TY - JOUR A1 - Kazlagić, Anera A1 - Rosner, M. A1 - Cipriani, A. A1 - Frick, D. A. A1 - Glodny, J. A1 - Hoffmann, E. J. A1 - Hora, J. M. A1 - Irrgeher, J. A1 - Lugli, F. A1 - Magna, T. A1 - Meisel, T. C. A1 - Meixner, A. A1 - Possolo, A. A1 - Pramann, A. A1 - Pribil, M. J. A1 - Prohaska, T. A1 - Retzmann, Anika A1 - Rienitz, O. A1 - Rutherford, D. A1 - Paula-Santos, G. M. A1 - Tatzel, M. A1 - Widhalm, S. A1 - Willbold, M. A1 - Zuliani, T. A1 - Vogl, Jochen T1 - Characterisation of conventional 87Sr/86Sr isotope ratios in cement, limestone and slate reference materials based on an interlaboratory comparison study JF - Geostandards and Geoanalytical Research N2 - An interlaboratory comparison (ILC)was organised to characterise 87Sr/86Sr isotope ratios in geological and industrial reference materials by applying the so-called conventional method for determining 87Sr/86Sr isotope ratios. Four cements (VDZ 100a,VDZ 200a, VDZ 300a, IAG OPC-1), one limestone (IAG CGL ML-3) and one slate (IAG OU-6) reference materials were selected, covering a wide range of naturally occurring Sr isotopic signatures. Thirteen laboratories received aliquots of these six reference materials together with a detailed technical protocol. The consensus values for the six reference materials and their associated measurement uncertainties were obtained by applying a Gaussian, linear mixed effects model fitted to all the measurement results. By combining the consensus values and their uncertainties with an uncertainty contribution for potential heterogeneity, reference values ranging from 0.708134 mol mol-1 to 0.729778 mol mol-1 were obtained with relative expanded uncertainties of ≤ 0.007 %. This study represents an ILC on conventional 87Sr/86Sr isotope ratios, within which metrological principles were considered and the compatibility of measurement results obtained by MC-ICP-MS and by MC-TIMS is demonstrated. The materials characterised in this study can be used as reference materials for validation and quality control purposes and to estimate measurement uncertainties in conventional 87Sr/86Sr isotope ratio measurement. KW - Sr isotope analysis KW - Isotope ratios KW - Cement KW - Geological material KW - MC-TIMS KW - MC-ICP-MS KW - Interlaboratory comparison KW - Measurement uncertainty KW - Cconventional method PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579836 DO - https://doi.org/10.1111/ggr.12517 SN - 1639-4488 VL - 47 IS - 4 SP - 821 EP - 840 PB - Wiley online library AN - OPUS4-57983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kazlagic, Anera A1 - Rosner, M. A1 - Cipriani, A. A1 - Frick, D. A. A1 - Glodny, J. A1 - Hoffmann, E. J. A1 - Hora, J. M. A1 - Irrgeher, J. A1 - Lugli, F. A1 - Magna, T. A1 - Meisel, T. C. A1 - Meixner, A. A1 - Possolo, A. A1 - Pramann, A. A1 - Pribil, M. J. A1 - Prohaska, T. A1 - Retzmann, A. A1 - Rienitz, O. A1 - Rutherford, D. A1 - Paula-Santos, G. M. A1 - Tatzel, M. A1 - Widhalm, S. A1 - Willbold, M. A1 - Zuliani, T. A1 - Vogl, Jochen T1 - Data of the characterisation of conventional 87Sr/86Sr isotope ratios in cement, limestone and slate reference materials based on an interlaboratory comparison study N2 - This dataset represents the electronic supplementary material (ESM) of the publication entitled "Characterisation of conventional 87Sr/86Sr isotope ratios in cement, limestone and slate reference materials based on an interlaboratory comparison study", which is published in Geostandards and Geoanalytical Research under the DOI: 10.1111/GGR.12517. It consists of four files. 'ESM_Data.xlsx' contains all reported data of the participants, a description of the applied analytical procedures, basic calculations, the consensus values, and part of the uncertainty assessment. 'ESM_Figure-S1' displays a schematic on how measurements, sequences and replicates are treated for the uncertainty calculation carried out by PTB. 'ESM_Technical-protocol.pdf' is the technical protocol of the interlaboratory comparison, which has been provided to all participants together with the samples and which contains bedside others the definition of the measurand and guidelines for data assessment and calculations. 'ESM_Reporting-template.xlsx' is the Excel template which has been submitted to all participants for reporting their results within the interlaboratory comparison. Excel files with names of the the structure 'GeoReM_Material_Sr8786_Date.xlsx' represent the Rcon(87Sr/86Sr) data for a specific reference material downloaded from GeoReM at the specified date, e.g. 'GeoReM_IAPSO_Sr8786_20221115.xlsx' contains all Rcon(87Sr/86Sr) data for the IAPSO seawater standard listed in GeoReM until 15 November 2022. KW - Reference data KW - Strontium isotope ratio KW - Interlaboratory comparison KW - Reference material KW - Cement KW - Geological material KW - Value assignment KW - Measurement uncertainty KW - Conventional method PY - 2023 UR - https://doi.org/10.5281/zenodo.7804445 DO - https://doi.org/10.5281/zenodo.7804444 PB - Zenodo CY - Geneva AN - OPUS4-57809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Rienitz, O. A1 - Pramann, A. A1 - Flierl, L. T1 - Scale Conversion and Uncertainty Calculations in Isotope Delta Measurements JF - Geostandards and Geoanalytical Research N2 - Isotope ratio applications are on the increase and a major part of which are delta measurements, because they are easier to perform than the determination of absolute isotope ratios while offering lower measurement uncertainties. Delta measurements use artefact-based scales and therefore scale conversions are required due to the lack of the scale defining standards. Such scale conversions often form the basis for comparing data being generated in numerous projects andtherefore need to be as accurate as possible. In practice, users are tempted to apply linear approximations, which are not sufficiently exact, because delta values are defined by nonlinear relationships. The bias of such approximations often is beyond typical measurement uncertainties and its extent can hardly be predicted. Therefore, exact calculations are advised. Here, the exact equations and the bias of the approximations are presented, and calculations are illustrated by real-world examples. Measurement uncertainty is indispensable in this context and therefore, its calculation is described as well for determining delta values but also for scale conversions. Approaches for obtaining a single delta measurement and for repeated measurements are presented. For the latter case, a new approach for calculating the measurement uncertainty is presented, which considers covariances between the isotope ratios. KW - Delta isotope standard KW - Delta scale KW - In-house calibration solution KW - Isotope ratios KW - Isotope reference material KW - Measurement uncertainty KW - Scale conversion PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557254 DO - https://doi.org/10.1111/ggr.12450 SN - 1639-4488 VL - 46 IS - 4 SP - 773 EP - 787 PB - Wiley AN - OPUS4-55725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raab, A. A1 - Vogl, Jochen A1 - Solovyev, N. A1 - El-Khatib, Platt A1 - Costas-Rodriguez, M. A1 - Schwab, K. A1 - Griffin, E. A1 - Platt, B. A1 - Theuring, F. A1 - Vanhaecke, F. T1 - Isotope signature of iron, copper and zinc in mouse models (L66 and 5XFAD) and their controls used for dementia research N2 - Introduction: The influence of copper, iron and zinc concentrations on the formation of ß-amyloid plaques and neurofibrillary tangles in Alzheimer’s disease (AD) is widely discussed in the community. The results from human and animal studies so far are mixed with some studies showing a correlation and others not. From a number of studies, it is known that disease state and isotopic composition of essential elements can be coupled. Aim: The aim of the study was to identify changes in element content and isotopic composition in two transgenic mouse models used in AD research compared to their genetic WT relatives and to establish whether element content and isotopic signature between different laboratories is comparable. Methods: ß-amyloid (5xFAD) and tau overexpressing (L66) mice together with their matching wild-types were bred at dedicated facilities in accordance with the European Communities Council Directive (63/2010/EU). Serum and brain were sampled after sacrifice and the samples distributed among the participants of the study. The tissues were acid digested for total element determination and high-precision isotope ratio determination. Element content was determined by either sector-field or quadrupole-based inductively coupled plasma mass spectrometry (ICPMS). For the determination of isotope ratios multi-collector ICPMS was used. Results: Total copper content was significantly higher for L66 and their matched WT compared to 5xFAD and WT. Brains of L66 mice contained more Fe in brain than their WT, Zn and Cu were not significantly different between L66 and WT. Whereas 5xFAD mice had a slightly lower Cu and slightly higher Zn concentration in brain compared to WT. The isotopic signature in brain of L66 mice for Fe was different from their controls, whereas Zn isotope ratios were influenced in 5xFAD mice compared to their WT. The Cu isotopic ratio did not seem to be influenced in either strain. In serum, the shifts were less pronounced. Conclusion: Even though neither Tau-protein nor amyloid precursor protein are known to be metal-dependent / -containing proteins, the overexpression of both influences the Fe, Cu and Zn metabolism in brain and to some extent also in serum as can be seen not only using total element determination but probably more clearly studying the isotopic signature of Fe, Cu and Zn. T2 - The International Conference of Trace Elements and Minerals (ICTEM) 2022 CY - Aachen, Germany DA - 05.06.2022 KW - Isotope ratio KW - Isotope delta value KW - Metrology KW - Alzheimer disease KW - Measurement uncertainty PY - 2022 AN - OPUS4-55204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Typical Measurements in Optical Spectroscopy – Absorption Spectroscopy or Photometry N2 - The basics of absorption spectroscopy (termed also photometry) will be presented with focus on transparent solutions of different molecular and nanocrystalline absorbers and the ultraviolet (UV), visible (vis), and near-infrared (NIR) spectral region. Thereby, also typical sources of uncertainty will be addressed. Subsequently, several examples for typical applications of absorption measurements in the life and material sciences will be briefly shown ranging from aggregation studies and dye labeling densities of biomolecules (dye-to-biomolecule ratios) over optical assays for thiol and protein quantification to the optical determination of the size of semiconductor nanocrystals using size curves. T2 - pHD Seminar CY - Online meeting DA - 03.11.2020 KW - Quantification KW - Absorption KW - Dye KW - Nano particle KW - Method KW - Measurement uncertainty KW - Linearity PY - 2020 AN - OPUS4-51621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Krietsch, Arne A1 - Rühle, Bastian A1 - Bresch, Harald T1 - Perspective of BAM on Advanced Materials N2 - A brief perspective of BAM on advanced materials is presented including examples for nanomaterials and other systems presenting advanced materials with special emphasis on characterization methods used in different division of BAM for the determination of functional or safety parameters of such materials. In this respect, also ongoing activities of the capacity building project nanoplatform of BAM aiming at the development of nanometer-sized reference materials are briefly summarized. T2 - BfR Workshop zu Advanced Materials CY - Online meeting DA - 04.11.2020 KW - Quality assurance KW - Risk assessment KW - Safety KW - Core/shell particle KW - Characterization KW - Measurement uncertainty KW - Method KW - Nano particle PY - 2020 AN - OPUS4-51620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Introduction to Fluorescence Spectroscopy N2 - A brief introduction to fluorescence spectroscopy will be provided, ranging from typically measured fluorescence quantities over instrument-specific contributions to measured fluorescence signals to selected applications. In this context, an overview of the photoluminescence properties of molecular and nanoscale luminescence reporters will be given including a brief insight into their photophysics and fluorescence standards designed by division Biophotonics for the calibration and instrument performance validation of fluorescence measuring devices will be presented. T2 - Analytical Academy BAM CY - Online meeting DA - 17.11.2020 KW - Fluorescence KW - Quality assurance KW - Quantification KW - Linearity KW - Measurement uncertainty KW - Method KW - Nano particle KW - Dye PY - 2020 AN - OPUS4-51619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Introduction to Fluorescence Spectroscopy N2 - A brief introduction to fluorescence spectroscopy will be provided, ranging from typically measured fluorescence quantities over instrument-specific contributions to measured fluorescence signals to selected applications. In this context, an overview of the photoluminescence properties of molecular and nanoscale luminescence reporters will be given including a brief insight into their photophysics and fluorescence standards designed by division Biophotonics for the calibration and instrument performance validation of fluorescence measuring devices will be presented. T2 - Analytical Academy CY - Berlin, Germany DA - 13.01.2020 KW - Linearity KW - Fluorescence KW - Dye KW - Quality assurance KW - Nnano particle KW - Method KW - Measurement uncertainty KW - Quantification PY - 2020 AN - OPUS4-51618 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Rosner, M. A1 - Henehan, M. J. A1 - Tütken, T. T1 - Triple Isotope Fractionation Exponents of Elements Measured by MC-ICP-MS - An Example of Mg JF - Analytical Chemistry N2 - In most chemical reactions, stable isotopes are fractionated in a mass-dependent manner, yielding correlated isotope ratios in elements with three or more stable isotopes. The proportionality between isotope ratios is set by the triple isotope fractionation exponent θ that can be determined precisely for, e.g., sulfur and oxygen by IRMS, but not for metal(loid) elements due to the lower precision of MC-ICP-MS analysis and smaller isotopic variations. Here, using Mg as a test case, we compute a complete metrologically robust uncertainty budget for apparent θ values and, with reference to this, present a new measurement Approach that reduces uncertainty on θ values by 30%. This approach, namely, direct educt-product bracketing (sample−sample bracketing), allows apparent θ values of metal(loid) isotopes to be determined precisely enough to distinguish slopes in three-isotope space. For the example of Mg, we assess appropriate quality Control standards for interference-to-signal ratios and Report apparent θ values of carbonate−seawater pairs. We determined apparent θ values for marine biogenic carbonates, where the foraminifera Globorotalia menardii yields 0.514 ± 0.005 (2 SD), the coral Porites, 0.515 ± 0.006 (2 SD), and two specimens of the giant clam Tridacna gigas, 0.508 ± 0.007 (2 SD) and 0.509 ± 0.006 (2 SD), documenting differences in the uptake pathway of Mg among marine calcifiers. The capability to measure apparent θ values more precisely adds a new dimension to metal(loid) δ values, with the potential to allow us to resolve different modes of fractionation in industrial and natural processes. KW - Isotope fractionation KW - Delta value KW - Biogenic carbonates KW - Calcification KW - Magnesium isotope ratios KW - Measurement uncertainty KW - Sample-sample bracketing PY - 2019 DO - https://doi.org/10.1021/acs.analchem.9b02699 VL - 91 IS - 22 SP - 14314 EP - 14322 PB - ACS Publications AN - OPUS4-49818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Grauel, Bettina A1 - Weigert, Florian A1 - Pauli, Jutta A1 - Martynenko, Irina A1 - Güttler, Arne T1 - Measuring photoluminescence quantum yields of molecular and nanocrystal emitters N2 - Mandatory for the comparison of different emitter classes and the rational design of the next generation of molecular and nanoscale reporters are reliable and quantitative photoluminescence measurements. This is of special relevance for all fluorescence applications in the life and material sciences. In the following, procedures for the determination of this spectroscopic key parameter are presented including pitfalls and achievable uncertainties and material-specific effects related to certain emitter classes are addressed. T2 - National Research Council Canada (NRC) CY - Ottawa, Canada DA - 11.12.2018 KW - Photoluminescence KW - Quantum yield KW - Instrument calibration KW - Quality assurance KW - Measurement uncertainty KW - Dye KW - Nanocrystal KW - Integrating sphere spectroscopy KW - Absolute measurement PY - 2018 AN - OPUS4-47550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -