TY - JOUR A1 - Würth, Christian A1 - Lochmann, Cornelia A1 - Spieles, Monika A1 - Pauli, Jutta A1 - Hoffmann, Katrin A1 - Schüttrigkeit, T. A1 - Franzl, T. A1 - Resch-Genger, Ute T1 - Evaluation of a commercial integrating sphere setup for the determination of absolute photoluminescence quantum yields of dilute dye solutions N2 - The commercial availability of stand-alone setups for the determination of absolute photoluminescence quantum yields (φf) in conjunction with the increasing use of integrating sphere accessories for spectrofluorometers is expected to have a considerable influence not only on the characterization of chromophore systems for use in optical and opto-electronic devices, but also on the determination of this key parameter for (bio)analytically relevant dyes and functional luminophores. Despite the huge potential of systems measuring absolute φf values and the renewed interest in dependable data, evaluated protocols for even the most elementary case, the determination of the fluorescence quantum yield of transparent dilute solutions of small organic dyes with integrating sphere methods, are still missing. This encouraged us to evaluate the performance and sources of uncertainty of a simple commercial integrating sphere setup with dilute solutions of two of the best characterized fluorescence quantum yield standards, quinine sulfate dihydrate and rhodamine 101, strongly differing in spectral overlap between absorption and emission. Special attention is dedicated to illustrate common pitfalls of this approach, thereby deriving simple procedures to minimize measurement uncertainties and improve the comparability of data for the broad community of users of fluorescence techniques. KW - Lifetime KW - Fluorescence KW - Luminescence KW - Quantum yield KW - Quantum efficiency KW - Integrating sphere KW - Reabsorption KW - Rhodamine 101 KW - Quinine sulfate dihydrate KW - Method KW - Photoluminescence KW - Standard KW - Emission KW - Spectral correction KW - Excitation KW - Anisotropy PY - 2010 DO - https://doi.org/10.1366/000370210791666390 SN - 0003-7028 SN - 1943-3530 VL - 64 IS - 7 SP - 733 EP - 741 PB - Society for Applied Spectroscopy CY - Frederick, Md. AN - OPUS4-22089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, Jutta A1 - Brehm, Robert A1 - Spieles, Monika A1 - Kaiser, W.A. A1 - Hilger, I. A1 - Resch-Genger, Ute T1 - Novel fluorophores as building blocks for optical probes for in vivo near infrared fluorescence (NIRF) imaging N2 - Aiming at the identification of new fluorescent reporters for targeted optical probes, we assessed the application-relevant features of a novel asymmetric cyanine, DY-681, in comparison to the only clinically approved dye indocyanine green (ICG), the golden imaging standard Cy5.5, and the asymmetric cyanine DY-676 successfully exploited by us for the design of different contrast agents. This comparison included the analysis of the spectroscopic properties of the free fluorophores and their thermal stability in aqueous solution as well as their cytotoxic potential. In addition, the absorption and emission features of IgG-conjugated DY-681 were examined. The trimethine DY-681 exhibited spectral features closely resembling that of the pentamethine Cy5.5. Its high thermal stability in phosphate buffer saline (PBS) solution in conjunction with its low cytotoxicity, reaching similar values as determined for Cy5.5 and DY-676, renders this dye more attractive as ICG and, due to its improved fluorescence quantum yield in PBS, also superior to DY-676. Although in PBS, Cy5.5 was still more fluorescent, the fluorescence quantum yields (Φf) of DY-681 and Cy5.5 in PBS containing 5 mass-% bovine serum albumin (BSA) were comparable. Labeling experiments with DY-681 and the model antibody IgG revealed promisingly high Φf values of the bioconjugated dye. KW - Fluorescence KW - Cyanine dye KW - Cytotoxicity KW - Stability KW - In vivo fluorescence imaging KW - Quantum yield KW - Contrast agent KW - Optical probe PY - 2010 DO - https://doi.org/10.1007/s10895-010-0603-7 SN - 1053-0509 SN - 1573-4994 VL - 20 IS - 3 SP - 681 EP - 693 PB - Plenum Publ. Corp. CY - New York, NY AN - OPUS4-21401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - DeRose, P.C. A1 - Resch-Genger, Ute T1 - Recommendations for fluorescence instrument qualification: the new ASTM standard guide N2 - Aimed at improving quality assurance and quantitation for modern fluorescence techniques, ASTM International (ASTM) is about to release a Standard Guide for Fluorescence, reviewed here. The guide's main focus is on steady state fluorometry, for which available standards and instrument characterization procedures are discussed along with their purpose, suitability, and general instructions for use. These include the most relevant instrument properties needing qualification, such as linearity and spectral responsivity of the detection system, spectral irradiance reaching the sample, wavelength accuracy, sensitivity or limit of detection for an analyte, and day-to-day performance verification. With proper consideration of method-inherent requirements and limitations, many of these procedures and standards can be adapted to other fluorescence techniques. In addition, procedures for the determination of other relevant fluorometric quantities including fluorescence quantum yields and fluorescence lifetimes are briefly introduced. The guide is a clear and concise reference geared for users of fluorescence instrumentation at all levels of experience and is intended to aid in the ongoing standardization of fluorescence measurements. KW - Fluorescence KW - Method KW - Quantum yield KW - Photoluminescence KW - Standard KW - Emission KW - Spectral correction KW - Excitation KW - Anisotropy KW - Recommendation KW - Instrument qualification PY - 2010 DO - https://doi.org/10.1021/ac902507p SN - 0003-2700 SN - 1520-6882 VL - 82 IS - 5 SP - 2129 EP - 2133 PB - American Chemical Society CY - Washington, DC AN - OPUS4-21066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Grabolle, Markus A1 - Cavaliere-Jaricot, S. A1 - Nitschke, R. A1 - Nann, T. T1 - Quantum dots versus organic dyes as fluorescent labels N2 - Suitable labels are at the core of luminescence and fluorescence imaging and sensing. One of the most exciting, yet also controversial, advances in label technology is the emerging development of quantum dots (QDs)—inorganic nanocrystals with unique optical and chemical properties but complicated surface chemistry—as in vitro and in vivo fluorophores. Here we compare and evaluate the differences in physicochemical properties of common fluorescent labels, focusing on traditional organic dyes and QDs. Our aim is to provide a better understanding of the advantages and limitations of both classes of chromophores, to facilitate label choice and to address future challenges in the rational design and manipulation of QD labels. KW - Fluorescence KW - Label KW - Quantum dot KW - Dye KW - Bioanalysis KW - Quantum yield KW - Multiplexing KW - Lifetime KW - Assay KW - Life sciences KW - FRET KW - Fluorescent reporter PY - 2008 DO - https://doi.org/10.1038/NMETH.1248 SN - 1548-7091 SN - 1548-7105 VL - 5 IS - 9 SP - 763 EP - 775 PB - Nature Publishing Group CY - New York, NY, USA AN - OPUS4-18992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grabolle, Markus A1 - Ziegler, J. A1 - Merkulov, A. A1 - Nann, T. A1 - Resch-Genger, Ute T1 - Stability and Fluorescence Quantum Yield of CdSe-ZnS Quantum Dots - Influence of the Thickness of the ZnS Shell N2 - We investigated the correlation between the thickness of the ZnS shell of CdSe–ZnS quantum dots (QDs), the stability of the particles, and the fluorescence quantum yield. As a measure for stability, a new shell quality test was developed. This test is based on the reaction of the QDs with photochemically formed thiophenol radicals and communicates an imperfect ZnS shell by a rapid and complete loss of fluorescence. The quantum yield increases from less than 5% for unshelled CdSe up to 50%, with an increase in ZnS shell thickness up to 0.6–0.8 nm. At the same time, the particles become significantly more stable, as revealed by the shell test. KW - Quantum dot KW - Nanocrystal KW - Semiconductor KW - Fluorescence KW - Quantum yield KW - CdSe KW - CdSe-ZnS KW - Shell KW - ZnS shell KW - Stability KW - Stability test PY - 2008 DO - https://doi.org/10.1196/annals.1430.021 SN - 0077-8923 SN - 1749-6632 SN - 0094-8500 VL - 1130 SP - 235 EP - 241 PB - New York Academy of Sciences CY - New York, NY AN - OPUS4-17743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -