TY - JOUR A1 - Resch-Genger, Ute A1 - Andresen, Elina A1 - Schäferling, M. T1 - Surface modifications for photon-upconversion-based energy-transfer nanoprobes N2 - An emerging class of inorganic optical reporters are nearinfrared (NIR) excitable lanthanide-based upconversion nanoparticles (UCNPs) with multicolor emission and long luminescence lifetimes in the range of several hundred microseconds. For the design of chemical sensors and optical probes that reveal analyte-specific changes in their spectroscopic properties, these nanomaterials must be combined with sensitive indicator dyes that change their absorption and/or fluorescence properties selectively upon interaction with their target analyte, utilizing either resonance energy transfer (RET) processes or reabsorption-related inner filter effects. The rational development of UCNP-based nanoprobes for chemical sensing and imaging in a biological environment requires reliable methods for the Surface functionalization of UCNPs, the analysis and quantification of Surface groups, a high colloidal stability of UCNPs in aqueous media as well as the chemically stable attachment of the indicator molecules, and suitable instrumentation for the spectroscopic characterization of the energy-transfer systems and the derived nanosensors. These topics are highlighted in the following feature article, and examples of functionalized core−shell nanoprobes for the sensing of different biologically relevant analytes in aqueous environments will be presented. Special emphasis is placed on the intracellular sensing of pH. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - FRET KW - Surface chemistry PY - 2019 DO - https://doi.org/10.1021/acs.langmuir.9b00238 SN - 0743-7463 VL - 35 IS - 15 SP - 5093 EP - 5113 PB - ACS AN - OPUS4-47975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bergstrand, J. A1 - Li, Q. A1 - Huang, B. A1 - Peng, X. A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Zhan, Q. A1 - Widengren, J. A1 - Agren, H. A1 - Liu, H. T1 - On the decay time of upconversion luminescence N2 - In this study, we systematically investigate the decay characteristics of upconversion luminescence (UCL) under anti-Stokes excitation through numerical simulations based on rate-equation models. We find that a UCL decay profile generally involves contributions from the sensitizer’s excited-state lifetime, energy transfer and cross-relaxation processes. It should thus be regarded as the overall temporal response of the whole upconversion system to the excitation function rather than the intrinsic lifetime of the luminescence emitting state. Only under certain conditions, such as when the effective lifetime of the sensitizer’s excited state is significantly shorter than that of the UCL emitting state and of the absence of cross-relaxation processes involving the emitting energy level, the UCL decay time approaches the intrinsic lifetime of the emitting state. Subsequently, Stokes excitation is generally preferred in order to accurately quantify the intrinsic lifetime of the emitting state. However, possible cross-relaxation between doped ions at high doping levels can complicate the decay characteristics of the luminescence and even make the Stokesexcitation approach fail. A strong cross-relaxation process can also account for the power dependence of the decay characteristics of UCL. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Mechanism KW - Quantum yield KW - Photophysics KW - Lifetime KW - Modeling PY - 2019 DO - https://doi.org/10.1039/c8nr10332a VL - 11 IS - 11 SP - 4959 EP - 4969 PB - RSC Royal Society of Chemistry AN - OPUS4-47888 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - EvstigneevT, Roman V. A1 - Parfenov, Peter S. A1 - Dubavik, Aliaksei A1 - Cherevkov, Sergei A A1 - Fedorov, Anatoly V A1 - Martynenko, Irina V. A1 - Resch-Genger, Ute A1 - Ushakova, Elena V. A1 - Baranov, Alexander V. T1 - Time-resolved FRET in AgInS2/ZnS-CdSe/ZnS quantum dot systems N2 - The fast and accurate detection of disease-related biomarkers and potentially harmful analytes in different matrices is one of the main challenges in the life sciences. In order to achieve high signal-to-background ratios with frequently used photoluminescence techniques, luminescent reporters are required that are either excitable in the first diagnostic window or reveal luminescence lifetimes exceeding that of autofluorescent matrix components. Here, we demonstrate a reporter concept relying on broad band emissive ternary quantum dots (QDs) with luminescence lifetimes of a few hundred nanoseconds utilized for prolongating the lifetimes of organic or inorganic emitters with lifetimes in the order of a very few 10 ns or less through fluorescence resonant energy transfer. Using spectrally resolved and time-resolved measurements of the system optical response we demonstrate the potential of lifetime multiplexing with such systems exemplarily for AgInS2/ZnS and CdSe/ZnS QDs. KW - Nano KW - Nanomaterial KW - Ternary quantum dots KW - AIS KW - Semiconductor nanocrystal KW - Photoluminescence KW - Mechanism KW - Quantum yield KW - Photophysics KW - Energy transfer KW - Lifetime KW - Time-gated emission PY - 2019 DO - https://doi.org/10.1088/1361-6528/ab0136 SN - 0957-4484 SN - 1361-6528 VL - 30 IS - 19 SP - 195501, 1 EP - 7 PB - IOP Publishing Ltd AN - OPUS4-47434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kraft, Marco A1 - Würth, Christian A1 - Palo, Emilia A1 - Soukka, Tero A1 - Resch-Genger, Ute T1 - Colour-optimized quantum yields of Yb, Tm Co-doped upconversion nanocrystals N2 - Wepresent here a systematic analysis of the influence of Tm3+ Doping concentrations (xTm) on the excitation power (P)-dependent upconversion luminescence and -performance of hexagonal-Phase NaYF4: 20% Yb3+, xTm%Tm3+ upconversion nanoparticles (UCNPs) for xTm of 0.2, 0.5, 0.8, 1.2, and 2.0, respectively. Our results reveal the influence of these differentTm3+ doping concentrations with respect to optimized upconversion quantum yield (ΦUC) values of the variousTm3+ upconversion emission bands, with the highestΦUC values of theTm3+ emission bands above 700 nmresulting for different xTm values as theTm3+ emission bands below 700 nm. This underlines the potential ofTm3+ dopant concentration for colour tuning. Special emphasis was dedicated to the spectroscopic parameters that can be linked to the (de)population pathways of the variousTm3+ energy levels, like the P- and xTm-dependent slope factors and the intensity ratios of selected emission bands. The evaluation of all parameters indicates that not only energy transfer upconversion-, but also crossrelaxation processes between neighbouringTm3+ ions play a vital role in the (de)population of the excited energy levels of Yb3+, Tm3+ codoped nanocrystals. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Mechanism KW - Quantum yield KW - Photophysics KW - Lifetime PY - 2019 DO - https://doi.org/10.1088/2050-6120/ab023b SN - 2050-6120 VL - 7 IS - 2 SP - 024001, 1 EP - 6 PB - IOP AN - OPUS4-47420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroyuk, O. A1 - Weigert, Florian A1 - Raevskaya, A. A1 - Spranger, F. A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Gaponik, N. A1 - Zahn, D. R. T. T1 - Inherently broadband photoluminescence in Ag−In−S/ZnS quantum dots observed in ensemble and single-particle studies N2 - We present a series of results that demonstrate that the broadband photoluminescence (PL) of aqueous glutathione-capped Ag−In−S (AIS) nanocrystals (NCs) is an inherent property of each NC, rather than a collective characteristic of an NC ensemble. By analyzing parameters affecting the PL features such as the postsynthesis annealing and the deposition of a passivating ZnS shell, we found no correlation between the spectral width of the PL band of AIS (AIS/ZnS) NCs and the density of the lattice defects. Analysis of the PL spectra of a series of size-selected AIS/ZnS NCs revealed that the PL width of fractionated NCs does not depend on the NC size and size distribution. The PL measurements in a broad temperature window from 320 to 10 K demonstrated that the PL width does not decrease with decreasing temperature as expected for an emission arising from thermally activated detrapping processes. Also, we show that the model of the self-trapped exciton can be versatilely applied to reconstruct the PL spectra of different AIS NCs and can account for the effects typically attributed to variations in defect state energy. Measurements of the PL properties of single AIS/ZnS NCs highlighted the broadband nature of the emission of individual NCs. The presented results show that the broadband PL of ternary NCs most probably does not originate from lattice defects but involves the NC lattice as a whole, and, therefore, by tailoring the NC structure, PL efficiencies as high as those reported for binary cadmium or lead chalcogenide NCs can be potentially reached. KW - Nano KW - Nanomaterial KW - Ternary quantum dots KW - AIS KW - Semiconductor nanocrystal KW - Photoluminescence KW - Mechanism KW - Single particle spectroscopy KW - Quantum yield KW - Photophysics PY - 2019 DO - https://doi.org/10.1021/acs.jpcc.8b11835 SN - 1932-7447 VL - 123 IS - 4 SP - 2632 EP - 2641 PB - ACS AN - OPUS4-47419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kage, Daniel A1 - Fischer, Linn A1 - Hoffmann, Katrin A1 - Thiele, T. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Close spectroscopic look at dye-stained polymer microbeads N2 - Dye-stained micrometer-sized polymer beads are important tools in the life sciences with applications in biomedical, biochemical, and clinical research. Here, bead-based assays are increasingly used, for example, in DNA sequencing and the detection of autoimmune diseases or pathogenic microorganisms. Moreover, stained beads are employed as calibration tools for fluorescence microscopy and flow cytometry methods with increasing complexity. To address the requirements concerning the relevant fluorescence features, the spectroscopic properties of representative polymer beads with diameters ranging from about 1 to 10 μm stained with varying concentrations of rhodamine 6G were systematically assessed. The observed dependence of the spectral properties, fluorescence decay kinetics, and fluorescence quantum yields on bead size and dye loading concentration is attributed to different fluorescence characteristics of fluorophores located in the particle core and near-surface dye molecules. Supported by the fluorescence anisotropy measurements, the origin of the observed alteration of fluorescence features is ascribed to a combination of excitation energy transfer and polarity-related effects that are especially pronounced at the interface of the bead and the surrounding medium. The results of our studies underline the need to carefully control and optimize all Parameters that can affect the fluorescence properties of the dye-stained beads. KW - Fluorophore KW - Polymer particles KW - Photophysics KW - Life sciences KW - Standards PY - 2018 DO - https://doi.org/10.1021/acs.jpcc.8b02546 SN - 1932-7447 VL - 122 IS - 24 SP - 12782 EP - 12791 PB - ACS Publications CY - Washington, DC AN - OPUS4-45453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kaiser, M. A1 - Würth, Christian A1 - Kraft, Marco A1 - Hyppänen, I. A1 - Soukka, T. A1 - Resch-Genger, Ute T1 - Power-dependent upconversion quantum yield of NaYF4:Yb3+,Er3+ nano- and micrometer-sized particles – measurements and simulations N2 - Photophysical studies of nonlinear lanthanide-doped photon upconverting nanoparticles (UCNPs) increasingly used in biophotonics and photovoltaics require absolute measurements of the excitation power density (P)-dependent upconversion luminescence (UCL) and luminescence quantum yields (ΦUC) for quantifying the material performance, UCL deactivation pathways, and possible enhancement factors. We present here the P-dependence of the UCL spectra, ΦUC, and slope factors of the different emission bands of representative 25 nm-sized oleate-capped β-NaYF4:17% Yb3+, 3% Er3+ UCNPs dispersed in toluene and as powder as well as ΦUC of 3 μm-sized upconversion particles (UCμP), all measured with a newly designed integrating sphere setup, enabling controlled variation of P over four orders of magnitude. This includes quantifying the influence of the beam shape on the measured ΦUC and comparison of experimental ΦUC with simulations utilizing the balancing power density model of the Andersson-Engels group and the simulated ΦUC of UCμP from the Berry group, underpinned by closely matching decay kinetics of our UC material. We obtained a maximum ΦUC of 10.5% for UCμP and a ΦUC of 0.6% and 2.1% for solid and dispersed UCNPs, respectively. Our results suggest an overestimation of the contribution of the purple and an underestimation of that of the red emission of β-NaYF4:Yb3+,Er3+: microparticles by the simulations of the Berry group. Moreover, our measurements can be used as a guideline to the absolute determination of UCL and ΦUC KW - Upconversion KW - Photophysics KW - Nanoparticles PY - 2017 DO - https://doi.org/10.1039/c7nr02449e VL - 9 IS - 28 SP - 10051 EP - 10058 PB - The Royal Society of Chemistry AN - OPUS4-41550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brömme, T. A1 - Schmitz, C. A1 - Oprych, D. A1 - Wenda, A. A1 - Strehmel, V. A1 - Grabolle, Markus A1 - Resch-Genger, Ute A1 - Ernst, S. A1 - Reiner, K. A1 - Keil, D. A1 - Lüs, P. A1 - Baumann, H. A1 - Strehmel, B. T1 - Digital imaging of lithographic materials by radical photopolymerization and photonic baking with NIR diode lasers N2 - Photo-initiated cross-linking of multifunctional acrylic esters in polymeric binders was investigated based on digital imaging using the Computer-to-Plate (CtP) technology applying laser exposure in the near-infrared (NIR). Generation of initiating radicals occurs by electron transfer from the excited state of the NIR-sensitizer to the radical generator, an onium salt. Iodonium salts derived from several borates and those with the bis(trifluoromethylsulfonyl)imide anion resulted in lithographic materials with high sensitivity. Photo-induced electron transfer plays a major function to generate initiating radicals by a sensitized mechanism but thermal events also influence sensitivity of the coating. Internal conversion was the major deactivation pathway while a certain fraction of NIR-dye fluorescence was also available. A line shape focused laser system with emission in the NIR was successfully used to bake the materials. KW - Iodonium KW - Near-infrared laser KW - Photonic baking KW - Photophysics KW - Photopolymer PY - 2016 DO - https://doi.org/10.1002/ceat.201500453 SN - 0930-7516 SN - 1521-4125 VL - 39 IS - 1 SP - 13 EP - 25 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-35303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Otto, S. A1 - Grabolle, Markus A1 - Förster, C. A1 - Kreitner, C. A1 - Resch-Genger, Ute A1 - Heinze, K. T1 - [Cr(ddpd)2]3+: A molecular, water-soluble, highly NIR-emissive ruby analogue N2 - Bright, long-lived emission from first-row transition-metal complexes is very challenging to achieve. Herein, we present a new strategy relying on the rational tuning of energy levels. With the aid of the large N-Cr-N bite angle of the tridentate ligand ddpd (N,N′-dimethyl-N,N′-dipyridine-2-ylpyridine-2,6-diamine) and its strong σ-donating capabilities, a very large ligand-field splitting could be introduced in the chromium(III) complex [Cr(ddpd)2]3+, that shifts the deactivating and photoreactive 4T2 state well above the emitting 2E state. Prevention of back-intersystem crossing from the 2E to the 4T2 state enables exceptionally high near-infrared phosphorescence quantum yields and lifetimes for this 3d metal complex. The complex [Cr(ddpd)2](BF4)3 is highly water-soluble and very stable towards thermal and photo-induced substitution reactions and can be used for fluorescence intensity- and lifetime-based oxygen sensing in the NIR. KW - Chromium complexes KW - Intersystem crossing KW - Ligand-field splitting KW - NIR luminescence KW - Photophysics PY - 2015 DO - https://doi.org/10.1002/anie.201504894 SN - 1433-7851 SN - 1521-3773 SN - 0570-0833 VL - 54 IS - 39 SP - 11572 EP - 11576 PB - Wiley-VCH CY - Weinheim AN - OPUS4-35084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Y.-W. A1 - Descalzo López, Ana Belén A1 - Shen, Z. A1 - You, X.-Z. A1 - Rurack, Knut T1 - Dihydronaphthalene-fused Boron-dipyrromethene (BODIPY) dyes: insight into the electronic and conformational tuning modes of BODIPY fluorophores N2 - A new series of boron-dipyrromethene (BDP, BODIPY) dyes with dihydronaphthalene units fused to the β-pyrrole positions (1 a-d, 2) has been synthesised and spectroscopically investigated. All the dyes, except pH-responsive 1 d in polar solvents, display intense emission between 550-700 nm. Compounds 1 a and 1 b with a hydrogen atom and a methyl group in the meso position of the BODIPY core show spectroscopic properties that are similar to those of rhodamine 101, thus rendering them potent alternatives to the positively charged rhodamine dyes as stains and labels for less polar environments or for the dyeing of latex beads. Compound 1 d, which carries an electron-donating 4-(dimethylamino)phenyl group in the meso position, shows dual fluorescence in solvents more polar than dibutyl ether and can act as a pH-responsive "light-up" probe for acidic pH. Correlation of the pKa data of 1 d and several other meso-(4-dimethylanilino)-substituted BODIPY derivatives allowed us to draw conclusions on the influence of steric crowding at the meso position on the acidity of the aniline nitrogen atom. Preparation and investigation of 2, which carries a nitrogen instead of a carbon as the meso-bridgehead atom, suggests that the rules of colour tuning of BODIPYs as established so far have to be reassessed; for all the reported couples of meso-C- and meso-N-substituted BODIPYs, the exchange leads to pronounced redshifts of the spectra and reduced fluorescence quantum yields. For 2, when compared with 1 a, the opposite is found: negligible spectral shifts and enhanced fluorescence. Additional X-ray crystallographic analysis of 1 a and quantum chemical modelling of the title and related compounds employing density functional theory granted further insight into the features of such sterically crowded chromophores. KW - Dyes/pigments KW - Fluorescent probes KW - Photophysics KW - Protonation KW - Boron PY - 2010 DO - https://doi.org/10.1002/chem.200902527 SN - 0947-6539 SN - 1521-3765 VL - 16 IS - 9 SP - 2887 EP - 2903 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-20957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -