TY - CONF A1 - Gornushkin, Igor B. T1 - Plasma fundamentals and diagnostics N2 - This course will provide an introduction to plasma diagnostic techniques. The major focus of the course will be on the discussions of the practical procedures as well as the underlying physical principles for the measurements of plasma fundamental characteristics (e.g., temperatures, thermodynamic properties, and electron number density). Particular emphasis will be placed on inductively coupled plasma–atomic emission spectrometry, but other analytical plasmas will also be used as examples when appropriate. Selected examples on how one can manipulate the operating conditions of the plasma source, based on the results of plasma diagnostic measurements, to improve its performance used for spectrochemical analysis will also be covered. Topics to be covered include thermal equilibrium, line profiles, temperatures, electron densities, excitation processes, microreactions, pump and probe diagnostics, tomography, temporal and spatial resolution. Basics of plasma computer modeling will be presented. T2 - 03.-06. September 2018, 13 Symposium "Massenspektrometrische Verfahren der Elementspurenanalyze", BAM, Berlin, Adlershof CY - BAM, Berlin, Adlershof, Germany DA - 03.09.2018 KW - Thermal equilibrium KW - Plasma processes KW - Electron number density KW - Temperatures KW - Emission line profiles KW - Spatial information KW - Plasma modeling PY - 2018 AN - OPUS4-46108 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. T1 - Dynamical chemical model of laser induced plasma N2 - Laser induced plasma (LIP) is a highly dynamic, short living event which presents significant difficulty for both diagnostics and modeling. The former requires precise spatially- and time-resolved measurements on a micron-nanosecond scale while the latter needs numerous descriptive parameters; many of them can only be obtained from experiment. Diagnostics and modeling should always complement each other for obtaining a truthful picture of LIP. In this presentation, a newly developed collisional-dominated model will be presented. The model is based on the coupled Navier-Stokes, state, radiative transfer, material transport, and chemical equations. The model incorporates plasma chemistry through the equilibrium approach that relies on atomic and molecular partition functions. Several chemical systems are modeled including Si-C-Cl-N and B-H-Cl systems. The model is used to study the equilibrium states of the systems as functions of the concentrations of plasma species and plasma temperature. The model also predicts the evolution of number densities of atomic and molecular species in the expanding plasma plume. T2 - 18.09.2018, 9th International Conference on PLASMA PHYSICS AND PLASMA TECHNOLOGY (PPPT‐9) CY - Minsk, Belorussia DA - 17.09.2018 KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics PY - 2018 AN - OPUS4-46111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. T1 - Chemistry in laser‑induced plasmas at local thermodynamic equilibrium JF - Applied physics A N2 - The equation of state for plasmas containing negative and positive ions of elements and molecules formed by these elements is modeled under the assumption that all ionization processes and chemical reactions are at local thermal equilibrium and the Coulomb interaction in the plasma is described by the Debye–Hückel theory. The hierarchy problem for constants of molecular reactions is resolved by using three different algorithms for high, medium, and low temperatures: the contraction principle, the Newton–Raphson method, and a scaled Newton–Raphson method, respectively. These algorithms are shown to have overlapping temperature ranges in which they are stable. The latter allows one to use the developed method for calculating the equation of state in combination with numerical solvers of Navier–Stokes equations to simulate laser-induced Plasmas initiated in an atmosphere and to study formation of molecules and their ions in such plasmas. The method is applicable to a general chemical network. It is illustrated with examples of Ca–Cl and C–Si–N laser-induced plasmas. KW - Plasma KW - LIBS KW - Plasma modeling PY - 2018 DO - https://doi.org/10.1007/s00339-018-2129-9 SN - 1432-0630 SN - 0947-8396 VL - 124 IS - 10 SP - 716, 1 EP - 21 PB - Springer AN - OPUS4-46112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -