TY - CONF A1 - Sarif, Raduan T1 - Digital twin for hydrogen refueling stations: An analytical study for safe and efficient operations N2 - This analytical overview is the initial study in developing the digital sensors twin for the hydrogen refueling station. The research includes a comprehensive analysis of the current literature, refueling protocol, standards, mathematical model, simulation model, and trends in digital twins and H2 technologies. Furthermore, this study has explored the various HRS attributes, such as leakage, temperature, pressure, and hydrogen flow, and identified different use cases of the hydrogen fuel station to build a digital sensor twin. Various real gas equations, such as the Van der Waals and Able-Noble equation of state (EOS), are applied to analyze the key factors and parameters affecting hydrogen and the MATLAB simulation model to validate the key elements and parameters. This study also focuses on identifying and addressing research gaps in hydrogen technology, contributing to advancing hydrogen infrastructure, and supporting the global transition to cleaner energy solutions. T2 - 10. Fachsymposium des Vereins HybridSensorNet (HSN), KIT CY - Eggenstein-Leopoldshafen, Germany DA - 08.11.2023 KW - Sensor network KW - H2Safety@BAM KW - SensRef KW - Trustworthy hydrogen KW - Digital twin KW - Data analytics PY - 2023 AN - OPUS4-59034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schlick-Hasper, Eva T1 - Ablauf des Zustimmungsverfahrens zu alternativen Methoden zum Wasserbad in der BAM N2 - Dieser Vortrag gibt einen Überblick über den Ablauf zur Zustimmung alternativer Methoden der Dichtheitsprüfung für gefüllte Druckgaspackungen nach ADR 6.2.6.3.2. T2 - IGA-Herbstforum CY - Frankfurt am Main, Germany DA - 24.11.2023 KW - Druckgaspackungen KW - Zustimmung KW - Alternative Dichtheitsprüfverfahren PY - 2023 AN - OPUS4-59032 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus T1 - Hochwertige, verlässliche und FAIRe Daten erstellen: Von Ontologien und elektronischen Laborbüchern zu Datenmanagement und Wissenstransfer N2 - Das hochaktuelle Thema der Integration und Wiederverwendung von Wissen und Daten aus Herstellung, Bearbeitung und Charakterisierung von Materialien wird im Zuge der digitalen Transformation in der Materialwissenschaft und Werkstofftechnologie in verschiedenen Projekten adressiert. Dabei stehen die Interoperabilität von nach FAIR-Prinzipien erstellten und veröffentlichten Daten und Anwendungen im Vordergrund. Zur Umsetzung eines komplexen Datenmanagements sowie der Digitalisierung im Bereich der Materialwissenschaften etablieren sich Ontologien zunehmend als belastbares Werkzeug. Sie ermöglichen sowohl menschenlesbare als auch maschinenverständliche und -interpretierbare Wissensrepräsentationen durch semantische Konzeptualisierungen. Im Rahmen des Projektes Plattform MaterialDigital (PMD, materialdigital.de) werden Ontologien verschiedener Ebenen entwickelt (verbindende mid-level sowie Domänen-Ontologien). Die PMD-Kernontologie (PMD Core Ontology - PMDco) ist eine Ontologie der mittleren Ebene), die Verbindungen zwischen spezifischeren MSE-Anwendungsontologien und domänenneutralen Konzepten herstellt, die in bereits etablierten Ontologien höherer Ebenen (top-level Ontology) verwendet werden. Sie stellt somit einen umfassenden Satz von durch Konsensbildung in der Gemeinschaft (geteiltes Vokabular) entstanden Bausteinen grundlegender Konzepte aus der Materialwissenschaft und Werkstofftechnik (MSE) dar. Das primäre Ziel des PMDco-Designs ist es, die Interoperabilität zwischen verschiedenen MSE-bezogenen und anderen Ontologien zu ermöglichen. Die PMDco dient als umfassend ausgelegte und erweiterbare semantische Zwischenschicht, die gemeinsame MSE-Konzepte durch semantisches Mapping auf andere Darstellungen vereinheitlicht, was sie zu einem effizienten Werkzeug zur Strukturierung von MSE-Wissen macht. In dieser Präsentation wird die Version 2.0 der PMDco vorgestellt. Weiterhin wird eine auf die PMDco bezogene normenkonforme ontologische Repräsentation zur Speicherung und Weiterverarbeitung von Zugversuchsdaten präsentiert, die in enger Zusammenarbeit mit Standardisierungsgremien erstellt wurde. Dies umfasst den Weg von der Entwicklung einer Ontologie nach Norm, der Konvertierung von Daten aus Standardtests in das interoperable RDF-Format bis hin zur Verbindung von Ontologie und Daten. Letztendlich können die entsprechenden Daten in einem Triple Store abgelegt und abgefragt werden. Auf Basis dieser Zugversuchsontologie wurde im Folgenden unter Verwendung eines elektronischen Laborbuches (electonic lab notebook – ELN) zur Datenaufnahme eine Praktikumsreihe von Universitätsstudierenden digitalisiert. Dadurch wurde eine vollständig digital integrierte Versuchsführung ermöglicht, die auf andere Versuchsreihen und Experimente übertragbar ist und ebenfalls vorgestellt werden soll. Neben einer erleichterten Aufnahme, Analyse und (Wieder-)Verwendbarkeit von Daten wird damit eine Sensibilisierung von Studierenden für Datenstrukturierung sowie semantische Technologien im Sinne der Aus- und Weiterbildung erreicht. T2 - DVM-Tagung Werkstoffprüfung CY - Berlin, Germany DA - 23.11.2023 KW - Ontologie KW - Semantic Web Technologies KW - Plattform MaterialDigital KW - PMDco KW - Zugversuchsontologie KW - Zugversuch KW - Elektronisches Laborbuch (ELN) PY - 2023 AN - OPUS4-59030 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Connecting the nodes: networks and networking N2 - This talk explores the intricate connections between scientists, focusing on the networking dynamics within the realm of metal-organic frameworks (MOFs). The study delves into the collaborative networks formed among scientists, shedding light on the synergistic relationships that contribute to advancements in MOF research. T2 - WINS School 2023 Frameworks and networks CY - Blossin, Germany DA - 02.06.2023 KW - Metal-organic frameworks PY - 2023 AN - OPUS4-59028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Witt, Julia T1 - Exploring innovative Materials and in situ techniques N2 - Presentation of some projects conducted in recent years related to corrosion studies and research on electrocatalysis. The talk was part of a seminar at the University of Toronto and took place within the framework of a scientific exchange stay. T2 - Seminar at the University of Toronto CY - Toronto, Canada DA - 11.10.2023 KW - Multi-principal element alloys (MPEAs) KW - Electrocatalysis KW - Corrosion KW - Materials acceleration platforms (MAPs) PY - 2023 AN - OPUS4-59029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Understanding mechanochemical reactions: Real-time insights and collaborative research N2 - Mechanochemistry has become a compelling method for producing (new) molecule s and mate-rials, but the inner workings of the milling jars remain a fascinating mystery. Advances in this field include tailor-made chemical systems and real-time revelations using techniques such as XRD and Raman spectroscopy. This talk will discuss our recent progress in using X-ray diffraction and sophisticated spectros-copy to observe reactions in various material systems during ball milling and extrusion in real-time. The complexity of mechanochemical reactions spans multiple scales and requires a holistic ap-proach. The categorisation of reactions by investigative methods precedes the exploration of real-time analysis that reveals macroscopic processes using synchrotron techniques. During this exploration, one resounding realisation remains: We are on the threshold of under-standing. The complexity of mechanochemistry requires a collective effort, drawing on the ex-pertise of a diverse community. As we unravel the web of mechanochemical phenomena, we acknowledge the collaborative nature of this ongoing journey. T2 - CMCC Mechanochemistry Discussions CY - Online meeting DA - 21.09.2023 KW - Mechanochemistry KW - In situ PY - 2023 AN - OPUS4-59026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Combination of complementary methods For in situ studies N2 - This talk explores the synergistic application of complementary synchrotron methods for in situ investigations, providing a comprehensive approach to enhance analytical capabilities in materials research and characterization. T2 - INSYNX - DEUTSCH-BRASILIANISCHER WORKSHOP ON BREAKING BOUNDARIES OF IN SITU SYNCHROTRON X-RAY METHODS CY - Sao Paulo, Brazil DA - 06.03.2023 KW - In situ KW - Synchrotron PY - 2023 AN - OPUS4-59025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Understanding mechanochemical reactions: Real-time insights and collaborative research N2 - Mechanochemistry emerges as a potent, environmentally friendly, and straightforward approach for crafting novel multicomponent crystal systems. Various milling parameters, including milling frequency, time, filling degree of the milling jar, ball diameter, vessel size, degree of milling ball filling, and material of jars, are recognized influencers on the mechanisms and rates of product formation. Despite the growing interest in mechanochemistry, there exists a gap in understanding the mechanistic aspects of mechanochemical reactivity and selectivity. To address this, diverse analytical methods and their combinations, such as powder X-ray diffraction, X-ray absorption spectroscopy, NMR, Raman spectroscopy, and thermography, have been developed for real-time, in situ monitoring of mechanochemical transformations. This discussion centers on our recent findings, specifically investigating the formation of (polymorphic) cocrystals and metal-organic frameworks. Through these studies, we aim to unravel the impact of milling parameters and reaction sequences on the formation mechanism and kinetics. Notably, in the mechanochemical chlorination reaction of hydantoin, normalizing kinetic profiles to the volume of the milling ball unequivocally demonstrates the conservation of milling reaction kinetics. In this ball-milling transformation, physical kinetics outweigh chemical factors in determining reaction rates. Attempting to interpret such kinetics solely through chemical terms poses a risk of misinterpretation. Our results highlight that time-resolved in situ investigations of milling reactions provide a novel avenue for fine-tuning and optimizing mechanochemical processes. T2 - Brimingham Green chemistry CY - Birmingham, England DA - 08.09.2023 KW - Mechanochemistry KW - Green Chemistry PY - 2023 AN - OPUS4-59024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Investigating the mechanism and kinetics of the mechanochemical synthesis of multi-component systems N2 - Mechanochemistry is a promising and environmentally friendly approach for synthesizing (novel) multicomponent crystal systems. Various milling parameters, such as milling frequency, milling time, and ball diameter have been shown to influence the mechanisms and rates of product formation. Despite increasing interest in mechanochemistry, there is still limited understanding of the underlying reactivity and selectivity mechanisms. Various analytical techniques have been developed to gain insight into the mechanochemical transformations, including powder X-ray diffraction, X-ray adsorption spectroscopy, NMR, Raman spectroscopy and thermography. Using these techniques, we have studied the formation of (polymorphic) cocrystals, organometallic compounds and salts, and elucidated the influence of milling parameters and reaction sequences on the formation mechanism and kinetics. For example, our study of the mechanochemical chlorination reaction of hydantoin revealed that normalisation of the kinetic profiles to the volume of the grinding ball clearly showed that physical kinetics dominate the reaction rates in a ball-milling transformation. Attempts to interpret such kinetics in purely chemical terms risk misinterpretation of the results. Our results suggest that time-resolved in situ investigation of milling reactions is a promising way to fine-tune and optimise mechanochemical processes. T2 - ISIC 2023 CY - Glasgow, Scotland DA - 05.09.2023 KW - Mechanochemistry KW - Polymorphy KW - In situ PY - 2023 AN - OPUS4-59023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Understanding mechanochemical reactions: Real-time insights and collaborative research N2 - Mechanochemistry emerges as a potent, environmentally friendly, and straightforward approach for crafting novel multicomponent crystal systems. Various milling parameters, including milling frequency, time, filling degree of the milling jar, ball diameter, vessel size, degree of milling ball filling, and material of jars, are recognized influencers on the mechanisms and rates of product formation. Despite the growing interest in mechanochemistry, there exists a gap in understanding the mechanistic aspects of mechanochemical reactivity and selectivity. To address this, diverse analytical methods and their combinations, such as powder X-ray diffraction, X-ray absorption spectroscopy, NMR, Raman spectroscopy, and thermography, have been developed for real-time, in situ monitoring of mechanochemical transformations. This discussion centers on our recent findings, specifically investigating the formation of (polymorphic) cocrystals and metal-organic frameworks. Through these studies, we aim to unravel the impact of milling parameters and reaction sequences on the formation mechanism and kinetics. Notably, in the mechanochemical chlorination reaction of hydantoin, normalizing kinetic profiles to the volume of the milling ball unequivocally demonstrates the conservation of milling reaction kinetics. In this ball-milling transformation, physical kinetics outweigh chemical factors in determining reaction rates. Attempting to interpret such kinetics solely through chemical terms poses a risk of misinterpretation. Our results highlight that time-resolved in situ investigations of milling reactions provide a novel avenue for fine-tuning and optimizing mechanochemical processes. T2 - PhD Seminar CY - Online meeting DA - 12.10.2023 KW - Mechanochemistry KW - In situ PY - 2023 AN - OPUS4-59022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -