TY - CONF A1 - Kjaervik, Marit A1 - Dietrich, P. A1 - Thissen, A. A1 - Schwibbert, Karin A1 - Defedov, A. A1 - Wöll, C. A1 - Unger, Wolfgang T1 - Exploring the capabilities of NAP-XPS: Application to metal-organic frameworks, nanoparticles and biofilms N2 - Near-ambient pressure XPS makes it possible to characterise samples not compatible to ultra-high vacuum, and enables the study of liquid-solid, gas-liquid and gas-solid interfaces. NAP-XPS meas-urements of biofilms, suspended nanoparticles and metal-organic frameworks were performed with EnviroESCA developed by SPECS. An interesting application is surface characterisation of biofilms, which are bacterial communities embedded in a self-produced polysaccharide matrix. Various model systems ranging from pure polysaccharides of alginate to biofilms harvested directly from the growth medium have been char-acterised in humid conditions[1]. NAP-XPS also makes it possible to characterise nanoparticles in solution. Silver nanoparticles in aqueous solution were characterised and the Ag 3d-spectrum compared to spectra obtained of dried nanoparticles in UHV-conditions[2]. The binding energy of the Ag 3d-core level peak was shifted by 0,6 eV towards higher binding energy for suspended nanoparticles compared to the dried sample measured in UHV. This can be assigned to a change in surface potential at the water-nanoparticle interface. Metal-organic frameworks (MOFs) are suitable materials for gas storage of small molecules due to their nanoporous, crystalline structure. However, instability in humidity remains an issue for many types of MOFs. XPS-measurements of the MOF-structure HKUST-1 were performed in various NAP-conditions to assess the stability of the sample and its interaction with the gas molecules as water, methanol and pyridine. T2 - 5th AP-XPS Workshop CY - Berlin, Germany DA - 11.12.18 KW - Biofilms KW - E. coli KW - NAP-XPS KW - Metal organic frameworks KW - Nanoparticles PY - 2018 AN - OPUS4-47060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Lippitz, Andreas A1 - Hodoroaba, Vasile-Dan A1 - Schmid, Thomas A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Zirconium permanent modifiers for graphite furnaces used in absorption spectrometry: understanding their structure and mechanism of action JF - Journal of Analytical Atomic Spectrometry N2 - The mechanism of action of zirconium permanent modifiers on graphite surfaces was investigated in order to understand its influence on the analytical signal in atomic and molecular absorption spectrometry (AAS/MAS). For this, the molecule formation of CaF was studied, which is used for the indirect analytical determination of fluorine in high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). The kinetics of this reaction was established by monitoring its molecular spectrum at different atomisation temperatures. An Arrhenius plot showed a pseudo-first order reaction with respect to fluorine (n = 1). An intermediate state was isolated, and its structure was elucidated by spectroscopic methods: scanning electron microscopy with energy dispersive X-ray spectroscopy (SEMEDX), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XANES and EXAFS), and Raman microspectroscopy. We propose here a mechanism, where ZrO2 acts as a heterogeneous catalyst: after a pyrolytic step, an intermediate state of ZrO(OCaF) is activated, and at higher temperatures, CaF(g) is released from the zirconium-coated graphite surface. No evidence of the formation of zirconium carbide was found. Consequently, as the CaF formation is catalysed by a heterogeneous catalyst, surface modifications with ZrO2 nanoparticles and ZrO xerogels were investigated in order to increase the surface area. Their influence was evaluated in the molecule formation of CaF, CaCl, CaBr, and CaI. Graphite furnace modification with zirconium oxide nanoparticles proves to be the best choice for fluorine analysis with a signal enhancement of more than eleven times with respect a non-coated graphite furnace. However, the influence of zirconium modifications in the analytical signals of Cl, and I is lower than the F signals or even negative in case of the Br. Understanding zirconium modifiers as heterogeneous catalysts offers a new perspective to AAS and MAS, and reveals the potential of surface analytical methods for development of improved permanent modifiers and graphite furnace coatings. KW - Zirconium KW - HR-CS-MAS KW - Graphite furnace KW - Nanoparticles KW - Xerogel KW - Calcium monofluoride KW - Absorption spectrometry PY - 2018 UR - https://pubs.rsc.org/en/content/articlelanding/2018/ja/c8ja00190a DO - https://doi.org/10.1039/C8JA00190A SN - 0267-9477 VL - 33 IS - 12 SP - 2034 EP - 2042 PB - Royal Society of Chemistry AN - OPUS4-46775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kunz, Valentin A1 - Kjaervik, Marit A1 - Müller, Anja A1 - Hodoroaba, Vasile-Dan A1 - Unger, Wolfgang T1 - How to meet new challenges in advanced nanoparticle analytics N2 - Three current research projects performed at BAM’s Division for Surface Analysis and Interfacial Chemistry are presented that tackle important challenges with regard to the characterization of nanomaterials: 1) The characterization at ambient pressure, 2) the investigation of core-shell nanoparticles, and 3) the characterization of non-spherical particles by electron microscopy. 1) Surface analytical techniques such as Photoelectron Spectroscopy (XPS) or Secondary Ion Mass Spectrometry (SIMS) typically require measurements in ultra-high vacuum. However, for many applications (e.g. catalysis and nanotoxicology) it is important to know the surface chemical properties of nanomaterials at ambient conditions. Therefore, near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) was used to investigate nanoparticles in suspension. The used instrumental set-up allows to directly insert nanoparticle suspensions into the analysis chamber and to measure without prior sample preparation. Compared to dry reference samples measured under high-vacuum, a shift towards higher binding energies was observed for silver nanoparticles in water, indicating a change of surface potential at the water-nanoparticle interface. 2) To determine the dimensions of core-shell nanoparticles (shell thickness, core and total diameter), scanning transmission X-ray microscopy (STXM) was used. The analyzed model system consists of a polytetrafluorethylene (PTFE) core surrounded by a polystyrene (PS) shell, providing a strong X-ray absorption contrast at the C K-edge and a well-defined interface. The introduced STXM‐based methodology yields particle dimensions in agreement with scanning electron microscopy (SEM) results and provides additional information such as the position of the particle core, which cannot be extracted from a SEM micrograph. 3) The accurate measurement of size distributions of non-spherically shaped nanoparticles (representing most of the industrial nanoparticulate materials) is a challenging analytical task. High-resolution electron microscopy (TEM and SEM) is best suited to access the shape of individual nanoparticles. To fill the gap between ideal, monodisperse particles of spherical shape and complex real-world samples, BAM has started the work to develop reference nanoparticles of controlled shape, such as TiO2 platelets, bipyramids, and elongated particles. Results of a recent ISO inter-laboratory comparison will be shown with emphasis on the measurement parameters, descriptors and data analysis. T2 - NanoSafe Conference 2018 CY - Grenoble, France DA - 5.11.2018 KW - Nanoparticles PY - 2018 AN - OPUS4-46730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Donėlienė1, J. A1 - Rudzikas, M. A1 - Rades, Steffi A1 - Dörfel, Ilona A1 - Peplinski, Burkhard A1 - Sahre, Mario A1 - Pellegrino, F. A1 - Maurino, V. A1 - Ulbikas, J. A1 - Galdikas, A. T1 - Electron Microscopy and X-Ray Diffraction Analysis of Titanium Oxide Nanoparticles Synthesized by Pulsed Laser Ablation in Liquid N2 - A femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated by XRD and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation. T2 - Microscopy & Microanalysis 2018 CY - Baltimore, MD, USA DA - 05.08.2018 KW - Nanoparticles KW - Titanium oxide KW - Laser ablation in liquid KW - Electron microscopy KW - XRD PY - 2018 AN - OPUS4-46502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Verhassel, A. A1 - Shinde, S. A1 - Kimani, Martha Wamaitha A1 - Guedes, I. A1 - Sellegren, B. A1 - Rurack, Knut A1 - Tuomela, J. A1 - Härkönen, P. T1 - Application of novel tumor cell glycan-specific nanoprobes for detecting and targeting breast and prostate cancer N2 - Glycosylation is a post-translational modification that is involved in the regulation of many biological processes. The glycosylation pattern in cancer cells differs from that in normal cells. One of the main alterations that has been observed in several cancers is the increase of sialic acids at the end of the glycan. The increase of sialic acids and other alterations affect development and progression of tumors and are found to play an important role in cancer invasiveness and metastasis. Molecularly imprinted polymers (MIPs) are synthetic recognition elements that show high selectivity and affinity for their targets. These polymers show promising applications in detection methods for cancer cells. In this study newly synthesized MIPs, labelled with a nitrobenzoxadiazole (NBD) fluorophore, are investigated for their specificity and utility in the detection of cancer cell-related sialic acids. T2 - Biomarkers – methods and technologies CY - Malmö, Sweden DA - 25.10.2018 KW - Nanoparticles KW - MIPs KW - Cancer PY - 2018 AN - OPUS4-46490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike T1 - LA-ICP-MS for the analysis of nanoparticles in cells N2 - Many current nanomaterials can serve as contrast agents in cellular or tissue imaging, drug delivery vehicles or therapeutics, whereas others can cause toxic effects. In order to evaluate nano-bio interactions, the number of nanoparticles (NPs) inside cells as well as their localisation within cellular substructures is of particular interest. The cellular uptake depends on the primary characteristics of the NPs (e.g. size, shape, surface coating) and on the cell type. Laser ablation inductively coupled plasma mass spectrometry (LA‑ICP‑MS) is more and more used to study the NP pathway from uptake, via intracellular processing up to cell division. High-spatial resolution laser ablation at single cell level is achieved using novel low-dispersion LA chambers and by careful optimisation of laser energy, ablation frequency and scan speed at small laser spot sizes down to 1 µm. Different examples from BAM, Division 1.1 and cooperation partners using LA-ICP-MS to localize and quantify metal-containing nanoparticles are shown. The results demonstrate the potential of LA-ICP-MS providing insight into NP uptake, intracellular distribution and cell-to-cell variation. T2 - 13. Symposium "Massensprektrometrische Verfahren der Elementspurenanalyse" + 26. ICP-MS Anwendertreffen CY - Berlin, Germany DA - 03.09.2018 KW - Laser ablation KW - Cells KW - Nanoparticles KW - Imaging PY - 2018 AN - OPUS4-46440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rades, Steffi A1 - Borghetti, P. A1 - Ortel, Erik A1 - Wirth, Thomas A1 - Blanco, M. A1 - Gómez, E. A1 - Martinez, A. A1 - Jupille, J. A1 - Martra, G. A1 - Hodoroaba, Vasile-Dan T1 - Control of functionalization of supports for subsequent assembly of titania nanoparticle films JF - Surface and Interface Analysis N2 - For self‐assembling of TiO2 nanoparticles in multiple layers by layer‐by‐layer deposition to be applied to TiO2 thin films with defined and homogeneous thickness for large‐scale applications, the proper functionalization of substrate surface is a prerequisite to guarantee sufficient adhesion. The substrates selected and tested in the present paper were conductive, fluorine‐doped tin oxide (FTO) glass, nonconductive silica glass, and titanium alloy. The current study focusses on the analytical control of the stepwise functionalization of the substrates with 3‐aminopropyltriethoxysilane and glutaraldehyde (GA) for both the FTO glass and silica glass and with 3‐aminepropyl phosphonic acid and GA for Ti alloy. The analyses have been conducted by means of surface sensitive methods, X‐ray photoelectron spectroscopy, Auger electron spectroscopy, and time‐of‐flight secondary ions mass spectrometry. Chemical composition of surface of functionalized substrates shows differences in the degree and type of modification in dependence on substrate. It could be demonstrated that the best functionalized substrates were the conductive FTO glasses. The analysis of the functionalized Ti substrates has revealed that the surface coverage with 3‐aminepropyl phosphonic acid and GA molecules is an inhomogeneous one, and further optimization of the two‐step functionalization on the Ti alloy substrate is necessary. KW - Nanoparticles KW - Surface functionalization KW - TiO2 KW - SEM/EDX KW - Auger Electron Spectroscopy KW - ToF-SIMS KW - Thin films PY - 2018 DO - https://doi.org/10.1002/sia.6398 SN - 0142-2421 SN - 1096-9918 VL - 50 IS - 11 SP - 1200 EP - 1206 PB - John Wiley & Sons, Ltd. AN - OPUS4-46406 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - EMPIR nPSize - improved traceability chain of nanoparticle size measurements - Is a liaison to CEN/TC 352 nanotechnologies useful? N2 - The main objectives of the new EMPIR project nPSize are to establish EU capability of traceable measurement of NP size and shape, lower uncertainties of NP size measurement by developement of new nano-CRMs, new models (physical and machine learning), 3D method combination, and also by new ISO and CEN standards on accurate NP size measurement and guidance and knowledge transfer. The envisaged outcomes of the project will be presented and their suitability will be discussed to be taken over as pertinent contributions to normative projects within CEN/TC 352 Nanotechnologies. T2 - Joint Working Groups and 24th CEN/TC 352 Nanotechnologies Meetings CY - DIN, Berlin, Germany DA - 09.10.2018 KW - Nanoparticles KW - Size KW - Particle size distribution KW - Particle shape KW - Traceability KW - Standardisation KW - CEN/TC 352 Nanotechnologies PY - 2018 AN - OPUS4-46252 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Overview on the most advanced and suitable NanoDefine measurement methods N2 - The EC Recommendation on the definition of nanomaterial, based solely on size of the constituent particles, foresees development of harmonised measurement methods ensuring ‘consistent results across materials and over time’. The EU/FP7 research project NanoDefine has been exclusively dedicated to support the implementation of this EC Recommendation for the European Union’s legislation. For the first time, measurement techniques able to determine the size of nanoparticles have been evaluated systematically on a well-defined set of quality control materials (spherical, monodisperse) as well as industrial materials of complex shapes and considerable polydispersity. Particularly based on the analytical performance of the measurement techniques as tested on the challenging real-world particulate materials, it was possible to formulate recommendations for use of a new tiered approach consisting of screening and confirmatory techniques. Thus, a consistent framework of guidance for nanomaterial identification according to the EC Definition has been issued in form of the NanoDefiner e-tool, with a transparent decision flow scheme and an extensive user manual. Selected examples of analysis and classification as nano-/non-nanomaterials will be given, highlighting the limits of applicability of the available measurement techniques in dependence on sample properties. On some recent relevant developments in sample preparation – as a crucial part for an accurate analysis - will be also reported. T2 - VCI-NanoDefine Follow-up Meeting CY - VCI, Frankfurt am Main, Germany DA - 25.09.2018 KW - Nanoparticles KW - Nanomaterial KW - EC definition of nanomaterial KW - Nanoparticle size distribution PY - 2018 AN - OPUS4-46251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinrich, Thomas A1 - Schneider, Markus A1 - Schäpe, Kaija A1 - Unger, Wolfgang A1 - Stockmann, Jörg M. T1 - Classification of engineered Titania nanomaterials via surface analysis using principal component analysis (PCA) assisted Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) N2 - Due to the growing number of engineered nanomaterials (NM) the need for a reliable risk assessment for these materials is today bigger than ever before. Especially the nanomaterial’s surface or shell directly interacts with its environment and therefore is a crucial factor for NM’ toxicity or functionality. Especially, titania is one of the NM with the greatest technological importance. It is used for a large number of applications and can be found in food, cosmetics, glasses, mirrors, paints to mention only a few. In 2012, experts estimate[d] the annual European nano-titania production or utilization at an amount of more than 10,000 t. Great progress has been achieved in the area of NM investigation and characterization during the past decade. A variety of publications provide information about technological innovation as well as hazard potential, which means the potential risk on human health and ecosystems. However, enhanced data harmonization and well-defined standards for nanomaterial analysis, could significantly improve the reliability of such studies which often suffers from varying methods, parameters and sample preparations. To develop a suitable approach for the NM’s risk assessment, the ACEnano project aims at establishing a toolbox of verified methods. The size of this well-structured European project allows to handle even those big challenges like data harmonization and standardization. Due to its powerful combination of superior surface sensitivity and lateral resolution down to the Nano regime, ToF-SIMS could become one of these toolbox methods. Supported by multivariate data analysis such as principal component analysis (PCA), the method can be used for sub-classification of nanomaterial families using slight differences in surface chemistry. Here, we show a PCA supported classification of titania nanoparticles from various sources (NIST, JRC, BAM) with ToF-SIMS. Parameters like size, shell, pre-preparation and crystal system cause variance in the data and allow us to distinguish the species from each other. Moreover, this variance in the data also occurs and can be used for investigation when we compare our measurements of particle ensembles with those of grown titania films. The carefully selected and refined peaks allow a reasonable particle categorization and further a reliable allocation of blank feeds, which introduces a promising approach for NM characterization in the context of NM risk assessment. T2 - SIMS-Europe CY - Münster, Germany DA - 16.09.2018 KW - Nanoparticles KW - ToF-SIMS KW - XPS KW - PCA KW - Titania PY - 2018 AN - OPUS4-46250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -