TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - SETNanoMetro advances: Fabrication and measurement of TiO2 engineered nanoparticles N2 - The press conference on the results of the European Project FP7 constitutes a dissemination event dedicated to the production and characterization of "Shape-engineered TiO2 nanoparticles for metrology of functional properties: setting design rules from material synthesis to nanostructured devices" with the main large-scale applications in the three reference sectors: energy, health and environment. T2 - Press conference on the results of the European Project FP7 CY - Istituto Nazionale di Ricerca Metrologica (INRiM), Torino, Italy DA - 31.03.2017 KW - TiO2 KW - Nanoparticles KW - Measurement KW - Metrology KW - Shape-enegineered nanoparticles PY - 2017 AN - OPUS4-39622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ralf A1 - Behnke, Thomas A1 - Resch-Genger, Ute A1 - Kästner, Claudia A1 - Ebisch, Maximilian A1 - Thünemann, Andreas T1 - Investigation and control of protein adsorption for fluorescent nanosilver reference material N2 - Upon interaction of nanomaterials like noble metal nanoparticles (NPs) with biological systems like body fluids such as serum, a protein corona is formed.[1] This reversibly bound layer of proteins controls the transport of the NPs and their subsequent interaction with biological components.[2] The plasmonic properties of nobel metal NPs like Au and Ag can considerably affect the fluorescence properties of fluorophores in their vicinity, i.e., within a near field distance. Depending on the chemical composition, size and shape of these noble metal NPs, the spectral properties of the dye, and the particle-fluorophore distance, the fluorescence is quenched or in some cases enhanced.[3,4,5] This can be monitored by fluorescence intensity and lifetime measurements, with the latter effect being accompanied by an increase in fluorescence intensity and reduction in fluorescence lifetime due to an increase in radaiative rate constant. We utilized these effects to study and manipulate noble metal NP-protein interaction exemplarily for fluorophore-labeled bovine serum albumin (BSA) modified e.g. by succinylation, amination and the introduction of thiol groups, resulting in different binding affinities of the proteins.[6] Our results show that the fluorescent corona allows monitoring of the interaction of our accordingly protein-functionalized particles with biological model systems like solutions containing different amounts of various proteins. This can be eventually used for further in vitro and in vivo studies to assess the uptake, digestion, and excretion of surface functionalized noble metal NPs. T2 - EBS 2017 CY - Potsdam, Germany DA - 20.03.2017 KW - Nanoparticles KW - Reference material KW - Fluorescence probes KW - Plasmonics PY - 2017 AN - OPUS4-39552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Analysis of TiO2 nanoparticles – Various activities at BAM N2 - The presentation goes into the characterization of TiO2 engineered nanoparticles within EU/FP7 SETNanoMetro Project and the nanomaterial classification according to the EC definition tested within EU/FP7 NanoDefine Project. Further, ISO/TC 229/JWG 2 activities related on ISO standards in development and inter-laboratory comparisons on measurement of nanoparticle size and shape distribution by SEM and TEM are discussed. T2 - Seminar CY - PTB Braunschweig, Germany DA - 23.03.2017 KW - Nanoparticles KW - Electron microscopy KW - Nanomaterial KW - Standardization KW - Inter-laboratory comparison PY - 2017 AN - OPUS4-39527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert A1 - Müller, L. A1 - Hösl, S. A1 - Traub, Heike A1 - Esteban-Fernández, D. A1 - Herrmann, Antje A1 - Panne, Ulrich T1 - Metal detection at cellular levels by use of laser ablation ICP-MS N2 - We are using laser ablation (LA)-ICP-MS to image the local distribution of elements (metals and hetero-elements) directly or (metallo-)proteins by metal-tagged antibodies in cells and tissue indirectly. Different applications will be discussed to demonstrate the state of the art and to visualize the elemental distribution pattern in soft bio-materials (tissue, single cells). In the first application Pt-containing drugs for cancer treatment are investigated and elemental distribution pattern are shown for tissue samples from animal experiments. Different standardization and quantification schemes including isotope dilution analysis will be discussed. In the second application, which is dedicated to toxicological research, the up-take of nano-particles by single cells are discussed and metal containing stains are used to visualize the distribution of nano-particles, proteins and DNA in a single cell simultaneously. This information is correlated with the distribution of the nanoparticles to identify the cell compartments where nano-particles are enriched. Quantification schemes have been developed to transform the measured intensities into number of particles up taken by the cells. In the third and last application LA-ICP-MS is applied to visualize the local distribution of proteins, which are used as bio-markers for prostate cancer. For this purpose, biopsy samples from patients have been simultaneously stained by eight differently metal-tagged antibodies in a multiplex approach. Detection of house-keeping proteins serves as internal standards to overcome differences in protein expression. Additionally ink-jet printing of metal doped inks onto the surface of these tissue samples has been applied for internal standardization and drift corrections. Finally future trends to develop an “elemental microscope” will be discussed. T2 - PITTCON 2017 CY - Chicago, IL, USA DA - 05.03.2017 KW - Element-microscopy KW - LA-ICP-MS KW - Nanoparticles KW - Immuno-assays PY - 2017 AN - OPUS4-39364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert A1 - Müller, L. A1 - Traub, Heike A1 - Panne, Ulrich A1 - Herrmann, Antje A1 - Kneipp, J. T1 - The quantitative elemental microscope: for what is it good for? N2 - Elemental imaging of biological samples using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) provides spatially resolved information on element distribution in thin sections. By rastering with a laser across the sample, a two-dimensional image of the elemental distribution can be reconstructed that shows the intensities of the respective elements. Using overlapping laser shots the area ablated from single cells or thin sections (thickness 5 to 10 µm) can be reduced significantly so that the pixel size of the intensity measurement is significantly reduced. Having in mind that a laser shot ablates thin biological samples completely, we can make use of a new concept for calibration in the laser ablation method: the concept of total consumption. This calibration strategy allows production of simple matrix matched standards and provides an internal standardisation by ink jet technology, where a metal containing inks is printed on as thin layer on top of a biological sample. Different applications will be presented where our concepts have been applied. In the first example we used nanoparticle suspension of given particle numbers to quantify the uptake of metallic nanoparticles by biological cells. In the second example antibodies have been tagged by metals to measure protein expression in prostata cancer. In this approach application of house keeping proteins are investigated additionally to compensate variations in thickness and density of the biopsy samples. In the third application different nephrotoxic behaviour of Pt containing drugs have been investigated to study the local enrichement in kidney samples of mice treated with these three different compounds. Here the internal standard is required to allow intercomparisons between different individual mouse tissues. At the end of the lecture future trends will be discussed for elemental microscopy. T2 - European Winter Conference on Plasma Spectrochemistry 2017 CY - Sankt Anton am Arlberg, Austria DA - 19.02.2017 KW - LA-ICP-MS KW - Bioimaging KW - Nanoparticles KW - Biomarker PY - 2017 AN - OPUS4-39267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hübert, Thomas A1 - Kemnitz, Erhard A1 - Usmani, Shirin A1 - Schlischka, Jörg A1 - Klutzny, Kerstin A1 - de Laval, Yvonne A1 - Plarre, Rüdiger A1 - Krahl, Thoralf A1 - Stephan, Ina T1 - Wood protection with nanoparticles: MgF2 and CaF2 N2 - The potential of alkaline earth metal Fluoride nanoparticles was tested for protection of wood against fungi and termites. These nanoparticles are ideal for wood protection. T2 - School of Analytical Sciences Poster Session CY - Berlin, Germany DA - 06.12.2016 KW - Wood preservation KW - Fluorides KW - Nanoparticles PY - 2016 AN - OPUS4-39141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Pauli, Jutta A1 - Behnke, Thomas A1 - Würth, Christian T1 - Standardization of Fluorescence Measurements in the UV/vis/NIR/IR - Needs for and requirements on calibration tools N2 - Photoluminescence techniques are amongst the most widely used tools in the life sciences, with new and exciting applications in medical diagnostics and molecular imaging continuously emerging. Advantages include their comparative ease of use, unique sensitivity, non-invasive character, and potential for multiplexing, remote sensing, and miniaturization. General drawbacks are, however, signals, that contain unwanted wavelength- and polarization contributions from instrument-dependent effects, which are also time-dependent due to aging of instrument-components, and difficulties to measure absolute fluorescence intensities. Moreover, scattering systems require special measurement geometries and the interest in new optical reporters with emission > 1000 nm strategies for reliable measurements in the second diagnostic for the comparison of material performance and the rational design of new fluorophores with improved properties. Here, we present strategies to versatile method-adaptable liquid and solid fluorescence standards for different fluorescence parameters including traceable instrument calibration procedures and the design of integrating sphere setups for the absolute measurement of emission spectra and quantum yields in the wavelength region of 350 to 1600 nm. Examples are multi-emitter glasses, spectral fluorescence standards, and quantum yield standards for the UV/vis/NIR T2 - Spie Photonics west 2017 CY - San Francisco, USA DA - 28.01.2017 KW - Fluorescence standard KW - Instrument calibration KW - Integrating sphere spectroscopy KW - Absolute fluorescence quantum yield KW - Fluorescent glasses KW - Nanoparticles PY - 2017 AN - OPUS4-39074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Babick, F. A1 - Mielke, Johannes A1 - Hodoroaba, Vasile-Dan A1 - Weigel, St. A1 - Wohlleben, W. T1 - Critical review manuscript with real-world performance data for counting, ensemble and separating methods including in-build mathematical conversion to number distributions submitted for publication N2 - The content of the paper is the assessment of the performance of (conventional) measurement techniques (MTs)with respect to the classification of disperse materials according to the EC recommendation for a definition of nanomaterial. This performance essentially refers to the accurate assessment of the number weighted median of (the constituent) particles. All data and conclusions are based on the analytical study conducted as real-world performance testing. It comprised different types of MTs (imaging, counting, fractionating, spectroscopic and integral) as well as different types of materials. Beside reference materials with well-defined size distribution the study also included several commercial powders (variation of particle composition, morphology, coating, size range and polydispersity). In order to ensure comparability of measurement results, the participants were guided to use uniform protocols in sample preparation, conducting measurements, data analysis and in reporting results. Corresponding documents have been made public, in order to support the reviewing process of the paper, respectively to ensure the reproducibility of data by other users under the same conditions. The scientific paper relies on a comprehensive set of revised measurement data reported in uniform templates, completely describes the experimental procedures and discusses the MTs’ performance for selected materials in detail. Even more, the study is summarised and evaluated, which leads to recommendations for the use of MTs within a tiered approach of NM characterisation. In addition, the paper critically examines the factors that may affect the outcome of such a comparison among different MTs. KW - Nanomaterial KW - Measurement techniques KW - EC definition of nanomaterial KW - Nanoparticles PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-389646 UR - http://www.nanodefine.eu/index.php/downloads/nanodefine-technical-reports UR - http://www.nanodefine.eu/publications/reports/NanoDefine_TechnicalReport_D3.3.pdf SP - D3.3, 1 EP - 72 PB - The NanoDefine Consortium CY - Wageningen, The Netherlands AN - OPUS4-38964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, R. A1 - Hodoroaba, Vasile-Dan T1 - SEM or TEM for the characterization of nanoparticles? N2 - Scanning Electron Microscopy (SEM) or Transmission Electron Microscopy (TEM) ? This is a question, nowadays discussed in EM labs of research and industry involved in the characterization and metrology of nanoparticles. The Scanning principle is adapted to TEM, the Transmission mode is adapted to Ultra High Resolution SEM. Can modern SEM replace TEM, reach atomic resolution even without Cs corrector or nm lateral resolution for X-ray Spectroscopy (EDX)? Due to the development of a New Cold Field Emission (NCFE) electron source Hitachi SEMs SU9000 and SU8200 can deliver routinely sub-nm image resolution and EDX mappings at very high count rates and a lateral EDX resolution of a few nm. A TiO2 sample provided by BAM was analysed at 30 kV using low kV STEM – simultaneously with the Through-the-lens (TTL) SE detector, the Bright Field transmission and Dark Field transmission signals. By this method a pixel-precise information of the particle’s surface using SE, its chemical nature using DF-STEM and its crystalline structure using Bright Field signal is given in one 40sec scan. The advantage of this observation mode compared to Ultra Low Voltage imaging is outlined. T2 - 7. NRW Nano-Konferenz CY - Münster, Germany DA - 07.12.2016 KW - SEM KW - TEM KW - Nanoparticles PY - 2016 AN - OPUS4-38936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Ortel, Erik T1 - Proposal of an inter-laboratory comparison on shape of bipyramidal TiO2 nanoparticles by TEM N2 - A proposal of an inter-laboratory study (ILC) on determination of size and shape distribution of TiO2 nanoparticles (NPs) by transmission electron microscopy is presented. The anatase NPs synthesized in a controllable fashion within the EU/FP7 project SETNanoMetro can be considered as shape-defined (bipyramidal) and are offered to complete the list of case studies already in progress within ISO/TC229/JWG2. The main points of the measurement procedure are presented as well as a proposed procedure to evaluate the size and shape according to the standard operation procedure already developed within SETNanoMetro is discussed. Potential ILC participants and a plan with next step to be carried out are proposed. T2 - Joint Meeting IEC TC 113 'Nanotechnology for electrotechnical products and systems' and ISO/TC229/JWG2 'Nanotechnologies'/'Measurement and characterization' CY - Lowell, MA, USA DA - 09.05.2016 KW - Nanoparticles KW - TiO2 KW - TEM KW - Shape KW - Inter-laboratory comparison KW - ISO PY - 2016 AN - OPUS4-38900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -