 12 500 were found along with partial crystallization. Furthermore, polylactides (PLAs) of similar molecular masses were prepared via ELA-initiated ROPs of L-lactide by means of the four most effective polycondensation catalysts. The crystalline linear PLAs were annealed at 140 or 160 °C in the presence of these catalysts. The consequences of the transesterification reactions in the solid PLAs were studied by means of matrix-assisted laser desorption/ionization (MALDI TOF) mass spectrometry, gel permeation chromatography (GPC) and small-angle X-ray scattering (SAXS). The results indicate that polycondensation and formation of cycles proceed in the solid state via formation of loops on the surface of the crystallites. In summary, five different transesterification reactions are required to explain all results. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-592934 DO - https://doi.org/10.1039/d3py01232h SN - 1759-9962 VL - 15 IS - 2 SP - 71 EP - 82 PB - RSC Publ. CY - Cambridge AN - OPUS4-59293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Bannick, C. G. A1 - Kerndorff, A. A1 - Heller, C. A1 - Fuchs, M. A1 - Braun, U. T1 - Welche Rolle spielen Textilien als Mikroplastik-Quelle im Abwasser? Was kann man dagegen tun? N2 - Diskutiert wird die Frage, ob Textilien gewaschen in der Waschmaschine ein Eintragspfad von Mikroplastik in die Umwelt sind. Nachgewiesen wird dies experimentell über Messungen zur Massenbestimmung mit der TED-GC/MS. T2 - DWA-Seminar: Mikroplastik in der (Siedlungs-)Wasserwirtschaft – Einordnung und Handlungsempfehlungen für die Praxis CY - Online meeting DA - 29.11.2023 KW - Mikroplastik KW - TED-GC/MS KW - Waschmaschine KW - Polymer 3R PY - 2023 AN - OPUS4-59279 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Bannick, C. G. A1 - Kerndorff, A. A1 - Heller, C. A1 - Fuchs, M. A1 - Braun, U. T1 - Welche Rolle spielen Textilien als Mikroplastik-Quelle im Abwasser? N2 - In diesem Vortrag wird die Rolle der Waschmaschine als Eintragspfad von Mikroplastik in das Abwasser diskutiert und eine experimentelle Annäherung an das Problem beschrieben. T2 - Wasserwirtschaftliches Kolloquium der TU Berlin CY - Berlin, Germany DA - 14.12.2023 KW - Mikroplastik KW - TED-GC/MS KW - Waschmaschine PY - 2023 AN - OPUS4-59278 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lisec, Jan A1 - Recknagel, Sebastian A1 - Prinz, Carsten A1 - Vogel, Kristin A1 - Koch, Matthias A1 - Becker, Roland T1 - eCerto—versatile software for interlaboratory data evaluation and documentation during reference material production N2 - The statistical tool eCerto was developed for the evaluation of measurement data to assign property values and associated uncertainties of reference materials. The analysis is based on collaborative studies of expert laboratories and was implemented using the R software environment. Emphasis was put on comparability of eCerto with SoftCRM, a statistical tool based on the certification strategy of the former Community Bureau of Reference. Additionally, special attention was directed towards easy usability from data collection through processing, archiving, and reporting. While the effects of outlier removal can be flexibly explored, eCerto always retains the original data set and any manipulation such as outlier removal is (graphically and tabularly) documented adequately in the report. As a major reference materials producer, the Bundesanstalt für Materialforschung und -prüfung (BAM) developed and will maintain a tool to meet the needs of modern data processing, documentation requirements, and emerging fields of RM activity. The main features of eCerto are discussed using previously certified reference materials. KW - Reference material KW - Statistics KW - Software KW - Collaborative trial PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-591851 DO - https://doi.org/10.1007/s00216-023-05099-3 SP - 1 EP - 9 PB - Springer Science and Business Media LLC AN - OPUS4-59185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz A1 - Karafiludis, Stephanos A1 - Pimentel, C. A1 - Montes Hernandez, G A1 - Kochovski, Z A1 - Bienert, Ralf A1 - Weimann, Karin A1 - Emmerling, Franziska A1 - Scoppola, E A1 - Van Driessche, A T1 - Solution-driven processing of calcium sulfate: the mechanism of the reversible transformation of gypsum to bassanite in brines N2 - Calcium sulfate hemihydrate (CaSO4ᐧ0.5H2O), also known as bassanite, has been used as a precursor to produce gypsum (dihydrate, CaSO4ᐧ2H2O) for various construction and decorative purposes since prehistoric times. The main route to obtain hemihydrate is a thermal treatment of gypsum at temperatures typically between 150 °C and 200 °C to remove some of the structural water. In this contribution, we introduce (Fig. 1) a more efficient and sustainable method (T < 100 °C) that enables the direct, rapid, and reversibly conversion of gypsum to bassanite using reusable high salinity aqueous solutions (brines with c[NaCl] > 4 M). The optimum conditions for the efficientproduction of bassanite in a short time (< 5 min) involve the use of brines with c(NaCl) > 4 M and maintaining a temperature, T > 80 °C. When the solution containing bassanite crystals is cooled down to around room temperature, eventually gypsum is formed. When the temperature is raised again to T > 80 °C, bassanite is rapidly re-precipitated. This contrasts with the typical behaviour of the bassanite phase in low salt environments. Traditionally, hemihydrate is obtained through a solid state thermal treatment because bassanite is considered to be metastable with respect to gypsum and anhydrite in aqueous solutions, and therefore gypsum-to-bassanite conversion should not occur in water. Its very occurrence actually contradicts numerical thermodynamic predictions regarding solubility of calcium sulfate phases. By following the evolution of crystalline phases with in situ and time-resolved X-ray diffraction/scattering and Raman spectroscopy, we demonstrated that the phase stability in brines at elevated temperatures is inaccurately represented in the thermodynamic databases. Most notably for c(NaCl) > 4 M, and T > 80 °C gypsum becomes readily more soluble than bassanite, which induces the direct precipitation of the latter from gypsum. The fact that these transformations are controlled by the solution provides extensive opportunities for precise manipulation of crystal formation. Our experiments confirmed that bassanite remained the sole crystalline structure for many hours before reverting into gypsum. This property is extremely advantageous for practical processing and efficient crystal extraction in industrial scenarios. T2 - Granada Münster Discussion Meeting GMDM 10 CY - Münster, Germany DA - 29.11.2023 KW - Gypsum KW - Bassanite KW - Calcium sulfate KW - Recycling KW - Scattering PY - 2024 AN - OPUS4-59162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karafiludis, Stephanos A1 - Kochovski, Z. A1 - Scoppola, E. A1 - Retzmann, Anika A1 - Hodoroaba, Vasile-Dan A1 - ten Elshof, J. E. A1 - Emmerling, Franziska A1 - Stawski, Tomasz Maciej T1 - Nonclassical Crystallization Pathway of Transition Metal Phosphate Compounds N2 - Here, we elucidate nonclassical multistep crystallization pathways of transition metal phosphates from aqueous solutions. We followed precipitation processes of M-struvites, NH4MPO4·6H2O, and M-phosphate octahydrates, M3(PO4)2·8H2O, where M = Ni, Co, or NixCo1–x, by using in situ scattering and spectroscopy-based techniques, supported by elemental mass spectrometry analyses and advanced electron microscopy. Ni and Co phosphates crystallize via intermediate colloidal amorphous nanophases, which change their complex structures while agglomerating, condensing, and densifying throughout the extended reaction times. We reconstructed the three-dimensional morphology of these precursors by employing cryo-electron tomography (cryo-ET). We found that the complex interplay between metastable amorphous colloids and protocrystalline units determines the reaction pathways. Ultimately, the same crystalline structure, such as struvite, is formed. However, the multistep process stages vary in complexity and can last from a few minutes to several hours depending on the selected transition metal(s), their concentration, and the Ni/Co ratio. KW - Non-classical crystallization theory KW - Transition metals KW - Phosphates KW - Amorphous phases KW - Intermediate phases PY - 2023 DO - https://doi.org/10.1021/acs.chemmater.3c02346 SN - 1520-5002 VL - 35 IS - 24 SP - 10645 EP - 10657 PB - American Chemical Society (ACS) CY - Washington D.C. AN - OPUS4-59135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Habibimarkani, Heydar A1 - John, Elisabeth A1 - Schusterbauer, Robert A1 - Abram, Sarah-Luise A1 - Prinz, Carsten A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Complementary Characterization of FeNi-Oxide Nanoparticles as Catalysts for Water Electrolysis combining Electron Microscopy, EDS, XRD, ToF-SIMS and Electrochemical Analysis N2 - Electrocatalysis is and will continue to play a central role in the development of a new and modern sustainable economy, especially for chemicals and fuels. The storage of excess electrical energy into chemical energy by splitting water into hydrogen and oxygen is a feasible solution in this economic sector. A major drawback of electrical energy lies in the storage. Therefore, hydrogen is discussed as promising alternative. Fortunately, this issue can be effectively addressed through the implementation of chemical storage mechanisms. Due to their abundance on Earth and inherent stability in alkaline solutions, transition-metal oxides have become one of several viable alternatives to conventional noble-metal catalysts. Since FeNi oxide is one of the most active oxygen evolution reaction (OER) electrocatalysts for alkaline water electrolysis, it has been the subject of extensive research. A series of different types of FeNi oxide nanoparticles (NPs) with atomic ratios covering a broad range, and various sizes with specific stoichiometric and non-stoichiometric iron and nickel ratios was synthesized and characterized by the combination of surface analysis techniques, such as time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The morphology was studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which revealed the coexistence of mixed and unmixed iron and nickel NPs with comparable sizes in the range of 30–40 nm across all ratios. The synthesis technique displayed control over the iron-nickel ratio, as evidenced by energy dispersive X-ray spectroscopy (EDS) data. The presence of magnetite (Fe3O4) was detected in all samples investigated by X-ray diffraction (XRD). Furthermore, the existence of nickel ferrite (NiFe2O4) was shown in the Fe2Ni by XRD analysis. For the cyclic voltammetry (CV) measurements, the NPs were deposited onto glassy carbon electrodes using Nafion® as an ionomer, and 1 M KOH was employed as the electrolyte. Subsequently, the NPs/Nafion® electrode was transferred into the ToF-SIMS chamber to allow surface analysis and depth profiling. The ToF-SIMS analysis revealed distinct peaks corresponding to Fe, Ni, and other peaks associated with Nafion®, whereas a straightforward correlation between the Ni.Fe ratio and the SIMS peak pattern is not possible. The catalytic activity towards OER was evaluated through CV measurements, where the Fe2Ni3 ratio exhibited the most favorable performance, displaying a lower overpotential. T2 - SIMS Europe 2023 CY - Nottingham, England DA - 02.09.2023 KW - FeNi-Oxide NPs KW - ToF-SIMS KW - Catalysts KW - OER PY - 2023 AN - OPUS4-59143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Giovannozzi, A. A1 - Rossi, A. A1 - Kovac, J. A1 - Ekar, J. A1 - Goenaga-Infante, H. A1 - Clarkson, C. A1 - Clifford, C. A1 - Cant, D. A1 - Minelli, C. A1 - Reithofer, M. A1 - Lindner, G. A1 - Venzago, C. A1 - Bohmer, N. A1 - Drexler, C.-P. A1 - Schedler, U. A1 - Thiele, T. A1 - Lechart, F. A1 - Kästner, B. A1 - Sjövall, P. A1 - Johnston, L. A1 - Tan, Gunnar A1 - Radnik, Jörg T1 - Standardised Measurements of Surface Functionalities on Nanoparticles N2 - Engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, opto-electronics, and information storage which improve the quality of life and European prosperity. NP function, performance, interaction with biological species, and environmental fate are largely determined by their surface functionalities. Standardized repeatable surface characterization methods are therefore vital for quality control of NPs, and to meet increasing concerns regarding their safety. Therefore, industry, regulatory agencies, and policymakers need validated traceable measurement methods and reference materials. This calls for fit-for-purpose, validated, and standardized methods, and reference data and materials on the surface chemistry of engineered NPs. Here, we present a concept for the development of such standardized measurement protocols utilizing method cross-validation and interlaboratory comparisons (ILCs) with emphasis on both advanced measurement methods such as quantitative Nuclear Magnetic Resonance (qNMR), X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) and cost-efficient, non-surface specific methods like optical assays and electrochemical titration methods. T2 - European Partnership on Metrology 2023 Review Conference CY - Amsterdam, Netherlands DA - 07.11.2023 KW - Surface chemistry KW - Quality assurance KW - Traceability PY - 2023 AN - OPUS4-59142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Habibimarkani, Heydar A1 - John, Elisabeth A1 - Schusterbauer, Robert A1 - Abram, Sarah-Luise A1 - Prinz, Carsten A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Investigating the Synergistic Effects of FeNi-Oxide Nanoparticles as Water Electrolysis Catalysts: A Multi-Technique Characterization Approach N2 - Electrocatalysis is and will continue to play a central role in the development of a new and modern sustainable economy, especially for chemicals and fuels. The storage of excess electrical energy into chemical energy by splitting water into hydrogen and oxygen is a feasible solution in this economic sector. A major drawback of electrical energy lies in the storage. Therefore, hydrogen is discussed as promising alternative. Fortunately, this issue can be effectively addressed through the implementation of chemical storage mechanisms. Due to their abundance on Earth and inherent stability in alkaline solutions, transition-metal oxides have become one of several viable alternatives to conventional noble-metal catalysts. Since FeNi oxide is one of the most active oxygen evolution reaction (OER) electrocatalysts for alkaline water electrolysis, it has been the subject of extensive research. A series of different types of FeNi oxide nanoparticles (NPs) with atomic ratios covering a broad range, and various sizes with specific stoichiometric and non-stoichiometric iron and nickel ratios was synthesized and characterized by the combination of surface analysis techniques, such as time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The morphology was studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which revealed the coexistence of mixed and unmixed iron and nickel NPs with comparable sizes in the range of 30–40 nm across all ratios. The synthesis technique displayed control over the iron-nickel ratio, as evidenced by energy dispersive X-ray spectroscopy (EDS) data. The presence of magnetite (Fe3O4) was detected in all samples investigated by X-ray diffraction (XRD). Furthermore, the existence of nickel ferrite (NiFe2O4) was shown in the Fe2Ni by XRD analysis. For the cyclic voltammetry (CV) measurements, the NPs were deposited onto glassy carbon electrodes using Nafion® as an ionomer, and 1 M KOH was employed as the electrolyte. Subsequently, the NPs/Nafion® electrode was transferred into the ToF-SIMS chamber to allow surface analysis and depth profiling. The ToF-SIMS analysis revealed distinct peaks corresponding to Fe, Ni, and other peaks associated with Nafion®, whereas a straightforward correlation between the Ni.Fe ratio and the SIMS peak pattern is not possible. The catalytic activity towards OER was evaluated through CV measurements, where the Fe2Ni3 ratio exhibited the most favorable performance, displaying a lower overpotential. T2 - European Materials Research Society (E-MRS) Fall 2023 CY - Warsaw, Poland DA - 18.09.2023 KW - FeNi-Oxide NPs KW - ToF-SIMS KW - Catalysts KW - OER PY - 2023 AN - OPUS4-59139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Prinz, Carsten A1 - Zimathies, Annett A1 - Emmerling, Franziska T1 - Experimantal raw data sets associated with certified reference material BAM-P116 (titanium dioxide) for comparison of nitrogen and argon sorption, available in the universal adsorption information format (AIF) N2 - These data sets serve as models for calculating the specific surface area (BET method) using gas sorption in accordance with ISO 9277. The present measurements were carried out with nitrogen at 77 Kelvin and argon at 87 Kelvin. It is recommended to use the following requirements for the molecular cross-sectional area: Nitrogen: 0.1620 nm² Argon: 0.1420 nm² Titanium dioxides certified with nitrogen sorption and additionally measured with argon for research purposes were used as sample material. The resulting data sets are intended to serve as comparative data for own measurements and show the differences in sorption behaviour and evaluations between nitrogen and argon. These data are stored in the universal AIF format (adsorption information file), which allows flexible use of the data. KW - Physisorption KW - Surface area KW - AIF KW - Argon KW - Nitrogen PY - 2023 DO - https://doi.org/10.5281/zenodo.10199628 PB - Zenodo CY - Geneva AN - OPUS4-59102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Altmann, Korinna A1 - Hodoroaba, Vasile-Dan T1 - Getting reliable data on microplastic detection methods by means of ILC N2 - There is an urgent demand for reliable data on microplastic analysis, particularly on its physico-chemical properties as well as validated methodology to obtain such data. Through interlaboratory comparisons (ILCs) it becomes possible to assess accuracy and precision of methods by involving many laboratories around the world. At BAM, my tasks focused around organisation of an ILC on physico-chemical characterisation of microplastic detection methods under the international pre-standardisation platform VAMAS (www.vamas.org/twa45/) as Project 2 “Development of standardized methodologies for characterisation of microplastics with microscopy and spectroscopy methods” under the Technical Working Area TWA 45 “Micro and Nano Plastics in the Environment”. With a proud number of 84 participants this ILC is able to provide superior statistical results. Thermoanalytical (Py-GC/MS and TED-GC/MS) and vibrational (µ-IR and µ-Raman) methods were asked for identification and quantification of microplastic test samples according to mass or particle number. Preliminary results indicate which methods show a higher accuracy and precision and reveal some sample preparation ideas which work best for microplastics characterisation. At the end of the ILC an overall plausibility of the results will be assessed. T2 - CUSP Early Career Researchers Meeting CY - Online meeting DA - 21.11.2023 KW - Micro- and Nanoplastics KW - Interlaboratory comparison KW - Microplastic reference materials PY - 2023 AN - OPUS4-59056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kossatz, Philipp A1 - Andresen, Elina A1 - Würth, Christian A1 - Frenzel, Florian A1 - Prinz, Carsten A1 - Resch-Genger, Ute T1 - Lanthanide Nanocrystals as Authentication and Security Tags and Reporters for Optical Sensors N2 - Counterfeiting of goods has serious economic implications worldwide and can present a considerable threat to human health and national security, rendering product authentication more and more important. This led to an increasing interest in simple tags for anticounterfeiting and authentication applications for the integration into different materials and matrices that are robust enough to survive the respective production processes and can be read out in-situ with simple instrumentation. Here we present a platform of chemically inert, multi-color luminescent lanthanide nanocrystals (LnNC) consisting of a NaYF4 matrix doped with Yb, Er, Tm, or Ho as promising candidates for such applications. LnNC with characteristic multi-color emission patterns, composed of narrow bands of varying intensity in the ultraviolet, visible, near-infrared, and short-wave were synthesized via a thermal decomposition approach under inert conditions[1]. The tailor-made design of different emission pattern was achieved by tuning particle size, material composition, and particle surface chemistry in upscaleable syntheses.[2] Particle size and morphology were determined by dynamic light scattering and transmission electron microscopy and the optical properties were characterized by absorption and fluorescence spectroscopy as well as fluorescence lifetime measurements. The particles were then incorporated into security inks and consumer products. In addition, microenvironment-specific changes in the emission properties of the LnNC tag were utilized to study and sense changes of physico-chemical parameters in different matrices. T2 - JCF Frühjahrssymposium 2023 CY - Gießen, Germany DA - 21.03.2023 KW - Lanthanide Nanocrystals KW - Anti-Counterfeiting KW - Fluorescence Spectroscopy PY - 2023 AN - OPUS4-59037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Böhning, Martin A1 - Zorn, Reiner A1 - Schönhals, Andreas T1 - Inelastic and quasielastic neutron scattering experiments on microporous membranes fro green separation processes N2 - Polymers with intrinsic microporosity are promising candidates for the active separation layer in gas separation membranes. These polymers are characterized by a high permeability and reasonable permselectivity. The latter point is somehow surprising because for microporous systems a more Knudson-like diffusion is expected then a size dependent temperature activated sieving process. It was argued in the framework of a random gate model that molecular fluctuations on a time scale from ps to ns are responsible for the permselectivity. Here series of polymers of intrinsic microporosity (PIMs) as well as microporous polynorbornenes with bulky Si side groups and a rigid backbone are considered. The polymers have different microporosity characterized by high BET surface area values. First inelastic time-of-flight neutron scattering measurements were carried out to investigate the low frequency density of state (VDOS). The measured data show the characteristic low frequency excess contribution to the VDOS above the Debye sound wave level, generally known as the Boson peak in glass-forming materials. It was found that the frequency of the maximum position of the Boson peak correlates with the BET surface area value. Secondly elastic scans as well as quasielastic neutron scattering measurements by a combination of neutron time-of-flight and backscattering have been out. A low temperature relaxation process was found for both polymers. This process was assigned to the methyl group rotation. It was analysed in terms of a jump diffusion in a three-fold potential. The analysis of the dependence of the elastic incoherent structure factor on the scattering vector yields the number of methyl groups which might be immobilized. The neutron scattering experiments were accompanied by fast scanning calorimetry and broadband dielectric investigations as well as atomistic molecular dynamic simulations. T2 - Kolloquiumsvortrag an der Technischen Universität München CY - Garching, Germany DA - 20.11.2023 KW - Polymers with intrinsic microporosity PY - 2023 AN - OPUS4-59036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kossatz, Philipp A1 - Andresen, Elina A1 - Würth, Christian A1 - Frenzel, Florian A1 - Prinz, Carsten A1 - Resch-Genger, Ute T1 - Upconversion Nanoparticles for Luminescent Barcodes and as Reporters for Optical Sensors N2 - Counterfeiting of goods has serious economic implications worldwide and can be a threat to human health and safety. Upconversion nanoparticles (UCNPs)are ideal candidates for optical encoding of various materials. Particles with tailor-made emission patterns can be used as anti-counterfeiting markers and luminophores in security inks and to track material flows. Microenvironment-specific changes in the emission properties of the UCNP tags can be used to study, signal, and sense changes of physico-chemical parameters in different environments, e.g., building materials. T2 - ANAKON 2023 CY - Vienna, Austria DA - 11.04.2023 KW - Nanomaterials KW - Anti-Counterfeiting KW - Fluorescence Spectroscopy PY - 2023 AN - OPUS4-59035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Connecting the nodes: networks and networking N2 - This talk explores the intricate connections between scientists, focusing on the networking dynamics within the realm of metal-organic frameworks (MOFs). The study delves into the collaborative networks formed among scientists, shedding light on the synergistic relationships that contribute to advancements in MOF research. T2 - WINS School 2023 Frameworks and networks CY - Blossin, Germany DA - 02.06.2023 KW - Metal-organic frameworks PY - 2023 AN - OPUS4-59028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Witt, Julia T1 - Exploring innovative Materials and in situ techniques N2 - Presentation of some projects conducted in recent years related to corrosion studies and research on electrocatalysis. The talk was part of a seminar at the University of Toronto and took place within the framework of a scientific exchange stay. T2 - Seminar at the University of Toronto CY - Toronto, Canada DA - 11.10.2023 KW - Multi-principal element alloys (MPEAs) KW - Electrocatalysis KW - Corrosion KW - Materials acceleration platforms (MAPs) PY - 2023 AN - OPUS4-59029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Understanding mechanochemical reactions: Real-time insights and collaborative research N2 - Mechanochemistry has become a compelling method for producing (new) molecule s and mate-rials, but the inner workings of the milling jars remain a fascinating mystery. Advances in this field include tailor-made chemical systems and real-time revelations using techniques such as XRD and Raman spectroscopy. This talk will discuss our recent progress in using X-ray diffraction and sophisticated spectros-copy to observe reactions in various material systems during ball milling and extrusion in real-time. The complexity of mechanochemical reactions spans multiple scales and requires a holistic ap-proach. The categorisation of reactions by investigative methods precedes the exploration of real-time analysis that reveals macroscopic processes using synchrotron techniques. During this exploration, one resounding realisation remains: We are on the threshold of under-standing. The complexity of mechanochemistry requires a collective effort, drawing on the ex-pertise of a diverse community. As we unravel the web of mechanochemical phenomena, we acknowledge the collaborative nature of this ongoing journey. T2 - CMCC Mechanochemistry Discussions CY - Online meeting DA - 21.09.2023 KW - Mechanochemistry KW - In situ PY - 2023 AN - OPUS4-59026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Driscoll, Laura L. A1 - Driscoll, Elizabeth H. A1 - Dong, Bo A1 - Sayed, Farheen N. A1 - Wilson, Jacob N. A1 - O’Keefe, Christopher A. A1 - Gardner, Dominic J. A1 - Grey, Clare P. A1 - Allan, Phoebe K. A1 - Michalchuk, Adam A. L. A1 - Slater, Peter R. T1 - Under pressure: offering fundamental insight into structural changes on ball milling battery materials N2 - Synthesis of Li ion battery materials via ball milling has been a huge area of growth, leading to new high-capacity electrode materials, such as a number of promising disordered rocksalt (DRS) phases. In prior work, it was generally assumed that the synthesis was facilitated simply by local heating effects during the milling process. In this work, we show that ball milling Li2MoO4 leads to a phase transformation to the high pressure spinel polymorph and we report electrochemical data for this phase. This observation of the formation of a high pressure polymorph shows that local heating effects alone cannot explain the phase transformation observed (phenakite to spinel) and so indicates the importance of other effects. In particular, we propose that when the milling balls collide with the material, the resulting shockwaves exert a localised pressure effect, in addition to local heating. To provide further support for this, we additionally report ball milling results for a number of case studies (Li2MnO3, Li2SnO3, Nb2O5) which reinforces the conclusion that local heating alone cannot explain the phase transformations observed. The work presented thus provides greater fundamental understanding of milling as a synthetic pathway and suggests potential strategies to prepare such samples without milling (e.g., doping to create internal chemical pressure). In addition, we suggest that further research is needed into the effect of the use of milling as a route to smaller particles, since we believe that such milling may also be affecting the surface structure of the particles through the influence of the shockwaves generated. KW - Pollution KW - Nuclear Energy and Engineering KW - Sustainability and the Environment KW - Environmental Chemistry KW - Renewable Energy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-590086 DO - https://doi.org/10.1039/d3ee00249g VL - 16 IS - 11 SP - 5196 EP - 5209 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Combination of complementary methods For in situ studies N2 - This talk explores the synergistic application of complementary synchrotron methods for in situ investigations, providing a comprehensive approach to enhance analytical capabilities in materials research and characterization. T2 - INSYNX - DEUTSCH-BRASILIANISCHER WORKSHOP ON BREAKING BOUNDARIES OF IN SITU SYNCHROTRON X-RAY METHODS CY - Sao Paulo, Brazil DA - 06.03.2023 KW - In situ KW - Synchrotron PY - 2023 AN - OPUS4-59025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Understanding mechanochemical reactions: Real-time insights and collaborative research N2 - Mechanochemistry emerges as a potent, environmentally friendly, and straightforward approach for crafting novel multicomponent crystal systems. Various milling parameters, including milling frequency, time, filling degree of the milling jar, ball diameter, vessel size, degree of milling ball filling, and material of jars, are recognized influencers on the mechanisms and rates of product formation. Despite the growing interest in mechanochemistry, there exists a gap in understanding the mechanistic aspects of mechanochemical reactivity and selectivity. To address this, diverse analytical methods and their combinations, such as powder X-ray diffraction, X-ray absorption spectroscopy, NMR, Raman spectroscopy, and thermography, have been developed for real-time, in situ monitoring of mechanochemical transformations. This discussion centers on our recent findings, specifically investigating the formation of (polymorphic) cocrystals and metal-organic frameworks. Through these studies, we aim to unravel the impact of milling parameters and reaction sequences on the formation mechanism and kinetics. Notably, in the mechanochemical chlorination reaction of hydantoin, normalizing kinetic profiles to the volume of the milling ball unequivocally demonstrates the conservation of milling reaction kinetics. In this ball-milling transformation, physical kinetics outweigh chemical factors in determining reaction rates. Attempting to interpret such kinetics solely through chemical terms poses a risk of misinterpretation. Our results highlight that time-resolved in situ investigations of milling reactions provide a novel avenue for fine-tuning and optimizing mechanochemical processes. T2 - Brimingham Green chemsistry CY - Birmingham, England DA - 08.09.2023 KW - Mechanochemistry KW - Green Chemistry PY - 2023 AN - OPUS4-59024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Investigating the mechanism and kinetics of the mechanochemical synthesis of multi-component systems N2 - Mechanochemistry is a promising and environmentally friendly approach for synthesizing (novel) multicomponent crystal systems. Various milling parameters, such as milling frequency, milling time, and ball diameter have been shown to influence the mechanisms and rates of product formation. Despite increasing interest in mechanochemistry, there is still limited understanding of the underlying reactivity and selectivity mechanisms. Various analytical techniques have been developed to gain insight into the mechanochemical transformations, including powder X-ray diffraction, X-ray adsorption spectroscopy, NMR, Raman spectroscopy and thermography. Using these techniques, we have studied the formation of (polymorphic) cocrystals, organometallic compounds and salts, and elucidated the influence of milling parameters and reaction sequences on the formation mechanism and kinetics. For example, our study of the mechanochemical chlorination reaction of hydantoin revealed that normalisation of the kinetic profiles to the volume of the grinding ball clearly showed that physical kinetics dominate the reaction rates in a ball-milling transformation. Attempts to interpret such kinetics in purely chemical terms risk misinterpretation of the results. Our results suggest that time-resolved in situ investigation of milling reactions is a promising way to fine-tune and optimise mechanochemical processes. T2 - ISIC 2023 CY - Glasgow, Scotland DA - 05.09.2023 KW - Mechanochemistry KW - Polymorphy KW - In situ PY - 2023 AN - OPUS4-59023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Understanding mechanochemical reactions: Real-time insights and collaborative research N2 - Mechanochemistry emerges as a potent, environmentally friendly, and straightforward approach for crafting novel multicomponent crystal systems. Various milling parameters, including milling frequency, time, filling degree of the milling jar, ball diameter, vessel size, degree of milling ball filling, and material of jars, are recognized influencers on the mechanisms and rates of product formation. Despite the growing interest in mechanochemistry, there exists a gap in understanding the mechanistic aspects of mechanochemical reactivity and selectivity. To address this, diverse analytical methods and their combinations, such as powder X-ray diffraction, X-ray absorption spectroscopy, NMR, Raman spectroscopy, and thermography, have been developed for real-time, in situ monitoring of mechanochemical transformations. This discussion centers on our recent findings, specifically investigating the formation of (polymorphic) cocrystals and metal-organic frameworks. Through these studies, we aim to unravel the impact of milling parameters and reaction sequences on the formation mechanism and kinetics. Notably, in the mechanochemical chlorination reaction of hydantoin, normalizing kinetic profiles to the volume of the milling ball unequivocally demonstrates the conservation of milling reaction kinetics. In this ball-milling transformation, physical kinetics outweigh chemical factors in determining reaction rates. Attempting to interpret such kinetics solely through chemical terms poses a risk of misinterpretation. Our results highlight that time-resolved in situ investigations of milling reactions provide a novel avenue for fine-tuning and optimizing mechanochemical processes. T2 - PhD Seminar CY - Online meeting DA - 12.10.2023 KW - Mechanochemistry KW - In situ PY - 2023 AN - OPUS4-59022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Casali, Lucia A1 - Emmerling, Franziska T1 - Use of the solvent-free mechanochemical method for a sustainable preparation of pharmaceuticals N2 - With the growing interest in environmental issues on the part of governments and institutions, pharmaceutical industries are asked to reduce their environmental footprint. Given the major impact related to the use of solvents, the development of methodologies less solvent demanding is nowadays even more urgent. In light of that, mechanochemistry would be a suitable solvent-free technology since it promotes the activation of the chemical reactions between (generally) solid materials via inputs of mechanical energy. Since such reactions may occur outside the kinetic and thermodynamic rules of conventional solution chemistry, the main limit of mechanochemistry is the poor mechanistic understanding of the solid-state transformations involved, which is still hindering a widespread use of the method, as well a scale-up to the industrial level. However, the development of methods for real-time monitoring of the mechanochemical reactions enables obtaining (in)accessible information on reaction intermediates, new products, or reaction time, thus getting closer to a better understanding of the mechanistic behaviour. With the rules of this chemistry becoming increasingly clear, the new reaction pathways of mechanochemistry wouldn’t represent a limit anymore, but an asset, that may lead to lot of opportunities for the pharmaceutical industry. T2 - Post Doc Day Berlin CY - Berlin, Germany DA - 02.11.2023 KW - Mechanochemistry KW - Sustainability KW - Pharmaceuticals PY - 2023 AN - OPUS4-59010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Karafiludis, Stephanos A1 - Stawski, Tomasz A1 - Emmerling, Franziska A1 - Retzmann, Anika A1 - Scoppola, E. A1 - Kochovski, Z. A1 - ten Elshof, J.E. A1 - Hodoroaba, Vasile-Dan T1 - Deciphering the non-classical Crystallization of transition metal phosphates (TMP) N2 - A crucial aspect of ensuring sustainable raw material utilization to meet global demand lies in the efficient recovery and reuse of critical elements and compounds. Phosphate, PO43-, and many transition metals e.g. Ni and Co are listed as critical raw materials (CRMs) due to their indispensable role in numerous industrial processes. However, these elements can also exert harmful environmental impacts, with phosphorus being a major contributor to anthropogenic eutrophication and transition metal ions acting as toxic pollutants, particularly in ground- and wastewaters. Typically, separate pathways have been considered to extract hazardous substances such as transition metals or phosphate, independently from each other. Here, we report the crystallization pathways of transition metal phosphate (TMP) compounds, M-struvite and M-phosphate octahydrate with M = Ni2+, Co2+, NixCo1-x2+, NH4MPO4∙6H2O, M3(PO4)2∙8H2O from aqueous solutions. The co-precipitation of these particular TMP compounds from industrial and agricultural wastewaters has high potential as a P- and 3d metal recovery route. For efficient extraction and transformation of the TMPs, a comprehensive understanding of their nucleation and crystallization pathways from aqueous solutions is required. While the crystallization mechanisms of magnesium or calcium phosphate-bearing phases have been researched for many decades (e.g. struvite, apatite), investigations into TMP materials are relatively scarce and often focus on the adsorption of transition metals on the surface instead of their actual incorporation in minerals. In our study, we investigated in detail the precipitation process of several Co and Ni phosphates using ex- and in-situ spectroscopic-, spectrometric- and diffraction-/scattering-based techniques. We show that the crystallization behavior of TMPs, indeed deviates from a classical crystallization paradigm and follows a non-classical multi-step pathway. Our work extends the understanding of TMP crystallization by elucidating the formation of amorphous precursors preceding the final crystalline phase This time-dependent transition of the transition metal precursor phases can be observed by electron-imaging/tomography depicting a progressively changing amorphous solids until their ultimate reconfiguration to a crystal (Figure 1). Here, the two-metallic NixCo1-x-mixtures deviated anomalously in their reaction kinetics, crystallization outcome and participation of both metals from their pure endmembers. By measuring the crystallization with in-situ X-ray scattering and pH using a flow-through setup geometry, a complex prolonged interplay among nucleating entities e.g. and amorphous or crystalline solids could be observed in the metal phosphate mixtures reaching equilibrium after almost two and a half hours (Figure 2). Our results provide a holistic perspective on the crystallization behavior of transition metal phosphate phases, shedding light on their unique nucleation and growth kinetics involving structural and chemical transformations of the intermediate phases. T2 - Granada Münster Discussion Meeting 2023 CY - Münster, Germany DA - 29.11.2023 KW - Non-classical crystallization theory KW - Transition metals KW - Phosphates PY - 2023 AN - OPUS4-59007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Data-driven chemical understanding with bonding analysis N2 - Bonds and local atomic environments are crucial descriptors of material properties. They have been used to create design rules and heuristics for materials. More and more frequently, they are used as features in machine learning. Implementations and algorithms (e.g., ChemEnv and LobsterEnv) for identifying these local atomic environments based on geometrical characteristics and quantum-chemical bonding analysis are nowadays available. Fully automatic workflows and analysis tools have been developed to use quantum-chemical bonding analysis on a large scale and for machine-learning approaches. The latter relates to a general trend toward automation in density functional-based materials science. The lecture will demonstrate how our tools, that assess local atomic environments, helped to test and develop heuristics and design rules and an intuitive understanding of materials. T2 - 2023 MRS Fall Meeting & Exhibit CY - Boston, Massachusetts, USA DA - 26.11.2023 KW - Automation KW - Machine learning KW - Materials Understanding KW - Magnetism KW - Phonons PY - 2023 AN - OPUS4-59002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Liaison of ISO/TC 202 Microbeam Analysis with VAMAS/TWA 37 Quantitative Microstructural Analysis N2 - The progress in activities on Microbeam Analysis under VAMAS/TWA 37 is reviewed. Particularly the liaison with the new projects within the ISO technical committee TC 202 is presented and discussed with respect to the identification and launching corresponding VAMAS projects. The ongoing project "FIB sample processing for TEM" is presented in detail. T2 - 30th Meeting of ISO/TC 202 Microbeam Analysis CY - Berlin, Germany DA - 22.11.2023 KW - VAMAS KW - ISO/TC 202 KW - Microbeam Analysis KW - Standardisation KW - Electron microscopy KW - FIB PY - 2023 AN - OPUS4-58984 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Why shaken, not stirred, makes the difference: insights into mechanochemical reactions from in situ investigations N2 - Mechanochemistry is an effective, environmentally benign, and facile method for the synthesis of new multicomponent crystal systems. Different milling parameters are known to affect the mechanisms and rates of product formation: milling frequency, milling time, filling degree of the milling jar, ball diameter and vessel size, degree of milling ball filling, and material of jars. The increasing interest in mechanochemistry is contrasted by a limited mechanistic understanding of the mechanochemical reactivity and selectivity. Different analytical methods and their combinations have been developed for the time resolved in situ monitoring of mechanochemical transformations, including powder X-ray diffraction, X-ray adsorption spectroscopy, NMR, Raman spectroscopy, and thermography. Here we will discuss our recent results investigating the formation of (poly-morphic) cocrystals[1,3], metal-organic compounds, and salts, thereby elucidating the influence of milling parameters and reaction sequences on the formation mechanism and kinetics. For the mechanochemical chlorination reaction of hydantoin normalizing the kinetic profiles to the volume of the milling ball showed clearly that milling reaction kinetics are conserved. Here physical kinetics dominate reaction rates in a ball-milling transformation. Attempting to interpret such kinetics in purely chemical terms risk misinterpreting the results. Our results indicate that time-resolved in situ investigation of milling reactions offer a new approach to tune and optimize mechanochemical processes. T2 - GdCh Vortrag Universität Potsdam CY - Potsdam, Germany DA - 05.06.2023 KW - Mechanochemistry KW - In Situ PY - 2023 AN - OPUS4-58982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Mohring, W. A1 - Karafiludis, Stephanos A1 - Schneider, M. A1 - Haas, S. A1 - Hagen, S. A1 - Glatzel, U. A1 - Laplanche, G. A1 - Stephan-Scherb, C. T1 - Corrosion in the Co-Cr-Fe-Ni high entropy alloy family N2 - While a lage amount of research on high entropy alloys is oriented towards mechanical properties and the microstructural improvement it is also necessary to keep an eye on the environment that potential application materials will be submitted to. The Co-Cr-Fe-Ni based high entropy family has shown great potential over the years of high entropy research and some candidate alloys are chosen for an insight into their corrosion behaviour. Several atmospheres are studied, i.e. O2, H2O, SO2 and a mix thereof in argon as well as synthetic air. Just as for classic alloys, the chromium is the most important element in terms of protection agains further corrosion. The addition of manganese, as in case of the “Cantor alloy” CrMnFeCoNi, overpasses Cr when it comes to oxygen affinity and thus counteracts the layer formation of Cr2O3. Even without Mn, a temperature chosen too high will also affect the formation of the chromium oxide layer and spall it off, annulling its protective potential. We can also observe how trace elements influence the layer formation. These effects and their mechanisms will be discussed for the alloys CrFeNi, CoCrNi, CrMnFeCoNi and variations of Al10Co25Cr8Fe15Ni36Ti6 using a combination of electron microscopy, thermodynamic calculations and x-ray diffraction. T2 - MRS-T International Conference CY - Hsinchu, Taiwan DA - 17.11.2023 KW - Corrosion KW - Scanning electron microscopy KW - Mixed gas atmosphere PY - 2023 AN - OPUS4-58980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Kai A1 - Mirabella, Francesca A1 - Knigge, Xenia A1 - Mezera, Marek A1 - Weise, Matthias A1 - Sahre, Mario A1 - Wasmuth, Karsten A1 - Voss, Heike A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Bonse, Jörn T1 - Chemical and topographical changes upon sub-100-nm laser-induced periodic surface structure formation on titanium alloy: the influence of laser pulse repetition rate and number of over-scans N2 - Titanium and its alloys are known to allow the straightforward laser-based manufacturing of ordered surface nanostructures, so-called high spatial frequency laser-induced periodic surface structures (HSFL). These structures exhibit sub-100 nm spatial periods – far below the optical diffraction limit. The resulting surface functionalities are usually enabled by both, topographic and chemical alterations of the nanostructured surfaces. For exploring these effects, multi-method characterizations were performed here for HSFL processed on Ti–6Al–4V alloy upon irradiation with near-infrared ps-laser pulses (1030 nm, ≈1 ps pulse duration, 1–400 kHz) under different laser scan processing conditions, i.e., by systematically varying the pulse repetition frequency and the number of laser irradiation passes. The sample characterization involved morphological and topographical investigations by scanning electron microscopy (SEM), atomic force microscopy (AFM), tactile stylus profilometry, as well as near-surface chemical analyses hard X-ray photoelectron spectroscopy (HAXPES) and depth-profiling time-of-flight secondary ion mass spectrometry (ToF-SIMS). This provides a quantification of the laser ablation depth, the geometrical HSFL characteristics and enables new insights into the depth extent and the nature of the non-ablative laser-induced near-surface oxidation accompanying these nanostructures. This allows to answer the questions how the processing of HSFL can be industrially scaled up, and whether the latter is limited by heat-accumulation effects. T2 - 2023 E-MRS Spring Meeting, Symposium L "Making light matter: lasers in material sciences and photonics" CY - Strasbourg, France DA - 29.05.2023 KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser pulses KW - Laser processing KW - Hard X-ray photoelectron spectroscopy (HAXPES) KW - Time-of-flight secondary ion mass spectrometry (ToF-SIMS) PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589902 UR - https://onlinelibrary.wiley.com/doi/full/10.1002/pssa.202300719 DO - https://doi.org/10.1002/pssa.202300719 SN - 1862-6319 VL - 220 SP - 1 EP - 12 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-58990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sordello, F. A1 - Prozzi, M. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg A1 - Pellegrino, F. T1 - Increasing the HER efficiency of photodeposited metal nanoparticles over TiO2 using controlled periodic illumination N2 - Although the use of noble metal catalysts can increase the efficiency of hydrogen evolution reaction, the process is still limited by the characteristics of the metal-hydrogen (M−H) bond, which can be too strong or too weak, depending on the metal employed. Studies revealed that the hydrogen affinity for the metal surface (i.e. H absorption/desorption) is regulated also by the potential at the metal nanoparticles. Through controlled periodic illumination (CPI) of a series of metal/TiO2 suspensions, here we demonstrated that an increase of the HER efficiency is possible for those photodeposited metals which have a Tafel slope below 125 mV. Two possible explanations are here reported, in both of them the M−H interaction and the metal covering level play a prominent role, which also depend on the prevailing HER mechanism (Volmer-Heyrovsky or Volmer-Tafel). KW - Controlled periodic illumination KW - Hydrogen evolution reaction KW - Titanium dioxide KW - Photoreforming KW - Volcano plot KW - Sabatier KW - Nanoparticles PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589875 DO - https://doi.org/10.1016/j.jcat.2023.115215 VL - 429 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-58987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan ED - Hodoroaba, Vasile-Dan T1 - Liaison Report from ISO/TC 202 'Microbeam Analysis' to ISO/TC 229 'Nanotechnologies' N2 - Liaison activities within ISO/TC 202 'Microbeam Analysis' which are relevant to ISO/TC 229 'Nanotechnologies' are reported acoording to the structure defined by ISO/TC229 Nanotechnologies Liaisons Coordination Group (NLCG): new standards/documents, coordination issues, and further detailed specific information, e.g. publications, events, comments. KW - ISO/TC 229 Nanotechnologies KW - ISO/TC 202 Microbeam Analysis KW - Standardisation PY - 2023 SP - 1 EP - 3 CY - ISO, Geneva, CH AN - OPUS4-58986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Roy, Arkendu A1 - Kumar, Sourabh A1 - Buzanich, Ana A1 - Hickel, Tilmann A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit T1 - Hydroxide Based High Entropy MOF for Oxygen Evolution Reaction N2 - The energy crisis becomes more prominent in higher altitude countries like Germany, with higher annual energy demand. Thus, the generation of higher energy density fuel like hydrogen from renewable resources become the only way to solve the zero-emission energy system while avoiding the expensive batteries as an energy storage option. Therefore, water electrolysis cells to produce hydrogen and oxygen by storing of solar/wind energy in chemical bonds is a fruitful alternative for renewable and long-term energy generation. Thus, designing inexpensive water-splitting electrocatalyst material becomes a field of research of utmost importance. High entropy metal hydroxide organic frameworks (HE-MHOFs) are composed of high entropy hydroxide layer inside MOFs, resulting in a high degree of structural complexity and diversity than conventional MOFs. The concept of ‘high entropy’ refers to multiple types of metal ions (Metal = TM) in a near equimolar ratio in the same framework, creating a high degree of disorder and many possible structural configurations. Here, the HE-MHOF successfully synthesized by a conventional solvothermal process, crystallizes in the single phase with significant lattice distortion. A special-quasi-random (SQS) structure was simulated with equimolar compositions (~20% TM = Mn, Co, Ni, Cu and Zn) and a comparison was made with the ICP-AES (inductively coupled plasma atomic emission spectroscopy), XANES (X-ray absorption near edge structure) and XAFS (X-ray absorption fine structure) observations. Further, the elemental mapping (Energy dispersive Spectroscopy) of HE-MHOF shows the presence of all five different metals in the same crystallite to substantiate the ‘high entropy’ state of the MOF. The HE-MHOF offers improved thermal stability than mono-metallic MHOF and exhibit unique properties compared to traditional monometallic (Ni2+) MOF variants. Firstly, to elucidate the effect of the multimetallic system on the catalytic performance, we have performed density functional theory (DFT) calculations to investigate pre-redox cycles involved in the catalytic activation of HE (and Ni)-MOFs. HE-MHOF is further investigated as an electrocatalyst for oxygen evolution reaction (OER) due to its special high entropy hydroxide layered structure and electronic properties. Our DFT results have examined the traditional proton-coupled electron transfer (PCET) steps involving the single transition-metal site. The scrutiny of d-band centers and their behaviour in catalytic upgradation is investigated with density of states (DOS) analysis. It exhibits outstanding performance towards oxygen evolution reaction (OER) comparable to the experimental findings, which is also comparable to state-of-the-art OER catalysts based on precious metals such as iridium oxide and platinum carbon. We have considered different electrolyte solutions to elucidate the fast kinetics oxygen evolution reaction in the presence of various external nucleophilic anions. In hydroxyl-based MOFs, electrolytes' influence can substantially enhance catalytic activities. Here, with the help of DFT simulations, we have investigated the effect of the nucleophilicity of anion on each elementary reaction involved in the PCET mechanism of OER. T2 - EuroMOF 2023 CY - Granada, Spain DA - 24.09.2023 KW - Metal-organic Framework KW - High Entropy Materials KW - Electrocatalysis PY - 2023 AN - OPUS4-58971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gugin, Nikita A1 - Villajos Collado, José Antonio A1 - Emmerling, Franziska T1 - Chemists have solutions and know how to get rid of them N2 - Metal-organic framework-based biocomposites (MOF-biocomposites) are promising materials for biosensing, biocatalysis, and delivery of biopharmaceuticals. One of the most studied MOFs for bioapplications is ZIF-8 (zeolitic imidazolate framework 8) due to its high surface area, high thermal and chemical stability, and low cytotoxicity. The conventional synthesis of ZIF-8-biocomposites called biomimetic mineralization includes mixing selected biomolecules 2-methylimidazole, and soluble Zn2+ source in water.[3] Despite the high efficiency of the method, it does not allow for large-scale production and is restricted to hydrophilic biomolecules. Aimed at developing a scalable and versatile approach, we adapted our recently-reported ZIF-8 reactive extrusion for biocomposite production. We selected bovine serum albumin (BSA) as an inexpensive model biomacromolecule for the preparation of biocomposites. The synthesis of BSA@ZIF-8 was performed using a twin-screw extruder ZE 12 HMI (Three-Tec Gmbh) at a mild temperature of 40 °C. Automatic volumetric feeder ZD 12B (Three-Tec GmbH) was used to supply the reagent mixture consisting of 2-methylimidazole, zinc source, and BSA. To initiate the reaction, a catalytic amount of EtOH was added using a peristaltic pump BT-L (Lead Fluid, China). Powder X-Ray diffraction (PXRD), thermogravimetric analysis (TGA), FTIR, and N2 adsorption were used to characterize the extrudates. Highly crystalline and pure BSA@ZIF-8 with different BSA loadings was isolated after washing the extrudate with EtOH and sodium dodecyl sulfate. The EtOH feeding rate was optimized by following the protein encapsulation efficiency at a BSA mass fraction of 10%. A continuous extruder operation under optimized conditions showed good reproducibility and capability of producing biocomposites on the kilograms scale. These results provide highly valuable information for cheap and large-scale production of ZIF-8-based biocomposites. Due to the lack of restrictions on molecule size and solubility, our proof-of-concept study may significantly expand the selection of biomolecules for immobilization in ZIF-8, making the method applicable to various functional applications T2 - SALSA Make and Measure conference CY - Berlin, Germany DA - 13.09.2023 KW - In situ Raman KW - Large-scale processing KW - Reactive extrusion KW - Large-scale production KW - Mechanochemistry PY - 2023 AN - OPUS4-58953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gugin, Nikita A1 - Villajos Collado, José Antonio A1 - Maiwald, Michael A1 - Emmerling, Franziska T1 - Mixing Reactions Enable Green Synthesis of ZIF-8 at Large Scale: Batch and Continuous Modes N2 - We report the scale-up of a batch solid synthesis of zeolitic imidazolate framework-8 (ZIF-8) for reactive extrusion. The crystalline product forms in the extruder directly under the mixture of solid 2-methylimidazole and basic zinc carbonate in the presence of a catalytic amount of liquid. The process parameters such as temperature, liquid type, feeding rate, and linker excess were optimized using the setup specifically designed for in situ Raman spectroscopy. Highly crystalline ZIF-8 with a Brunauer–Emmett–Teller (BET) surface area of 1816 m2 g–1 was quantitatively prepared at mild temperature using a catalytic amount of ethanol and a small excess of the linker. Finally, we developed a simple and comprehensive approach to evaluating the environmental friendliness and scalability of metal–organic framework (MOF) syntheses in view of their large-scale production. T2 - 2023 #RSCPoster Twitter Conference CY - Online meeting DA - 28.02.2023 KW - MOFs KW - Green chemistry KW - Reactive extrusion KW - Large-scale production KW - Mechanochemistry KW - Zeolitic imidazolate framework PY - 2023 UR - https://twitter.com/NikitaGugin/status/1630538555675099139 AN - OPUS4-58951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gugin, Nikita A1 - Villajos Collado, José Antonio A1 - Dautain, Olivier A1 - Maiwald, Michael A1 - Emmerling, Franziska T1 - Optimizing the Green Synthesis of ZIF-8 by Reactive Extrusion Using In Situ Raman Spectroscopy N2 - ZIF-8 is a prominent member of the zeolitic imidazolate frameworks (ZIFs) subfamily of MOFs which possesses high thermal, chemical, and mechanical stabilities. Different routes have been explored to achieve the large-scale production of ZIF-8. However, these synthetic procedures are often inconsistent with the principles of sustainable chemical manufacturing. Aimed at developing scalable and greener production of ZIF-8, we adapted our previously reported in-batch „mix and wait“ synthesis[2] to continuous extrusion. To optimize the process, in-situ Raman spectroscopy was applied. Finally, we developed a simple and comprehensive approach to evaluating the environmental friendliness and scalability of MOF syntheses in view of their large-scale production. The synthesis of ZIF-8 was performed using a twin-screw extruder ZE 12 HMI equipped with an automatic volumetric feeder ZD 12B (Three-Tec GmbH, Switzerland) and peristaltic pump BT-L (Lead Fluid, China). The process was monitored in six different zones using a Raman RXN1TM analyzer (Kaiser Optical Systems, France) with a non-contact probe head. PMMA screw-in parts, which are transparent to Raman laser radiation, were specially manufactured to provide the laser focus within the barrel. PXRD, TGA, N2 adsorption measurements, and SEM were used as complementary techniques to characterize the extrudates. The batch ‘mix and wait’ synthesis of ZIF-8, consisting of bringing solid basic zinc carbonate and 2-methylimidazole in contact in a closed vial, was successfully adapted to reactive extrusion. The crystalline ZIF-8 continuously forms in the extruder under the mixing of solid reagents in the presence of a catalytic amounts of H2O or EtOH. The temperature, type of liquid, feeding rate, and excess of linker were optimized using in situ Raman spectroscopy. Pure and highly crystalline ZIF-8 was isolated at 40 °C by adding a catalytic amount of EtOH and a linker excess of 25%. The resulting material has excellent porosity with the BET surface area slightly exceeding that of the reference Basolite® Z1200 (1816 vs. 1734 m2 g–1). The reaction could yield ~ 3 kg d–1 assuming a continuous operation, with a space-time yield of ca. 67,000 kg m–3 d–1. The present method was compared to the published pathways based on Green Chemistry principles and proved to have the highest potential for large-scale production of ZIF-8. T2 - 5th European Conference on Metal Organic Frameworks and Porous Polymers (EuroMOF2023) CY - Granada, Spain DA - 24.09.2023 KW - In situ Raman KW - Reactive extrusion KW - Green chemistry KW - Mechanochemistry KW - MOFs KW - Large-scale synthesis PY - 2023 AN - OPUS4-58950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gugin, Nikita A1 - Schwab, Alexander A1 - Villajos Collado, José Antonio A1 - Emmerling, Franziska T1 - Reactive extrusion of a model BSA@ZIF-8 biocomposite: a scalable, continuous and sustainable approach N2 - Metal-organic framework-based biocomposites (MOF-biocomposites) are promising materials for biosensing, biocatalysis, and delivery of biopharmaceuticals. One of the most studied MOFs for bioapplications is ZIF-8 (zeolitic imidazolate framework 8) due to its high surface area, high thermal and chemical stability, and low cytotoxicity. The conventional synthesis of ZIF-8-biocomposites called biomimetic mineralization includes mixing selected biomolecules 2-methylimidazole, and soluble Zn2+ source in water. Despite the high efficiency of the method, it does not allow for large-scale production and is restricted to hydrophilic biomolecules. Aimed at developing a scalable and versatile approach, we adapted our recently-reported ZIF-8 reactive extrusion for biocomposite production. We selected bovine serum albumin (BSA) as an inexpensive model biomacromolecule for the preparation of biocomposites. The synthesis of BSA@ZIF-8 was performed using a twin-screw extruder ZE 12 HMI (Three-Tec Gmbh) at a mild temperature of 40 °C. Automatic volumetric feeder ZD 12B (Three-Tec GmbH) was used to supply the reagent mixture consisting of 2-methylimidazole, zinc source, and BSA. To initiate the reaction, a catalytic amount of EtOH was added using a peristaltic pump BT-L (Lead Fluid, China). Powder X-Ray diffraction (PXRD), thermogravimetric analysis (TGA), FTIR, and N2 adsorption were used to characterize the extrudates. Highly crystalline and pure BSA@ZIF-8 with different BSA loadings was isolated after washing the extrudate with EtOH and sodium dodecyl sulfate. The EtOH feeding rate was optimized by following the protein encapsulation efficiency at a BSA mass fraction of 10%. A continuous extruder operation under optimized conditions showed good reproducibility and capability of producing biocomposites on the kilograms scale. These results provide highly valuable information for cheap and large-scale production of ZIF-8-based biocomposites. Due to the lack of restrictions on molecule size and solubility, our proof-of-concept study may significantly expand the selection of biomolecules for immobilization in ZIF-8, making the method applicable to various functional applications T2 - Tag der Chemie 2023 CY - Berlin, Germany DA - 05.07.2023 KW - Biocomposite KW - MOFs KW - Reactive extrusion KW - Zeolitic imidazolate framework PY - 2023 AN - OPUS4-58949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goswami, Juli Nanda A1 - Haque, Najirul A1 - Seikh, Asiful H. A1 - Bhattacharya, Biswajit A1 - Emmerling, Franziska A1 - Bar, Nimai A1 - Ifseisi, Ahmad A. A1 - Biswas, Surajit A1 - Dolai, Malay T1 - Carboxylative cyclization of propargyl alcohols with carbon dioxide for the synthesis of α-alkylidene cyclic carbonates in presence of Co(III) schiff base complex catalyst N2 - A cobalt(III) complex, [Co(L)3](DMF) (1) of Schiff base ligand HL, 2-((E)-(benzylimino)methyl)-4-bromophenol is prepared and single crystal X-ray structural analysis have also been performed. The structures of complex 1 showed hexa-coordinated mononuclear systems that adopt octahedral geometry. The complex has also exhibited the supramolecular networks through non-covalent interactions like H-bonding, C–Hπ stacking. Moreover, the complex 1 is very effective in the catalytic fixation of carbon dioxide in propergyl alcohols to produce α-alkylidene cyclic carbonates. The catalytic production of α-alkylidene cyclic carbonates have been carried out through carboxylative cyclization of propargyl alcohols using CO2 balloon of 1 atm pressure at 80 ◦C. Solvent free condition (green synthesis) made this catalytic protocol eco-friendly towards the environment. Utilizing various substrates of propargyl alcohols moderate to high percentage yield (62–95%) of respective α-alkylidene cyclic carbonates product have been isolated over this catalytic reaction. Besides, the theoretical calculations (DFT) was performed for the prediction of probable mechanism of the catalytic reaction KW - Catalytic fixation of carbon dioxide KW - Carboxylative cyclization of propargyl alcohols KW - Cobalt (III) Schiff base complex KW - X-ray crystal analysis PY - 2024 DO - https://doi.org/10.1016/j.molstruc.2023.136868 SN - 0022-2860 VL - 1296 IS - Part 1 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-58947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linberg, Kevin A1 - Szymoniak, Paulina A1 - Schönhals, Andreas A1 - Emmerling, Franziska A1 - Michalchuk, Adam A. L. T1 - The Origin of Delayed Polymorphism in Molecular Crystals Under Mechanochemical Conditions N2 - We show that mechanochemically driven polymorphic transformations can require extremely long induction periods, which can be tuned from hours to days by changing ball milling energy. The robust design and interpretation of ball milling experiments must account for this unexpected kinetics that arises from energetic phenomena unique to the solid state. Detailed thermal analysis, combined with DFT simulations, indicates that these marked induction periods are associated with processes of mechanical activation. Correspondingly, we show that the pre‐activation of reagents can also lead to marked changes in the length of induction periods. Our findings demonstrate a new dimension for exerting control over polymorphic transformations in organic crystals. We expect mechanical activation to have a much broader implication across organic solid‐state mechanochemistry. KW - General Chemistry KW - Catalysis KW - Organic Chemistry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589219 DO - https://doi.org/10.1002/chem.202302150 SN - 0947-6539 SP - e202302150 PB - Wiley AN - OPUS4-58921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gugin, Nikita A1 - Villajos Collado, José Antonio A1 - Dautain, Olivier A1 - Maiwald, Michael A1 - Emmerling, Franziska T1 - Large-Scale Synthesis of ZIF-8 for Hydrogen Storage: Batch and Continuous Modes N2 - We report the scale-up of a batch solid synthesis of zeolitic imidazolate framework-8 (ZIF-8) for reactive extrusion. The crystalline product forms in the extruder directly under the mixture of solid 2-methylimidazole and basic zinc carbonate in the presence of a catalytic amount of liquid. Highly crystalline ZIF-8 with a Brunauer−Emmett−Teller (BET) surface area of 1816 m2 g−1 was quantitatively prepared at mild temperature using a catalytic amount of ethanol and a small excess of the linker. Extruded ZIF-8 is an affordable alternative to commercial Basolite Z1200 as a reference material for H2 cryoadsorption. T2 - Metrology for Advanced Hydrogen Storage Solutions (MefHySto) Closing Conference CY - Berlin, Germany DA - 03.07.2023 KW - In situ Raman KW - Large-scale processing KW - Mechanochemistry KW - Twin-screw extrusion (TSE) PY - 2023 AN - OPUS4-58926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - The Dark Side of Science (2023 edition) N2 - An introductory lecture on the Dark Side of Science; what it is, why it exists, and what can be done to fight it. This lecture illuminates the increasing prevalence of fraudulent scientific work (e.g. faked data, manipulated images, paper mills) with plenty of examples and sources. The second section expands on the driving forces that caused this phenomenon to emerge, largely driven by pressures from management, peers and the researcher themselves. The third section expands on methods and tools that can be used to educate and arm oneself against this phenomenon. The 2023 edition includes new examples of larger fraudulent bodies of work emerging, and the problems posed by the arrival of LLMs. T2 - Lecture series on "Information management" CY - Berlin, Germany DA - 27.11.2023 KW - Research fraud KW - Scientific misconduct KW - Paper mills KW - Metrics-driven science KW - Image manipulation KW - Faked research PY - 2023 AN - OPUS4-58925 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Simone A1 - Altmann, Korinna A1 - Wohlleben, W. T1 - Influence of the pH Value to the Degradation of Ester-Based Thermoplastic Polyurethanes N2 - Microplastics are solid polymeric particles with a size of 1-1000 μm (ISO/TR21960:2020), which can be emitted from mismanaged waste into the environment, where microplastic is now ubiquitous. What happens to the microplastics after ending up in the environment, which risks entail and what effects it has are not sufficiently clarified up to now. The most certain issue is that the plastic particles in the environment are exposed to natural ageing, are fragmenting and degrading, such that the potential risk to ecosystems and humans is increasing due to the formation of smaller and smaller particles, potentially even including nanoplastics, if these are ingested before their further degradation. Therefore, and in view of a possible registration of polymers under REACH in the future, it is necessary to investigate the degradation of thermoplastic polyurethanes (TPU) regarding hydrolysis stability to evaluate possible risks and effects to the environment. In the present studies, one thermoplastic polyurethane – with and without hydrolysis stabilizer – is exposed to different pH buffers at 50°C for 14 days to investigate hydrolysis depending to different pH values (acid, alkali and neutral) based on OECD guideline TG111. The hydrolysis behavior of the TPUs is characterized by surface sensitive techniques and on bulk properties. First degradation effects can be detected by SEC. Hydrolysis, especially under acidic and basic conditions, leads to chain scissions to lower molecular masses. Furthermore, the degradation products which indicate the structure of the bulk material were detected by thermo-analytical methods like TGA-FTIR for the small degradation products and the thermo extraction/desorption-gaschromatography/mass spectrometry (TED-GC/MS) for bigger degradation products. Acidic and basic hydrolysis shows the same degradation behavior which is caused by a preferred scission of the ester and urethane functionalities. Surface-sensitive techniques such as XPS demonstrate less carboxylic acid formation at acidic than at alkaline pH value in the TPU without stabilator, where as the TPU with stabilator ages to the same extent in both pH ranges. Altogether, the hydrolysis of TPUs – independently of added stabilizer or not – in acid and alkali environment is accelerated compared to the neutral hydrolysis. T2 - SETAC CY - Dubin, Ireland DA - 30.04.2023 KW - Degradation KW - Thermoplastic Polyurethane KW - Microplastic KW - Polymer Hydrolysis KW - Polymer 3R KW - REACH PY - 2023 AN - OPUS4-58906 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Edzards, Joshua A1 - Saßnick, Holger-Dietrich A1 - Buzanich, Ana Guilherme A1 - Valencia, Ana M. A1 - Emmerling, Franziska A1 - Beyer, Sebastian A1 - Cocchi, Caterina T1 - Effects of Ligand Substituents on the Character of Zn-Coordination in Zeolitic Imidazolate Frameworks N2 - Due to their favorable properties and high porosity, zeolitic imidazolate frameworks (ZIFs) have recently received much limelight for key technologies such as energy storage, optoelectronics, sensorics, and catalysis. Despite widespread interest in these materials, fundamental questions regarding the zinc coordination environment remain poorly understood. By focusing on zinc(II)2-methylimidazolate (ZIF-8) and its tetrahedrally coordinated analogues with Br-, Cl-, and H-substitution in the 2-ring position, we aim to clarify how variations in the local environment of Zn impact the charge distribution and the electronic properties of these materials. Our results from densityfunctional theory confirm the presence of a Zn coordinative bond with a large polarization that is quantitatively affected by different substituents on the organic ligand. Moreover, our findings suggest that the variations in the Zn coordination induced by the functionalization have a negligible effect on the electronic structure of the considered compounds. On the other hand, halogen terminations of the ligands lead to distinct electronic contributions in the vicinity of the frontier region which ultimately reduce the band gap size by a few hundred millielectron volts. Experimental results obtained from X-ray absorption spectroscopy (Zn K-edge) confirm the trends predicted by theory and, together with them, contribute to a better understanding of the structure−property relationships that are needed to tailor ZIFs for target applications. KW - Surfaces KW - Physical and Theoretical Chemistry KW - General Energy KW - Electronic KW - Coatings and Films KW - Optical and Magnetic Materials PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589117 DO - https://doi.org/10.1021/acs.jpcc.3c06054 SN - 1932-7447 VL - 127 IS - 43 SP - 21456 EP - 21464 PB - American Chemical Society (ACS) AN - OPUS4-58911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Porta-Velilla, L. A1 - Martínez, E. A1 - Frechilla, A. A1 - Castro, M. A1 - de la Fuente, G. F. A1 - Bonse, Jörn A1 - Angurel, L. A. T1 - Grain orientation, angle of incidence, and beam polarization effects on ultraviolet 300 ps-laser-induced nanostructures on 316L stainless steel N2 - Laser-induced periodic surface structures (LIPSS) represent a unique route for functionalizing materials through the fabrication of surface nanostructures. Commercial AISI 316L stainless steel (SS316L) surfaces are laser treated by ultraviolet 300 ps laser pulses in a laser line scanning (LLS) approach. Processing parameters are optimized (pulse energy of 2.08 µJ, pulse repetition frequency of 300 kHz, and suitable laser scan and sample displacement rates) for the generation of low spatial frequency LIPSS over a large 25 × 25 mm2 area. Different angles of incidence of the laser radiation (0°, 30°, and 45°) and different linear laser beam polarizations (s and p) produce a plethora of rippled surface morphologies at distinct grains. Scanning electron microscopy and 2D Fourier transforms, together with calculations of the optical energy deposited at the treated surfaces using Sipe's first-principles electromagnetic scattering theory, are used to study and analyze in detail these surface morphologies. Combined with electron backscattering diffraction, analyses allow associating site-selectively various laser-induced-surface morphologies with the underlying crystalline grain orientation. Resulting grain orientation maps reveal a strong impact of the grain crystallographic orientation on LIPSS formation and point toward possible strategies, like multi-step processes, for improving the manufacturing of LIPSS and their areal coverage of polycrystalline technical materials. KW - Laser-induced periodic surface structures (LIPSS) KW - Steel KW - Grain orientation KW - Electron backscattering diffraction (EBSD) KW - Laser processing PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588929 DO - https://doi.org/10.1002/lpor.202300589 SN - 1863-8899 SP - 1 EP - 21 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-58892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Knigge, Xenia A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - Maskless Micropatterning of Polydopamine for versatile surface functionalization N2 - Inspired by the chemistry of mussel adhesive proteins, polydopamine (PDA has been shown as one of the most versatile platforms for altering the properties and incorporating new functionalities to nearby any material surface despite its nature. Rich chemistry of PDA enables broad variety of surface modification and diverse secondary reactions that makes it extremely interesting for a wide range of application including biomedical field, e.g., drug delivery, adhesives, cell adhesion, biosensing. Despite high potential of polydopamine, the lack of deposition control and precision in existed methods limits their applications in microdevices and miniaturized functional systems like, for example, MEMS, microfluidic and sensorics. Herein, we demonstrate a novel maskless approach for surface micropatterning with polydopamine based on Multiphoton Lithography that overcomes present limitations. Neither strong oxidants, metal ions nor adjustment of pH to alkaline is required by this technique. The spatial resolution down to 0.8 µm has been achieved which is at least an order of magnitude smaller than shown by other existed methods. We are able to control the morphology and thickness of the micropattern by altering fabrication parameters allowing structure gradient. Apart from the glass substrate, we achieved PDA patterning at surfaces of different nature such as polychlorotrifluoroethylene, polydimethylsiloxane, polyethylene terephthalate, silicon wafers, and fluorinated glass coverslips. Post-modification of polydopamine micropatterns with protein enzyme like trypsin is demonstrated to highlight its sensing potential. Presented in this work microfabrication technique empowers advanced applications of mussel-inspired materials in single-molecule bioassays, sensors and other complex microdevices. T2 - International Conference on Precision Engineering and Sustainable Manufacturing CY - Okinawa, Japan DA - 18.07.2023 KW - Multiphoton lithography KW - Polydopamine KW - Micropatterning PY - 2023 AN - OPUS4-58878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Silbernagl, Dorothee A1 - Szymoniak, Paulina A1 - Tavasolyzadeh, Zeynab A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - Interpenetrating networks with tuned thermal and mechanical properties N2 - Text Multiphoton lithography (MPL) has recently attracted significant research interest as a versatile tool capable of producing 2D and 3D micro- and nanoscopic features with high spatial resolution. The integrity of MPL microstructures, or their ability to respond to external stimuli, is of critical importance. However, achieving the desired properties of fabricated microcomponents for a specific application remains a challenge. In this work, we present new MPL materials based on epoxy-acrylate interpenetrating networks (IPNs). We aim at 3D microstructures, whose properties can be easily tuned by varying the ratio of the IPN components and fabrication parameters (Figure 1). The resulting library of 3D microstructures was investigated for their thermal and mechanical properties using highly-sensitive space-resolved methods. Flash scanning calorimetry revealed the influence of both, IPN composition and fabrication parameters, on glass transition temperature and material fragility. AFM force-distance curve and intermodulation methods were used to characterize the mechanical properties with a lateral resolution of 1 micron and 4 nm, respectively. The deformation, stiffness and elastic behavior are discussed in detail in relation to the morphology. Moreover, we found that some 3D IPN microstructures exhibit fully elastic behavior. Our funding encourages the further development of IPN systems as versatile and easily tunable MPL materials. T2 - Micro Nano Engineering (MNE conference) CY - Berlin, Germany DA - 25.09.2023 KW - Interpenetrating polymer network KW - Multiphoton Lithography KW - Two photon polymerisation KW - Direct laser writing KW - Polyethylene glycol diacrylate PY - 2023 AN - OPUS4-58879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tavasolyzadeh, Zeynab A1 - Tang, Peng A1 - Hahn, Marc Benjamin A1 - Hweidi, Gada A1 - Nordholt, Niclas A1 - Haag, Rainer A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - 2D and 3D Micropatterning of Mussel‐Inspired Functional Materials by Direct Laser Writing N2 - AbstractThis work addresses the critical need for multifunctional materials and substrate‐independent high‐precision surface modification techniques that are essential for advancing microdevices and sensing elements. To overcome existing limitations, the versatility of mussel‐inspired materials (MIMs) is combined with state‐of‐the‐art multiphoton direct laser writing (DLW) microfabrication. In this way, 2D and 3D MIM microstructures of complex designs are demonstrated with sub‐micron to micron resolution and extensive post‐functionalization capabilities. This study includes polydopamine (PDA), mussel‐inspired linear, and dendritic polyglycerols (MI‐lPG and MI‐dPG), allowing their direct microstructure on the substrate of choice with the option to tailor the patterned topography and morphology in a controllable manner. The functionality potential of MIMs is demonstrated by successfully immobilizing and detecting single‐stranded DNA on MIM micropattern and nanoarray surfaces. In addition, easy modification of MIM microstructure with silver nanoparticles without the need of any reducing agent is shown. The methodology developed here enables the integration of MIMs in advanced applications where precise surface functionalization is essential. KW - Direct laser writing KW - Mussel-inspired materials KW - Polyglycerol KW - Polydopamine KW - Micropatterning PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588778 DO - https://doi.org/10.1002/smll.202309394 SN - 1613-6829 SP - 1 EP - 12 PB - Wiley-VCH CY - Weinheim AN - OPUS4-58877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja A1 - Fähler, Sebastian A1 - Fähler, Sebastian T1 - Thermomagnetic generators with magnetocaloric materials for harvesting low grade waste heat N2 - To date, there are very few technologies available for the conversion of low-temperature waste heat into electricity. Thermomagnetic generators are one approach proposed more than a century ago. Such devices are based on a cyclic change of magnetization with temperature. This switches a magnetic flux and, according to Faraday’s law, induces a voltage. Here we give an overview on our research, covering both materials and systems. We demonstrate that guiding the magnetic flux with an appropriate topology of the magnetic circuit improves the performance of thermomagnetic generators by orders of magnitude. Through a combination of experiments and simulations, we show that a pretzel-like topology results in a sign reversal of the magnetic flux. This avoids the drawbacks of previous designs, namely, magnetic stray fields, hysteresis and complex geometries of the thermomagnetic material. Though magnetocaloric materials had been the first choice also for thermomagnetic generators, they require some different properties, which we illustrate with Ashby plots for materials selection. Experimentally we compare La-Fe-Co-Si and Gd plates in the same thermomagnetic generator. Furthermore, we discuss corrosion and deterioration under cyclic use is a severe problem occurring during operation. To amend this, composite plates using polymer as a matrix have been suggested previously. T2 - Dresden Days of Magnetocalorics CY - Dresden, Germany DA - 13.11.2023 KW - Thermomagnetic material KW - Waste heat recovery KW - Generator PY - 2023 AN - OPUS4-58865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manoharan, Deepak A1 - Ahmad, Shamim A1 - Tothadi, Srinu A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit A1 - Ghosh, Soumyajit T1 - Linker size dependent mechanical properties of di-imine based molecular crystals N2 - We have demonstrated the ability to modify the mechanical flexibility of molecular crystals by modulating the length of intervening linker moieties while keeping the terminal shape synthons the same. KW - Mechanically flexible molecular crystals KW - Mechanical properties KW - Crystal Engineering PY - 2023 DO - https://doi.org/10.1039/D3CE00928A SN - 1466-8033 SP - 1 EP - 8 PB - RSC CY - London AN - OPUS4-58836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hickel, Tilmann A1 - Sözen, H. I. A1 - Hegde, O. A1 - Neugebauer, J. T1 - Design of finite temperature materials properties enabled by digital concepts N2 - Since the function of materials is controlled by properties and processes on the atomic scale, ab initio based high-throughput methods are valuable strategies in materials design. For computational efficiency, they are however often restriction to T=0K calculations, while many technologically relevant materials properties and thermodynamic stabilities change when going from low to high temperatures. On the other hand, the constantly increasing performance of digital tools for simulation and data-driven science enables more targeted material development including these kinds of finite-temperature effects. A flexible infrastructure, including data management and workflow solutions is required to make this symbiosis user-friendly efficient. Within this presentation, examples from ab initio thermodynamics for the design of phase stabilities in hard-magnetic alloys and defect-phases in advanced high-strength steels will be demonstrated. We will discuss physical concepts with a focus at the impact of magnetic excitations. At the same time, the examples will be used to derive requirements and present solutions for a digital infrastructure. An outlook will be given to current strategies with the NDFI initiative NFDI-MatWerk. T2 - HetSys Seminar Warwick University CY - Warwick, UK DA - 16.01.2023 KW - Digital Infrastructure KW - Workflows KW - Ab initio thermodynamics KW - Compositionally complex alloys KW - Hard magnets PY - 2023 AN - OPUS4-58856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hickel, Tilmann A1 - Grabowski, B. A1 - Körmann, Fritz A1 - Menon, S. T1 - Application of density functional theory in the context of phase diagram modelling N2 - In this presentation the fundamentals of density functional theory are explained in the context of phase diagram modelling. A special focus is on the Ni-Mg phase diagram. T2 - 7th MSIT Winter School CY - Kreuth, Germany DA - 12.03.2023 KW - Ab initio simulations KW - Thermodynamics KW - Phase diagrams PY - 2023 AN - OPUS4-58855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hickel, Tilmann A1 - Tehranchi, A. A1 - Mathews, P. A1 - Zendegani, A. A1 - Zhang, S. A1 - Scheu, C. A1 - Neugebauer, J. T1 - Constructing defect phase diagrams from ab initio calculations N2 - Thermodynamic bulk phase diagrams have become the roadmap used by researchers to identify alloy compositions and process conditions that result in novel materials with tailored microstructures. On the other hand, recent progress in experimental atomic-scale characterization techniques allows one to study the local chemical composition at individual defects such as interfaces, grain boundaries, dislocations and surfaces. They show that changes in the alloy composition can drive not only transitions in the bulk phases present in a material, but also in the concentration and type of defects they contain. Defect phase diagrams, using chemical potentials as thermodynamics variables, provide a natural route to study these chemically driven defects. Our results show, however, that the direct application of thermodynamic approaches can fail to reproduce the experimentally observed defect formation. Therefore, we extend the concept to metastable defect phase diagrams to account for kinetic limitations that prevent the system from reaching equilibrium. We use ab initio calculations based on density functional theory to quantify the extension of regions where defect formation is expected. We successfully applied this concept to explain the formation of large concentrations of planar defects in supersaturated Fe2Nb Laves phases. In addition, we identify in a joint study with experiments conditions and structures in Mg-Al-Ca alloys for defect phase occurrence. The concept offers new avenues for designing materials with tailored defect structures. T2 - 6th MoD-PMI 2023 Workshop CY - Aachen, Germany DA - 29.05.2023 KW - Ab initio simulations KW - Defects KW - Phase diagrams PY - 2023 AN - OPUS4-58854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hickel, Tilmann T1 - Research data infrastructures as enablers for materials design N2 - Suitable material solutions are of key importance in designing and producing components for engineering systems – either for functional or structural applications. Materials data are generated, transferred, and introduced at each step along the complete life cycle of a component. A reliable materials data space is therefore crucial in the digital transformation, both in academia and industry. Therefore, the consortium NFDI MatWerk aims to develop a sustainable infrastructure for the standardized digital representation of materials science and engineering (MatWerk). The goal is to seamlessly integrate decentralized data and metadata, experimental and computational workflows, and a materials ontology to maximize interoperability and reproducibility of materials data processing. To this end, data use profiles of participant projects from different sub-disciplines are analyzed to identify the most relevant scientific scenarios within MatWerk. Similarly, the Plattform MaterialDigital (PMD) is committed to provide a prototypical infrastructure for the digitalization of materials in an industrial context implemented by decentralized data servers, semantic data schemas and digital workflows. The standards, methods, and tools developed within the PMD are deployed and consolidated within the context of currently more than 20 BMBF-funded academic and industrial research consortia. Scientific workflow environments represent a major focus area, including efforts to improve the definition and representation of digital workflows, as well as their distribution in form of a workflow store. In this presentation we will describe the overarching visions behind these initiatives, their status, and progress of dissemination with a focus on the workflow activities. Following the philosophy of both consortia, specific examples will be used to demonstrate innovative and pragmatic solutions. T2 - MCIC 2023 – 5th Materials Chain International Conference CY - Bochum, Germany DA - 31.08.2023 KW - Digital Infrastructure KW - Workflows KW - Integrated Development Environment PY - 2023 AN - OPUS4-58852 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hickel, Tilmann A1 - Tehranchi, A. A1 - Chakraborty, P. A1 - Lopez Freixes, M. A1 - Zhao, H. A1 - Gault, B. A1 - Neugebauer, J. T1 - Defect-hydrogen interaction in Al alloys: Challenges and benefits revealed by ab initio calculations N2 - Climate change motivates the search for light-weight materials for transportation and energy storage solutions. As one of the challenges, the deleterious effect of hydrogen on the mechanical properties of metallic alloys is known to reduce the applicability of metallic alloys, motivating the characterization and simulation of hydrogen-defect interactions in these materials. In this work, the interaction of hydrogen with planar defects in aluminium has been investigated by means of ab initio simulations. On the one hand, two distinct types of GBs have been considered – the Σ11(113) [011] with a close-packed interface structure and the Σ5(210) [001] with a more open interface structure – in order to reveal the mechanisms governing the H segregation energetics. The investigations are afterwards extended to the impact of solutes in the Al alloy. Two scenarios are compared: Their segregation to the grain boundaries and their binding in precipitates. We therewith gained insights into the role of the solute size on the structural and chemical embrittlement in absence and presence of hydrogen. A thermodynamic assessment of the impact of solutes onto H chemisorption in the interfacial vicinity is provided by performing a high-throughput analysis for potential alloying candidates. The identified trends of the solute-H interactions are used to examine the relative importance of changes in hydrogen enhanced decohesion as a thermodynamic effect. On the other hand, the interaction of hydrogen with defects can be beneficial for the formation of metal hydrides. To enhance the formation and stability of such often highly volatile hydrides we have consider a novel concept: tailoring and employing the negative pressure of microstructural and structural defects to enhance H solubility and thus hydride formation. Using systematic ab initio and atomistic simulations, we demonstrate that an enhancement in the formation of hydrides at the negatively pressurized crack tip region is feasible by increasing the mechanical tensile load on the specimen. The theoretical predictions have been used to reassess and interpret atom probe tomography experiments for a high-strength 7XXX-aluminium alloy that show a substantial enhancement of hydrogen concentration at structural defects near a stress-corrosion crack tip. Based on these insights we derive strategies for enhancing the capability of metals as H-storage materials. T2 - International hydrogen conference 2023 CY - Park City, Utah, USA DA - 17.09.2023 KW - Ab initio simulations KW - Hydrogen embrittlement KW - Grain boundaries KW - Hydride formation PY - 2023 AN - OPUS4-58851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hickel, Tilmann A1 - Tehranchi, A. A1 - Mathews, P. A1 - Zendegani, A. A1 - Zhang, S. A1 - Scheu, C. A1 - Neugebauer, J. T1 - Ab initio Thermodynamics of defect phases in metals N2 - Thermodynamic bulk phase diagrams have become the roadmap used by researchers to identify alloy compositions and process conditions that result in novel materials with tailored microstructures. On the other hand, recent progress in experimental atomic-scale characterization techniques allows one to study the local chemical composition at individual defects such as interfaces, grain boundaries, dislocations and surfaces. They show that changes in the alloy composition can drive not only transitions in the bulk phases present in a material, but also in the concentration and type of defects they contain. Defect phase diagrams, using chemical potentials as thermodynamics variables, provide a natural route to study these chemically driven defects. Our results show, however, that the direct application of thermodynamic approaches can fail to reproduce the experimentally observed defect formation. Therefore, we extend the concept to metastable defect phase diagrams to account for kinetic limitations that prevent the system from reaching equilibrium. We use ab initio calculations based on density functional theory to quantify the extension of regions where defect formation is expected. We successfully applied this concept to explain the formation of large concentrations of planar defects in supersaturated Fe2Nb Laves phases. In addition, we identify in a joint study with experiments conditions and structures in Mg-Al-Ca alloys for defect phase occurrence. The concept offers new avenues for designing materials with tailored defect structures. T2 - 19th Int. Conference on Diffusion in Liquids and Solids CY - Heraklion, Greece DA - 26.06.2023 KW - Density functional theory KW - Defects KW - Phase diagrams KW - Mg alloys PY - 2023 AN - OPUS4-58845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hickel, Tilmann A1 - Tehranchi, A. A1 - Neugebauer, J. T1 - Hydrogen enhances cross-slip of dislocations in the vicinity of grain boundaries N2 - Extensive experimental observations indicate the presence of nano-voids and the increase of free volume along the grain boundaries in hydrogen contaminated metals. This rate-dependent phenomenon motivates theoretical investigations of the underlying mechanisms. Here, a hydrogen enhanced cross-slip (HECS) mechanism in the close vicinity of the grain boundaries is demonstrated by direct molecular dynamics simulations. To this end, the interaction of the screw dislocations with a variety of symmetric tilt grain boundaries in H-charged and H-free bicrystalline nickel specimens is examined. The presence of segregated hydrogen atoms at the grain boundaries induces a stress field in their vicinity, and thus the barrier for cross-slip of screw dislocations considerably decreases. The enhanced crossslip of dislocations facilitates the formation of jogs. These jogs can form vacancies during the glide process. This mechanism shows nano-scale evidence of enhanced vacancy formation and subsequent increase in the free volume along the grain boundaries in the presence of H. This increase of the free-volume along the grain boundary dmaages the material and induce further embrittlement in addition to the direct effect of hydrogen in decreasing the fracture energy. T2 - International hydrogen conference 2023 CY - Park City, Utah, USA DA - 17.09.2023 KW - Atomistic model KW - Hydrogen embrittlement KW - Dislocation cross slip KW - Hydrogen enhanced vacancy formation PY - 2023 AN - OPUS4-58850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hickel, Tilmann A1 - Schaarschmidt, J. A1 - Straumal, A. T1 - The Platform MaterialDigital (PMD) and the goal of a Materials Data Space N2 - Suitable material solutions are of key importance in designing and producing components for engineering systems – either for functional or structural applications. Materials data are generated, transferred, and introduced at each step along the complete life cycle of a component. A reliable materials data space is therefore crucial in the digital transformation of an industrial branch. Therefore, the “Innovation Platform MaterialDigital (PMD) funded by the German Federal Ministry of Education and Research (BMBF), aims to develop a sustainable infrastructure for the standardized digital representation of materials science and materials engineering. With its partners (KIT, Fraunhofer IWM, FIZ, Leibnitz IWT, BAM, MPIE), the PMD is committed to build up a materials science data space. To achieve this the PMD provides a prototypical infrastructure for the digitalization of materials implemented by decentralized data servers, standardized data schemas and digital workflows. Following the FAIR principles, it will promote the semantic interoperability across the frontiers of materials classes. Standards, methods, and tools developed within the platform are deployed and consolidated within the context of currently near 20 BMBF-funded academic and industrial research consortia and made available to the material science community in general. In this context scientific workflows represent a major focus area, represented within the platform by the workflow frameworks pyiron and SimStack. In consequence, the platform is building up a digital library in form of a workflow store along with common standards for the definition and representation of digital workflows. In this presentation we will describe the status of our Platform MaterialDigital with a focus on the workflow activities. The current status and the vision for dissemination of the solutions developed in the PMD within the community are provided. T2 - 4th EMMC International Workshop 2023 CY - Vienna, Austria DA - 26.04.2023 KW - Platform MaterialDigital KW - Workflows KW - Data Management PY - 2023 AN - OPUS4-58846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hickel, Tilmann A1 - Waseda, O. A1 - Huber, L. A1 - Menon, S. A1 - Janssen, J A1 - Drautz, R. A1 - Neugebauer, J. T1 - Integration of multi-scale workflows into the pyiron IDE N2 - Material science problems have intrinsically multiscale and multiphysics characters, and require us to employ a combination of methods on different time and length scales to resolve critical features. Normally creating workflows that connect data in multiple scales and various methods is a cumbersome task. Pyiron, an integrated development environment (IDE) for material science, contains modules for the atomistic as well as continuum scale that make a seamless connection possible. To this end, it provides a high-level coherent language in a unified workflow platform to study materials, for example, with density functional theory (DFT) simulations in the same framework as with the finite element method (FEM). In this work, in addition to the introduction of different features in pyiron and its continuum module, a couple of exemplary workflows are demonstrated, bridging the scales in pyiron. One such workflow is analyzing the elastoplastic response of metallic alloys, where the elastic properties of the system are dependent on the atomistic composition and structure of the alloy. We use pyiron atomistics to model the dependence of elastic moduli on the atomistic composition of Al-Mg alloys. Benefiting from the integration of DAMASK in the continuum module of pyiron, the model can be used as an input to simulate the elastoplastic response of the alloy under various loadings. In addition, finite element simulations using the FEniCS package are currently integrated into the continuum module and will be demonstrated in the presentation. T2 - FEMS Euromat Conference 2023 CY - Frankfurt/Main, Germany DA - 03.09.2023 KW - Platform MaterialDigital KW - Workflows KW - Multiscale simulation PY - 2023 AN - OPUS4-58847 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hickel, Tilmann A1 - Zendegani, A. A1 - Tehranchi, A. A1 - Hegde, O. A1 - Mathews, P. A1 - Neugebauer, J. T1 - Constructing defect phase diagrams from ab initio calculations N2 - Thermodynamic bulk phase diagrams have become the roadmap used by researchers to identify alloy compositions and process conditions that result in novel materials with tailored microstructures. Recent experimental studies show that changes in the alloy composition can drive not only transitions in the bulk phases present in a material, but also in the concentration and type of defects they contain. Defect phase diagrams in combination with density functional theory provide a natural route to study these chemically driven defects. Our results show, however, that direct application of thermodynamic approaches can fail to reproduce the experimentally observed defect formation. Therefore, we extend the concept to metastable defect phase diagrams to account for kinetic limitations that prevent the system from reaching equilibrium. We successfully applied this concept to explain the formation of large concentrations of planar defects in supersaturated Fe-Nb solid solutions and to identify in a joint study with experiments conditions in Mg-Al-Ca alloys for defect phase occurrence. The concept offers new avenues for designing materials with tailored defect structures. T2 - Fritz-Haber-Institut Seminar CY - Berlin, Germany DA - 23.03.2023 KW - Ab initio simulations KW - Defects KW - Phase diagrams PY - 2023 AN - OPUS4-58849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hickel, Tilmann A1 - Mai, H. L. A1 - Scheiber, D. A1 - Romaner, L. A1 - Cui, C. A1 - Ringer, S. A1 - Neugebauer, J. T1 - High-throughput segregation analysis at ferritic Fe grain boundaries: from first principles N2 - Understanding segregation to grain boundaries, and eventually their defect phase diagrams, is critical to enable rational grain boundary engineering for alloys design. Here, we discuss the progress and challenges one may face when generating such a database of defect-solute interactions, in the context of studying of grain boundary segregation of solutes and impurities in Fe GBs. To compute the large number of relevant defect-solute interactions we have performed high-throughput ab initio calculations using efficient and highly automated workflows using pyiron. We study has been performed across a representative set of coincident-site-lattice (CSL) type tilt GBs. Based on the large ab-initio datasets, we extract and analyse the chemical and structural trends observed in the solute segregation behaviour across the periodic table. The features which are most important in evaluating site segregation are presented and discussed. T2 - DPG Frühjahrstagung der Sektion Kondensierte Materie CY - Dresden, Germany DA - 26.03.2023 KW - Ab initio simulations KW - Defects KW - Phase diagrams PY - 2023 AN - OPUS4-58844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hickel, Tilmann T1 - Research data infrastructures as enablers for materials design N2 - Suitable material solutions are of key importance in designing and producing components for engineering systems – either for functional or structural applications. Materials data are generated, transferred, and introduced at each step along the complete life cycle of a component. A reliable materials data space is therefore crucial in the digital transformation and an important prerequisite for machine learning in materials science. Therefore, the consortium NFDI MatWerk aims to develop a sustainable infrastructure for the standardized digital representation of materials science and engineering (MatWerk). The goal is to seamlessly integrate decentralized data and metadata, experimental and computational workflows, and a materials ontology to maximize interoperability and reproducibility of materials data processing. To this end, data use profiles of participant projects from different sub-disciplines are analyzed to identify the most relevant scientific scenarios within MatWerk. Similarly, the Plattform MaterialDigital (PMD) is committed to provide a prototypical infrastructure for the digitalization of materials in an industrial context implemented by decentralized data servers, semantic data schemas and digital workflows. The standards, methods, and tools developed within the PMD are deployed and consolidated within the context of currently more than 20 BMBF-funded academic and industrial research consortia. Scientific workflow environments represent a major focus area, including efforts to improve the definition and representation of digital workflows, as well as their distribution in form of a workflow store. In this presentation we will describe the overarching visions behind these initiatives, their status, and progress of dissemination with a focus on the workflow activities and the connection to machine learning applications. Following the philosophy of both consortia, specific examples will be used to demonstrate innovative and pragmatic solutions. T2 - MLEdays TUHH 2023 CY - Hamburg, Germany DA - 25.09.2023 KW - Digital Infrastructure KW - Workflows KW - Integrated Development Environment PY - 2023 AN - OPUS4-58853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hickel, Tilmann A1 - Sözen, H.I. A1 - Hegde, O. A1 - Janssen, J. A1 - Neugebauer, J. T1 - Design of finite temperature materials properties enabled by digital concepts N2 - Since the function of materials is controlled by properties and processes on the atomic scale, ab initio based high-throughput methods are valuable strategies in materials design. For computational efficiency, they are however often restriction to T=0K calculations, while many technologically relevant materials properties and thermodynamic stabilities change when going from low to high temperatures. On the other hand, the constantly increasing performance of digital tools for simulation and data-driven science enables more targeted material development including these kinds of finite-temperature effects. A flexible infrastructure, including data management and workflow solutions is required to make this symbiosis user-friendly efficient. Within this presentation, examples from ab initio thermodynamics for the design of phase stabilities in hard-magnetic alloys and defect-phases in advanced high-strength steels will be demonstrated. We will discuss physical concepts with a focus at the impact of magnetic excitations. At the same time, the examples will be used to derive requirements and present solutions for a digital infrastructure. An outlook will be given to current strategies with the NDFI initiative NFDI-MatWerk. T2 - FEMS Euromat Conference 2023 CY - Frankfurt/Main, Germany DA - 03.09.2023 KW - Ab initio simulations KW - Workflows KW - Chemically complex alloys KW - Hard magnetic materials KW - Thermodynamics PY - 2023 AN - OPUS4-58848 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hickel, Tilmann A1 - Tehranchi, A. A1 - Mathews, P. A1 - Zendegani, A. A1 - Zhang, S. A1 - Scheu, C. A1 - Neugebauer, J. T1 - Constructing defect phase diagrams from ab initio calculations N2 - Thermodynamic bulk phase diagrams have become the roadmap used by researchers to identify alloy compositions and process conditions that result in novel materials with tailored microstructures. On the other hand, recent progress in experimental atomic-scale characterization techniques allows one to study the local chemical composition at individual defects such as interfaces, grain boundaries, dislocations and surfaces. They show that changes in the alloy composition can drive not only transitions in the bulk phases present in a material, but also in the concentration and type of defects they contain. Defect phase diagrams, using chemical potentials as thermodynamics variables, provide a natural route to study these chemically driven defects. Our results show, however, that the direct application of thermodynamic approaches can fail to reproduce the experimentally observed defect formation. Therefore, we extend the concept to metastable defect phase diagrams to account for kinetic limitations that prevent the system from reaching equilibrium. We use ab initio calculations based on density functional theory to quantify the extension of regions where defect formation is expected. We successfully applied this concept to explain the formation of large concentrations of planar defects in supersaturated Fe2Nb Laves phases. In addition, we identify in a joint study with experiments conditions and structures in Mg-Al-Ca alloys for defect phase occurrence. The concept offers new avenues for designing materials with tailored defect structures. T2 - Birmingham University, Seminar in physical chemistry CY - Birmingham, GB DA - 21.07.2023 KW - Atomistic models KW - Phase transitions KW - Defects PY - 2023 AN - OPUS4-58843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhattacharya, Biswajit A1 - Akhmetova, Irina A1 - Rautenberg, Max A1 - Emmerling, Franziska T1 - Mechanochemical synthesis of phosphonate-based proton conducting metal organic frameworks and hydrogen-bonded metal phosphonates N2 - Proton exchange membrane fuel cells (PEMFCs) are one of the most promising alternative green energy technologies that deliver high energy density without CO2 emissions. The proton conductivity of proton exchange membranes (PEM) contributes to the overall efficiency of a PEMFC. Materials being used as PEMs must exhibit high proton conductivity at the working conditions of the targeted PEMFC. To date, Nafion and Nafion-like polymers with acidic functionality are widely used as membrane materials due to their high proton conductivity in the range of 10-1 to 10-2 Scm-1 at higher relative humidity. However, these materials suffer from high costs, hazardous production process, and poor performance at high temperatures, limiting their versatility. In this context, crystalline porous materials are recognized as promising proton conductors for the proton exchange membrane (PEM) in fuel cell technology, owing to their tunable framework structure. However, it is still challenging bulk synthesis for real-world applications of these materials. Herein, we present mechanochemical gram-scale synthesis of series of mixed ligand metal organic frameworks (MOFs) and metal hydrogen‐bonded organic frameworks (MHOFs) using phenylene diphosphonic acid and 1-hydroxyethylidene-1,1-diphosphonic acid with different bipyridyl type of ligands, respectively. In all cases, the existence of extensive hydrogen bonds with amphiprotic uncoordinated phosphonate hydroxyl and oxygen atoms, the frameworks exhibited high proton conductivity. The study demonstrates the potential of green mechanosynthesis for preparations of framework-based proton conducting materials in bulk scale for green energy generation. T2 - 4th International Conference on Phosphonate Chemistry, Science and Technology, ICOPHOS-4 CY - Crete, Greece DA - 02.10.2023 KW - Proton exchange membrane fuel cells KW - Metal organic frameworks KW - Proton conducting materials PY - 2023 AN - OPUS4-58837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hein-Paar, Jakob A1 - Michalchuk, Adam A. L. A1 - Guilherme Buzanich, Ana T1 - Spectroscopic Insights into the Reactivity of Energetic Materials N2 - Energetic materials (explosives, propellants, pyrotechnics, and gas generators; EM) release large amounts of energy when initiated by mechanical loading and have many technological applications including in energy storage and propulsion. The accidental initiation of an EM – particularly in the wrong setting – has the potential to be catastrophic. Unfortunately, there is little understood about what determines the sensitivity of a given EM. This poses severe restrictions on our ability to design new and safer EMs. Aiming to better understand the initiation mechanisms of EMs, we here investigate the reactivity of simple, isomorphous azides (MN3 M=Li, Na). Both metal azides contain the same explosophoric azido anions, but differ significantly in their reactivity, presumably owing to different bonding interactions between the anion and the metal cation. This interaction offers a promising probe for X-ray spectroscopy and quantum chemical simulations. In noting that mechanical initiation results from mechanical impact – with high local pressures – we are particularly interested in identifying how this bonding interaction changes as a function of pressure. This interaction offers a promising probe for X-ray spectroscopy and quantum chemical simulations. In noting that mechanical initiation results from mechanical impact – with high local pressures – we are particularly interested in identifying how this bonding interaction changes as a function of pressure. Here we show results from DFT simulations that indicate a shift in electronic structure and changes in the metal-azide bond with increasing pressure, which is further investigated through experimental XAS spectra. Together, our results show promising insights into the behaviour of simple metal azide EMs. T2 - SXR2023 - Principles of Functionality From Soft X-Ray Spectroscopy CY - Berlin, Germany DA - 11.09.2023 KW - Energetic materials PY - 2023 AN - OPUS4-58824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwibbert, Karin A1 - Richter, Anja M. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Laser-Textured Surfaces: A Way to Control Biofilm Formation? N2 - Bacterial biofilms pose serious problems in medical and industrial settings. One of the major societal challenges lies in the increasing resistance of bacteria against biocides used in antimicrobial treatments, e.g., via overabundant use in medicine, industry, and agriculture or cleaning and disinfection in private households. Hence, new efficient bacteria-repellent strategies avoiding the use of biocides are strongly desired. One promising route to achieve bacteria-repellent surfaces lies in the contactless and aseptic large-area laser-processing of technical surfaces. Tailored surface textures, enabled by different laser-processing strategies that result in topographic scales ranging from nanometers to micrometers may provide a solution to this challenge. This article presents a current state-of-the-art review of laser-surface subtractive texturing approaches for controlling the biofilm formation for different bacterial strains and in different environments. Based on specific properties of bacteria and laser-processed surfaces, the challenges of anti-microbial surface designs are discussed, and future directions will be outlined. KW - Antibacterial surfaces KW - Biofilms KW - Laser processing KW - Laser-induced periodic surface structures (LIPSS) KW - Microbial adhesions PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588260 DO - https://doi.org/10.1002/lpor.202300753 SN - 1863-8899 SP - 1 EP - 41 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-58826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pérez Blanes, H. A1 - Ghiasi, Pouria A1 - Sandkühler, J. A1 - Yesilcicek, Yasemin A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Prinz, Carsten A1 - Al-Sabbagh, Dominik A1 - Thünemann, Andreas A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia T1 - High CO2 reduction activity on AlCrCoCuFeNi multi-principal element alloy nanoparticle electrocatalysts prepared by means of pulsed laser ablation N2 - Noble metal-free nanoparticles (NPs) based on multi-principal element alloys (MPEAs) were synthesized using a one-step pulsed laser ablation in liquids (PLALs) method for the electrochemical reduction of CO2. Laser ablation was performed in pure water or poly-(diallyldimethylammonium chloride) (PDADMAC)-containing an aqueous solution of Al8Cr17Co17Cu8Fe17Ni33 MPEA targets. Transmission electron microscopy (TEM) measurements combined with energy dispersive X-ray (EDX) mapping were used to characterize the structure and composition of the laser-generated MPEA nanoparticles (MPEA-NPs). These results confirmed the presence of a characteristic elemental distribution of a core-shell phase structure as the predominant NP species. The electrocatalytic performance of the laser-generated MPEA-NPs was characterized by linear sweep voltammetry (LSV) demonstrating an enhanced electrocatalytic CO2 activity for PDADMAC-stabilized NPs. The findings of these investigations indicate that MPEAs have great potential to replace conventional, expensive noble metal electrocatalysts. KW - Metals and Alloys KW - Surfaces KW - Biomaterials KW - Ceramics and Composites KW - Coatings and Films PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588218 DO - https://doi.org/10.1016/j.jmrt.2023.05.143 SN - 2238-7854 VL - 24 SP - 9434 EP - 9440 PB - Elsevier B.V. AN - OPUS4-58821 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hildebrandt, Jana A1 - Taubert, Andreas A1 - Thünemann, Andreas T1 - Synthesis and Characterization of Ultra‐Small Gold Nanoparticles in the Ionic Liquid 1‐Ethyl‐3‐methylimidazolium Dicyanamide, [Emim][DCA] N2 - AbstractWe report on gold clusters with around 62 gold atoms and a diameter of 1.15±0.10 nm. Dispersions of the clusters are long‐term stable for two years at ambient conditions. The synthesis was performed by mixing tetrachloroauric acid (HAuCl4 ⋅ 3 H2O) with the ionic liquid 1‐ethyl‐3‐methylimidazolium dicyanamide ([Emim][DCA]) at temperatures of 20 to 80 °C. Characterization was performed with small‐angle X‐ray scattering (SAXS), UV‐Vis spectroscopy, and MALDI‐TOF mass spectrometry. A three‐stage model is proposed for the formation of the clusters, in which cluster growth from gold nuclei takes place according to the Lifshitz‐Slyozov‐Wagner (LSW) model followed by oriented attachment to form colloidal stable clusters. KW - Reference materials KW - SAXS KW - Gold KW - Nanoparticle KW - Small-angle X-ray scattering KW - Ionic liquid PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588203 DO - https://doi.org/10.1002/open.202300106 SN - 2191-1363 VL - 44 SP - 1 EP - 19 PB - Wiley AN - OPUS4-58820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scheurrell, Kerstin A1 - B. Martins, Inês C. A1 - Murray, Claire A1 - Emmerling, Franziska T1 - Exploring the role of solvent polarity in mechanochemical Knoevenagel condensation: in situ investigation and isolation of reaction intermediates N2 - Mechanochemistry has proven to be a highly effective method for the synthesis of organic compounds. We studied the kinetics of the catalyst-free Knoevenagel reaction between 4-nitrobenzaldehyde and malononitrile, activated and driven by ball milling. The reaction was investigated in the absence of solvents (neat grinding) and in the presence of solvents with different polarities (liquid-assisted grinding). The reaction was monitored using time-resolved in situ Raman spectroscopy and powder X-ray diffraction (PXRD). Our results indicate a direct relationship between solvent polarity and reaction kinetics, with higher solvent polarity leading to faster product (2-(4-nitrobenzylidone)malononitrile) formation. For the first time, we were able to isolate and determine the structure of an intermediate 2-(hydroxy(4-nitrophenyl)methyl)malononitrile based on PXRD data. KW - Physical and Theoretical Chemistry KW - General Physics and Astronomy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588071 DO - https://doi.org/10.1039/D3CP02883F SN - 1463-9076 VL - 25 IS - 35 SP - 23637 EP - 23644 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58807 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rühle, Bastian A1 - Bresch, Harald T1 - Competence Center nano@BAM Welcomes ISO/TC 229 Meeting in Berlin N2 - The Competence Center nano@BAM is presented. Examples directly related to the activities of the ISO Technical Committee TC 229 Nanotechnologies as well as BAM projects on nano reference measurement procedures, nano reference materials and nano reference data sets are showed. T2 - The 32nd ISO/TC 229 IEC/TC 113 JWG2 General Meeting CY - Berlin, Germany DA - 06.11.2023 KW - ISO/TC 229 Nanotechnologies KW - Nanoparticles KW - Nano@BAM KW - Reference materials KW - Reference data KW - Reference procedures PY - 2023 AN - OPUS4-58814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Chemello, Giovanni A1 - Radnik, Jörg T1 - Measurement of Lateral Size of Graphene Oxide Flakes by SEM - An Update of the VAMAS TWA 41 Project P13 N2 - The progress of the VAMAS interlaboratory comparison Project P13 "Lateral size of graphene oxide flakes by SEM" within the Technical Working Area 41 "Graphene and Related 2D Materials" is presented. The challenges at sample preparation on substrates for accurate measurement and image analysis as well as two different analysis approaches, containing exact guidance how to measure the main descriptors for the lateral size measurement of the imaged graphene oxide flakes with Scanning Electron Microscopy are highlighted. The implementation of the results into the corresponding ISO technical specification AWI/TS 23879 is also discussed and planned, in relation with the AFM part. T2 - The 32nd ISO/TC 229 IEC/TC 113 JWG2 General Meeting CY - Berlin, Germany DA - 06.11.2023 KW - VAMAS KW - ISO/TC 229 Nanotechnologies KW - Interlaboratory comparison KW - Graphene oxide flakes KW - SEM PY - 2023 AN - OPUS4-58813 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittrich, Maria A1 - Paulo, Carlos A1 - Knabe, Nicole A1 - Sturm, Heinz A1 - Zaitsev, Vladimir A1 - Gorbushina, Anna T1 - Microscopic Raman study of fungal pigment using the genetically amenable rock inhabitant Knufia petricola as a model organism N2 - Fungal pigments such as melanin and carotenoids are distinctive markers of animal and plant pathogenic fungi as well as their environmental relatives. These complex pigments play important roles in pathogenicity and stress tolerance while also being useful as biomarkers. Accordingly, it is important to be able to identify in situ the pigments in black fungi, a group of clinical and environmental importance. In this study, wild-type and genetically modified strains of Knufia petricola A95 and wild fungal cells attached to ancient rock were investigated for their spectroscopic and microscopic Raman features and morphological appearance. Knockout mutants of melanin synthesis genes pks1 (polyketide synthase), sdh1 (scytalone dehydratase), and both pks1 and the carotenoid synthesis gene phd1 (phytoene desaturase) were studied We applied two different Raman microscopes using two lasers, with 633 nm and 488 nm wavelengths. We analyzed and compared Raman spectra between the measured reference substances and the mutant and wild-type strains. In the wild strain WT:A95, the peaks close to melanin peals were found at 1353 cm−1 and 1611 cm−1. There are no characteristic melanin peaks at 1580–1600 cm−1 and around 1350 cm−1 at the spectrum of the Δpks1/Δphd1 mutant and the Δsdh1 mutant. The Δpks1 mutant spectrum has the peaks at the beta-carotene v2 C-C in-plane stretch at 1155 cm−1 and v3 C-CH3 deformation at 1005 cm−1. The peaks of carotenoids and melanin were found in all mutants and the wild strain, except the Δpks1/Δphd1 mutant. Raman spectra allow for discrimination between the various pigments. Hence, interactions between natural fungal melanin, as well as other protective pigments, and complex environmental matrices can be characterized on a range of spatial and temporal scales. KW - Raman Spectroscopy KW - Instrumentation KW - Analytical Chemistry KW - Knufia petricola KW - Confocal microscopy KW - Atomic and Molecular Physics and Optics PY - 2023 DO - https://doi.org/10.1016/j.saa.2023.123250 SN - 1386-1425 VL - 303 SP - 1 EP - 11 PB - Elsevier BV AN - OPUS4-58792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Ning A1 - Hammerschmidt, Thomas A1 - Hickel, Tilmann A1 - Rogal, Jutta A1 - Drautz, Ralf T1 - Influence of spin fluctuations on structural phase transitions of iron N2 - The effect of spin fluctuations on the α(bcc)-γ(fcc)-δ(bcc) structural phase transitions in iron is investigated with a tight-binding (TB) model. The orthogonal d-valent TB model is combined with thermodynamic integration, spin-space averaging, and Hamiltonian Monte Carlo to compute the temperature-dependent free-energy difference between bcc and fcc iron. We demonstrate that the TB model captures experimentally observed phonon spectra of bcc iron at elevated temperatures. Our calculations show that spin fluctuations are crucial for both the α−γ and γ−δ phase transitions but they enter through different mechanisms. Spin fluctuations impact the α−γ phase transition mainly via the magnetic/electronic free-energy difference between bcc and fcc iron. The γ−δ phase transition, in contrast, is influenced by spin fluctuations only indirectly via the spin-lattice coupling. Combining the two mechanisms, we obtain both the α−γ and γ−δ phase transitions with our TB model. The calculated transition temperatures are in very good agreement with experimental values. KW - Structural phase transition KW - Magnetism KW - Spin-lattice coupling PY - 2023 DO - https://doi.org/10.1103/PhysRevB.107.104108 SN - 2469-9950 VL - 107 IS - 10 SP - 1 EP - 9 PB - American Physical Society (APS) AN - OPUS4-58790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shanmugam, Sankaran A1 - Peterlechner, Martin A1 - Iskandar, Mohamad Riza A1 - Saikia, Ujjal A1 - Kulitckii, Vladislav A1 - Lipińska-Chwałek, Marta A1 - Mayer, Joachim A1 - Rösner, Harald A1 - Hickel, Tilmann A1 - Divinski, Sergiy V. A1 - Wilde, Gerhard T1 - Coherent twin-oriented Al3Sc-based precipitates in Al matrix N2 - Al3(Sc,Zr,Ti) nanoparticles with an ideal twin-type orientation relationship to Al host matrix were found in cold-rolled and subsequently annealed Al-based alloy. Atomic-scale investigations using high-resolution scanning transmission electron microscopy identified particles that form prominent coherent (111) twin-type interfaces along their longer facets and semi-coherent twin interfaces on their shorter facets. Ab-initio calculations showed that a coherent Al/Al3Sc twin-like phase boundary corresponds to a local energy minimum. A model is proposed explaining the formation of the twin orientation relationship of an Al3Sc nanoparticle with the Al host matrix. KW - Al-based alloy KW - Precipitation KW - Twin orientation relationship KW - Ab initio calculations KW - Transition electron microscopy PY - 2023 DO - https://doi.org/10.1016/j.scriptamat.2023.115351 SN - 1359-6462 VL - 229 SP - 1 EP - 6 PB - Elsevier BV AN - OPUS4-58789 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mendive Tapia, Eduardo A1 - Patrick, Christopher E A1 - Hickel, Tilmann A1 - Neugebauer, Jörg A1 - Staunton, Julie B T1 - Quantification of electronic and magnetoelastic mechanisms of first-order magnetic phase transitions from first principles: application to caloric effects in La(FexSi1-x)(13) N2 - La(FexSi1−x)13 and derived quaternary compounds are well-known for their giant, tunable, magneto- and barocaloric responses around a first-order paramagnetic-ferromagnetic transition near room temperature with low hysteresis. Remarkably, such a transition shows a large spontaneous volume change together with itinerant electron metamagnetic features. While magnetovolume effects are well-established mechanisms driving first-order transitions, purely electronic sources have a long, subtle history and remain poorly understood. Here we apply a disordered local moment picture to quantify electronic and magnetoelastic effects at finite temperature in La(FexSi1−x)13 from first-principles. We obtain results in very good agreement with experiment and demonstrate that the magnetoelastic coupling, rather than purely electronic mechanisms, drives the first-order character and causes at the same time a huge electronic entropy contribution to the caloric response. KW - Caloric effects KW - Ab initio thermodynamics KW - Magnetoeleastic couplin PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587882 DO - https://doi.org/10.1088/2515-7655/acd027 SN - 2515-7655 VL - 5 IS - 3 SP - 1 EP - 16 PB - IOP Publishing AN - OPUS4-58788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tehranchi, Ali A1 - Chakraborty, Poulami A1 - López Freixes, Martí A1 - McEniry, Eunan J. A1 - Gault, Baptiste A1 - Hickel, Tilmann A1 - Neugebauer, Jörg T1 - Tailoring negative pressure by crystal defects: Microcrack induced hydride formation in Al alloys N2 - Climate change motivates the search for non-carbon-emitting energy generation and storage solutions. Metal hydrides show promising characteristics for this purpose. They can be further stabilized by tailoring the negative pressure of microstructural and structural defects. Using systematic ab initio and atomistic simulations, we demonstrate that an enhancement in the formation of hydrides at the negatively pressurized tip region of the microcrack is feasible by increasing the mechanical tensile load on the specimen. The theoretical predictions have been used to reassess and interpret atom probe tomography experiments for a high-strength 7XXX-aluminium alloy that show a substantial enhancement of hydrogen concentration at structural defects near a stress-corrosion crack tip. These results contain important implications for enhancing the capability of metals as H-storage materials. KW - Physics and Astronomy (miscellaneous) KW - Hydrogen storage KW - Ab initio Simulation KW - Microcracks PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587878 DO - https://doi.org/10.1103/PhysRevMaterials.7.105401 SN - 2475-9953 VL - 7 IS - 10 SP - 105401-1 EP - 105401-12 PB - American Physical Society (APS) AN - OPUS4-58787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -