TY - JOUR A1 - Junge, Florian A1 - Wittwer, Philipp A1 - Sommerfeld, Thomas A1 - Gehrenkemper, Lennart A1 - Zoister, Christian A1 - Nickl, Philip A1 - Koch, Matthias A1 - Meermann, Björn A1 - Haag, Rainer T1 - Adsorber Charge Dominates over Hydrophobic or Fluorophilic Functionalization in Influencing Adsorption of PFCA onto Polystyrene Resins N2 - A systematic series of industrial-relevant polystyrene-based anion exchange resins that are functionalized with hydro- or fluorocarbon chains are compared regarding their adsorption behavior toward perfluorocarboxylic acids (PFCA) in respect to their charge, chain length, and type of chain. The results clearly show the dominance of electrostatic interactions in the adsorption process as uncharged adsorber materials showed no adsorption at all. In contrast, the charged adsorber materials showed in general a PFCA removal of 80% to 30% over the experiment depending on effluent fraction. Unexpectedly, for perfluorobutanoic acid (PFBA) the highest removal rate is found with consistently >90%. Despite observing significant benefits in the adsorption of PFCA for fluoroalkylated adsorbers in comparison to their non-fluorinated counterparts, this effect of fluoroalkylation is comparatively small and can not be clearly attributed to fluorophilic interactions between the fluoroalkyl chains. These findings help clarifying that the introduction of fluorocarbon moieties in adsorber materials is not necessary in order to remove fluorocarbon molecules from the environment. KW - PFAS KW - Remediation KW - Adsorption KW - Fluorophilic interactions PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601883 DO - https://doi.org/10.1002/admi.202400199 SN - 2196-7350 SP - 1 EP - 10 PB - John Wiley & Sons CY - Hoboken, New Jersey, USA AN - OPUS4-60188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Taylor, Tristen L. A1 - Tukhmetova, Dariya A1 - Duong, Thi Phuong Thanh A1 - Böwe, Anna-Maria A1 - Meermann, Björn A1 - Gundlach-Graham, Alexander T1 - Comparative study of the vibrating capillary nebulizer (VCN) and commercially available interfaces for on-line coupling of capillary electrophoresis with ICP-MS N2 - Capillary electrophoresis (CE) is a powerful and sensitive tool for speciation analysis when combined with inductively coupled plasma mass spectrometry (ICP-MS); however, the performance of this technique can be limited by the nature of pneumatic nebulizers. This study compares two commercially available pneumatic nebulizers to a newly introduced vibrating capillary nebulizer (VCN) for on-line coupling of CE with ICP-MS. The VCN is a low-cost, non-pneumatic nebulizer that is based on the design of capillary vibrating sharp-edge spray ionization. As a piezoelectrically driven nebulization source, the VCN creates an aerosol independent of gas flows and does not produce a low-pressure region at the nebulizer orifice. To compare the systems, we performed replicate analyses of sulfate in river water with each nebulizer and the same CE and ICP-MS instruments and determined the figures of merit of each setup. With the CE-VCN-ICP-MS setup, we achieved around 2–4 times lower sensitivity compared to the commercial setups. However, the VCN-based setup provided lower noise levels and better linear correlation from the analysis of calibration standards, which resulted in indistinguishable LOD and LOQ values from the in-house-built VCN-based and commercial setups for CE-ICP-MS analysis. The VCN is found to have the highest baseline stability with a standard deviation of 3500 cts s−1, corresponding to an RSD of 2.7%. High reproducibility is found with the VCN with a peak area RSD of 4.1% between 3 replicate measurements. KW - Speciation analysis KW - Analytical chemistry KW - Surface water PY - 2024 DO - https://doi.org/10.1007/s00216-024-05162-7 SN - 1618-2650 SP - 1 EP - 9 PB - Springer CY - Berlin AN - OPUS4-59472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tukhmetova, Dariya A1 - Lisec, Jan A1 - Vogl, Jochen A1 - Meermann, Björn T1 - Development of an Online Isotope Dilution CE/ICP–MS Method for the Quantification of Sulfur in Biological Compounds N2 - We report an analytical methodology for the quantification of sulfur in biological molecules via a speciesunspecific postcolumn isotope dilution (online ID) approach using capillary electrophoresis (CE) coupled online with inductively coupled plasma−mass spectrometry (online ID CE/ICP−MS). The method was optimized using a mixture of standard compounds including sulfate, methionine, cysteine, cystine, and albumin, yielding compound recoveries between 98 and 105%. The quantity of sulfur is further converted to the quantity of the compounds owing to the prior knowledge of the sulfur content in the molecules. The limit of detection and limit of quantification of sulfur in the compounds were 1.3−2.6 and 4.1−8.4 mg L−1, respectively, with a correlation coefficient of 0.99 within the concentration range of sulfur of 5−100 mg L−1. The capability of the method was extended to quantify albumin in its native matrix (i.e., in serum) using experimentally prepared serum spiked with a pure albumin standard for validation. The relative expanded uncertainty of the method for the quantification of albumin was 6.7% (k = 2). Finally, we tested the applicability of the method on real samples by the analysis of albumin in bovine and human sera. For automated data assessment, a software application (IsoCor) which was developed by us in a previous work was developed further for handling of online ID data. The method has several improvements compared to previously published setups: (i) reduced adsorption of proteins onto the capillary wall owing to a special capillary-coating procedure, (ii) baseline separation of the compounds in less than 30 min via CE, (iii) quantification of several sulfur species within one run by means of the online setup, (iv) SI traceability of the quantification results through online ID, and (v) facilitated data processing of the transient signals using the IsoCor application. Our method can be used as an accurate approach for quantification of proteins and other biological molecules via sulfur analysis in complex matrices for various fields, such as environmental, biological, and pharmaceutical studies as well as clinical diagnosis. Sulfur is an essential element in living organisms, where it plays important roles in various biological processes, such as protein synthesis, enzyme activity, and antioxidant defense. However, the biological effects of different sulfur species can vary widely, and imbalances in sulfur speciation have been observed in a range of diseases, including cancer, Alzheimer’s disease, and diabetes.1−3 The accurate quantification of sulfur and its species in biological samples requires sensitive and selective analytical techniques. In recent years, separation techniques coupled online with inductively coupled plasma−mass spectrometry (ICP−MS) have emerged as powerful online analytical tools complementary to molecular spectrometric methods for speciation analysis of biological compounds. External calibration4−9 and isotope dilution (ID)10−15 are common calibration approaches applied for online quantification of sulfur species in complex samples. The ID analysis is advantageous over. KW - Analytical Chemistry KW - CE/MC-ICP-MS KW - species-specific isotope information PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594736 DO - https://doi.org/10.1021/acs.analchem.3c03553 SN - 0003-2700 SP - 1 EP - 8 PB - American Chemical Society (ACS) AN - OPUS4-59473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meermann, Björn T1 - Analytical Approaches for PFAS Sum-parameter Analysis – from Materials to Environment N2 - PFAS analysis in environmental samples via complementary analytical apporaches. T2 - 16th Rio Symposium on Atomic Spectrometry CY - Bento Goncalves, Brazil DA - 29.11.2023 KW - PFAS KW - HR-CS-GFMAS KW - LC-HRMS PY - 2023 AN - OPUS4-59157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meermann, Björn T1 - Closing the PFAS gap – comparative study of sum parameter, non-target and target approaches N2 - Analytical Approaches for PFAS Analysis in the environment. T2 - ICOBTE & ICHMET 2023 CY - Wuppertal, Germany DA - 08.09.2023 KW - PFAS KW - HR-CS-GFMAS KW - LC-HRMS PY - 2023 AN - OPUS4-59156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gehrenkemper, Lennart A1 - Rühl, Isabel A1 - Westphalen, Tanja A1 - Simon, Fabian A1 - von der Au, Marcus A1 - Cossmer, Antje A1 - Meermann, Björn T1 - Investigating the uptake and fate of per- and polyfluoroalkylated substances (PFAS) in bean plants (Phaseolus vulgaris): comparison between target MS and sum parameter analysis via HR-CS-GFMAS N2 - AbstractIn this study, we present a screening method based on molecular absorption spectrometry to study PFAS uptake and fate in plants. To evaluate the suitability of this method we analyzed plant extracts with molecular absorption spectrometry (MAS) as well as liquid chromatography–tandem mass spectrometry (LC–MS/MS) for mass balance studies (w(F)). French bean plants (Phaseolus vulgaris) were grown on soil spiked using eight PFAS substances that vary in chain length and functional group composition. Specifically, these include three short-chained (C4–C5), five long-chained (C7–C10) carboxylic acids, one sulfonic acid and one sulfonic amide moieties. To investigate substance-specific PFAS uptake systematically, PFAS were spiked as single substance spike. Additionally, we studied one mixture of the investigated substances in equal proportions regarding w(F) and four PFAS mixtures of unknown composition. After 6 weeks, the plants were separated into four compartments. We analyzed the four compartments as well as the soil for extractable organically bound fluorine (EOF) by high resolution-continuum source-graphite furnace-molecular absorption spectrometry (HR-CS-GFMAS) as well as for sum of ten target-PFAS by LC–MS/MS. All three short-chained PFAS perfluorobutanoic acid (PFBA), perfluorobutanoic sulfonic acid (PFBS) and perfluoropentanoic acid (PFPeA) were determined in high concentrations mainly in the fruits of the investigated plants while long-chained PFAS perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA) were mainly determined in roots. PFBS was determined in remarkably high concentrations in leaves compartment by both quantification methods. Overall, comprehensive results of single substance spikes were in good agreement for both methods except for a few cases. Hence, two phenomena were identified: for mixed PFAS spikes of unknown composition huge differences between EOF and sum of target PFAS were observed with systematically higher EOF values. Overall, both methods indicate comparable results with MS being more reliable for known PFAS contamination and MAS being more valuable to identify PFAS exposure of unknown composition. Graphical Abstract KW - Pollution PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589394 DO - https://doi.org/10.1186/s12302-023-00811-7 VL - 35 IS - 104 SP - 1 EP - 13 PB - Springer Science and Business Media LLC AN - OPUS4-58939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Menero-Valdés, P. A1 - Chronakis, Michail Ioannis A1 - Fernández, B. A1 - Quarles Jr., C. D. A1 - González-Iglesias, H. A1 - Meermann, Björn A1 - Pereiro, R. T1 - Single Cell–ICP–ToF-MS for the Multiplexed Determination of Proteins: Evaluation of the Cellular Stress Response N2 - An automated and straightforward detection and data treatment strategy for the determination of the protein relative concentration in individual human cells by single cell–inductively coupled plasma–time-of-flight mass spectrometry (sc-ICP-ToF-MS) is proposed. Metal nanocluster (NC)-labeled specific antibodies for the target proteins were employed, and ruthenium red (RR) staining, which binds to the cells surface, was used to determine the number of cell events as well as to evaluate the relative volume of the cells. As a proof of concept, the expression of hepcidin, metallothionein-2, and ferroportin employing specific antibodies labeled with IrNCs, PtNCs, and AuNCs, respectively, was investigated by sc-ICP-ToF-MS in human ARPE-19 cells. Taking into account that ARPE-19 cells are spherical in suspension and RR binds to the surface of the cells, the Ru intensity was related to the cell volume (i.e., the cell volume is directly proportional to (Ru intensity)3/2), making it possible to determine not only the mass of the target proteins in each individual cell but also the relative concentration. The proposed approach is of particular interest in comparing cell cultures subjected to different supplementations. ARPE-19 cell cultures under two stress conditions were compared: a hyperglycemic model and an oxidative stress model. The comparison of the control with treated cells shows not only the mass of analyzed species but also the relative changes in the cell volume and concentration of target proteins, clearly allowing the identification of subpopulations under the respective treatment. KW - Peptides and Proteins KW - Immunology KW - Metals PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581630 DO - https://doi.org/10.1021/acs.analchem.3c02558 VL - 95 IS - 35 SP - 13322 EP - 13329 PB - ACS Publications AN - OPUS4-58163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hendriks, L. A1 - Brunjes, R. A1 - Taskula, S. A1 - Kocic, J. A1 - Hattendorf, B. A1 - Bland, G. A1 - Lowry, G. A1 - Bolea-Fernandez, E. A1 - Vanhaecke, F. A1 - Wang, J. A1 - Baalousha, M. A1 - von der Au, Marcus A1 - Meermann, Björn A1 - Holbrook, T. A1 - Wagner, S. A1 - Harycki, S. A1 - Gundlach-Graham, A. A1 - von der Kammer, F. T1 - Results of an interlaboratory comparison for characterization of Pt nanoparticles using single-particle ICP-TOFMS N2 - This study describes an interlaboratory comparison (ILC) among nine (9) laboratories to evaluate and validate the standard operation procedure (SOP) for single-particle (sp) ICP-TOFMS developed within the context of the Horizon 2020 project ACEnano. The ILC was based on the characterization of two different Pt nanoparticle (NP) suspensions in terms of particle mass, particle number concentration, and isotopic composition. The two Pt NP suspensions were measured using icpTOF instruments (TOFWERK AG, Switzerland). Two Pt NP samples were characterized and mass equivalent spherical sizes (MESSs) of 40.4 ± 7 nm and 58.8 ± 8 nm were obtained, respectively. MESSs showed <16% relative standard deviation (RSD) among all participating labs and <4% RSD after exclusion of the two outliers. A good agreement was achieved between the different participating laboratories regarding particle mass, but the particle number concentration results were more scattered, with <53% RSD among all laboratories, which is consistent with results from previous ILC studies conducted using ICP-MS instrumentation equipped with a sequential mass spectrometer. Additionally, the capabilities of sp-ICP-TOFMS to determine masses on a particle basis are discussed with respect to the potential for particle density determination. Finally, because quasi-simultaneous multi-isotope and multielement determinations are a strength of ICP-TOFMS instrumentation, the precision and trueness of isotope ratio determinations were assessed. The average of 1000 measured particles yielded a precision of below ±1% for intensity ratios of the most abundant Pt isotopes, i.e. 194Pt and 195Pt, while the accuracy of isotope ratios with the lower abundant isotopes was limited by counting statistics. KW - ILC KW - spICP-MS KW - PtNP KW - Nanopartikel PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580353 DO - https://doi.org/10.1039/d3nr00435j SN - 2040-3364 VL - 15 IS - 26 SP - 11268 EP - 11279 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nxumalo, T. A1 - Akhdhar, A. A1 - Mueller, V. A1 - Simon, Fabian A1 - von der Au, Marcus A1 - Cossmer, Antje A1 - Pfeifer, Jens A1 - Krupp, E. A1 - Meermann, Björn A1 - Kindness, A. A1 - Feldmann, J. T1 - EOF and target PFAS analysis in surface waters affected by sewage treatment effluents in Berlin, Germany N2 - Per- and polyfuoroalkyl substances (PFAS) are emerging organic pollutants and can occur in surface and groundwater. To identify the degree of pollution in surface water with PFAS, often targeted HPLC–ESI–MS/MS has been employed in which commonly 30–40 compounds are analyzed. However, other PFAS and organofuorines remain undetected. We sampled surface water of the river Spree and the Teltow Canal in Berlin, Germany, which are afected by the efuent discharge of wastewater treatment plants. Here, we employed high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) for measuring extractable organofuorines (EOF) and compared in a mass balance approach the total fuorine to the identifed and quantifed PFAS from the targeted analysis. The analysis highlights that the EOF are in the range expected for an urban river system (Winchell et al. in Sci Total Environ 774, 2021). However, downstream of an efuent discharge, the EOF increased by one order of magnitude, e.g., 40.3 to 574 ng F L−1, along the Teltow Canal. From our target analytes, mostly short-chained perfuorinated carboxylic acids and sulfonates occur in the water, which however makes up less than 10% of the EOF. The increase in EOF in the Teltow Canal correlates well with the increase of perfuorohexanoic acid (PFHxA), indicating that PFHxA is characteristic for the discharged EOF but not responsible for the increase. Hence, it points to PFHxA precursor discharge. The study highlights that EOF screening using HR-CS-GFMAS is necessary to identify the full scale of pollution with regard to PFAS and other organofuorines such as pharmaceutical compounds from the efuent of WWTPs. KW - PFAS KW - WWTP KW - GF-MAS PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580341 DO - https://doi.org/10.1007/s00216-022-04500-x VL - 415 SP - 1195 EP - 1204 PB - Springer AN - OPUS4-58034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chronakis, Michail Ioannis A1 - von der Au, Marcus A1 - Meermann, Björn T1 - Single cell-asymmetrical flow-field flow Fractionation-ICP-TOF-MS N2 - AF4 has been coupled to an ICP-ToF-MS and applied to the analysis of single cells. The result in an online cleaning technique that provides the multielemental profile of the sample on a single cell level. T2 - European Winter Conference on Plasma Spectrochemistry CY - Ljubljana, Slovenia DA - 29.01.2023 KW - AF4 KW - Single Cell KW - Cleaning PY - 2023 AN - OPUS4-57642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -