TY - CONF A1 - Krug von Nidda, Jonas T1 - Single Cell Exchange in Battery Packs – Sustainability vs. Safety Aspects N2 - Lithium-ion batteries usually consist of numerous individual cells. There is ongoing discussion about enhancing sustainability by considering the replacement of heavily aged or damaged cells. Nevertheless, the planned replacement of individual cells poses significant challenges in ensuring the required reliability and safety of the refurbished device. T2 - KLIB Gesprächsrunde Batteriesysteme CY - Online meeting DA - 16.05.2023 KW - Lithium Ion Batteries KW - Lithium Ion Cells KW - Cell Exchange KW - Safety KW - Sustainability PY - 2023 AN - OPUS4-59272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dayani, Shahabeddin A1 - Markötter, Henning A1 - Krug von Nidda, Jonas A1 - Schmidt, Anita A1 - Bruno, Giovanni T1 - Quantification of the Deep Discharge Induced Asymmetric Copper Deposition in Lithium‐Ion Cells by Operando Synchrotron X‐Ray Tomography JF - Advanced Materials Technologies N2 - AbstractLithium‐ion cells connected in series are prone to an electrical safety risk called overdischarge. This paper presents a comprehensive investigation of the overdischarge phenomenon in lithium‐ion cells using operando nondestructive imaging. The study focuses on understanding the behavior of copper dissolution and deposition during overdischarge, which can lead to irreversible capacity loss and internal short‐circuits. By utilizing synchrotron X‐ray computed tomography (SXCT), the concentration of dissolved and deposited copper per surface area is quantified as a function of depth of discharge, confirming previous findings. The results also highlight for the first time a nonuniform distribution pattern for copper deposition on the cathode. This research provides insights for safer battery cell design. KW - Lithium Ion Batteries KW - Deep Discharge KW - Computer Tomography KW - Copper Deposition KW - Litium Ion Cells PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-592717 DO - https://doi.org/10.1002/admt.202301246 SP - 1 EP - 7 PB - Wiley AN - OPUS4-59271 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Böttcher, Nils A1 - Dayani, Shahabeddin A1 - Markötter, Henning A1 - Bruno, Giovanni A1 - Schmidt, Anita A1 - Krug von Nidda, Jonas T1 - Visualizing the progression of the thermal runaway in lithium-ion-cells by controlled abuse tests at low temperatures N2 - Due to their increasing energy density, lithium-ion-batteries (LIBs) play a key role in the traffic energy transition. Regarding their safety behavior, the main challenge of LIB-cells remains the thermal runaway (TR) process. In situ/operando investigations of the TR on commercial cells is possible with radiographic and computer tomographic measurements. Nonetheless, high resolution visualization of the TR persists as a challenge due to the high progression speed of the TR-process itself. Generally, performing abuse tests at cryogenic temperatures allows to slow down or even prevent the TR. Nevertheless, not all abuse methods are suitable for TR investigations at low temperatures. Nail penetration is an appropriate option, however, contains numerous unknown parameters and therefore suffers regarding reproducibility. Herein, a self-developed high precision nail-penetration-setup is introduced, approaching the necessary mechanically reproducibility with controlled temperatures down to -190°C. The setup allows the preparation of critically abused, however, at cryogenic temperatures stable LIB-cells. These cells were controlled rethermalized to room temperature during synchrotron x-ray computer tomography (SXCT) with a pixel size up to 0.7 μm. During this measurement, the temperature and voltage of the cell is monitored allowing the visualization of the initial internal cell reactions. This study reveals the relation between internal reactions and cell voltage. Finally, the developed set-up enables in-depth analysis of thermal runaway behavior down to material level for various commercial battery cells in the future. T2 - International Battery Safety Workshop CY - Ulm, Germany DA - 28.09.2023 KW - Thermal Runaway KW - Lithium Ion Batteries KW - Computer Tomography PY - 2023 AN - OPUS4-59270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krug von Nidda, Jonas A1 - Böttcher, Nils A1 - Yusfi, Nawar A1 - Schmidt, Anita T1 - Hazard-Based Classification of Lithium-Ion Cells and Batteries N2 - Next to performance features, safety aspects of lithium-ion batteries (LIBs) are a crucial research field. The abuse/misuse of a LIB can trigger a chain of exothermic reactions on cell level. Hence, the cell temperature increases dramatically, causing the so-called thermal runaway (TR). Moreover, the TR of one cell can initiate the TR of adjacent cells leading to a TR-propagation. Due to the risk of a TR, special measures need to be applied while handling, storing, and transporting batteries. According to current transport regulations, all different types of lithium-ion and lithium metal cells/batteries (by means of cell format, cathode chemistry, etc.) require the same transport conditions regardless of the intensity of their reaction during abuse tests. To allow more differentiated transport requirements, the United Nations (UN) Subcommittee Transport of Dangerous Goods created an Informal Working Group (IWG) on the topic of a hazard-based classification of LIBs. BAM is one of nine laboratories working on the development of a respective classification scheme including appendant test protocols. Herein, we discuss the latest results of our safety tests on commercial LIB-cells employing the test protocols developed in the UN-IWG. Single cell tests are analysed regarding different hazardous features during the TR, e.g., cell temperature, flame occurrence, and gas amount. Next to the general occurrence of a propagation, the propagation speed is analysed by propagation tests. In total, the presented results are gathered from over 200 tests. Next to the classification of the tested cells, the data set obtained is analysed in respect to the cells’ key features, such as cell energy, state of charge and cathode type. Generally, the presented results can increase the overall understanding of the TR-mechanism supporting the design of advanced safety measures on cell level in the future. T2 - International Battery Safety Workshop CY - Ulm, Germany DA - 28.09.2023 KW - Battery Classification KW - Safe Transport KW - Thermal Runaway KW - Lithium Ion Batteries PY - 2023 AN - OPUS4-59269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krug von Nidda, Jonas A1 - Böttcher, Nils A1 - Yusfi, Nawar A1 - Schmidt, Anita T1 - Linking Key Features of Commercial Lithium-Ion Cells to Thermal Runaway Effects and Propagation Behavior N2 - Lithium-ion batteries (LIBs) are essential for the electrification of vehicles and play an important role for stationary storage units needed for grid-balancing. Research groups all over the world work on the improvement of LIBs regarding an increase in energy density as well as cycle-life and a decrease in costs. Next to these research topics, a continuously uprising and crucial field is safety features of LIBs, which can be implemented at different levels, such as material, cell, battery and system level. The abuse/misuse of a LIB can cause an internal release of heat which can trigger a chain of exothermic reactions on cell level. Hence, the cell temperature increases dramatically, causing the so-called thermal runaway (TR), possibly leading to flames and/or explosion of the cell. Moreover, the TR of one cell can initiate the TR of adjacent cells leading to a so-called propagation, possibly, causing the TR of the whole battery. Ideally, easily obtainable key features of a certain cell – such as cathode type, cell format, cell energy and state of charge (SOC) - could allow the prediction of its behaviour under abuse conditions. In the present study, we will discuss the latest result of our safety tests on cell level employing an external heater as TR-trigger. Single cell tests will be analysed regarding different hazardous features during the TR, e.g., cell temperature, occurrence of flames, peak pressure, gas amount and gas composition. Moreover, the possibility of a TR-propagation and the respective propagation speed will be gained from propagation tests utilizing six cells with identical SOC. In total, the study comprises over 200 tests on cell level. The gained data set is analysed in respect to the cell parameters, such as cell format, cell energy, SOC and the cathode type as well as the atmosphere (air vs. N2) present during the test. A special focus is put on the discussion of general conclusions linking cell parameters to TR-effects and propagation behaviour. The findings regarding common conclusions between key features and TR-effects can enable a rather facile selection process of cells/batteries for certain applications according to specific safety targets. Moreover, it allows to choose cell-specific safety measures, suitable during operation. In further works, the study will be extended to end-of-first life cells yielding important conclusions regarding crucial safety aspects for the implementation of those cells in 2nd-life application. Generally, the presented results can increase the overall understanding of the TR mechanism supporting the design of advanced measures to enhance the safety on cell level in the future. T2 - 224th ECS Meeting CY - Gothenburg, Sweden DA - 08.10.2023 KW - Lithium Ion Batteries KW - Thermal Runaway KW - Propagation KW - Safety PY - 2023 AN - OPUS4-59268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krug von Nidda, Jonas A1 - Böttcher, Nils A1 - Yusfi, Nawar A1 - Schmidt, Anita T1 - Investigating thermal runaway effects and propagation behaviour of various types of commercial lithium-ion cells N2 - Lithium-ion battery (LIB) powered devices, such as laptops, mobile phones and power tools are ubiquitous in our daily lives. Moreover, LIBs are essential for the electrification of vehicles, and play an important role for stationary storage units needed for grid-balancing. The improvement of LIBs, in terms of increasing energy density as well as cycle-life and decreasing costs, is tackled by numerous research groups all over the world. In the last years, research regarding safety aspects has steadily gained more interest. The safety of LIBs can be implemented at different levels, such as material, cell, battery and system level. The abuse/misuse of an LIB can lead to an internal increase in heat which can trigger a chain of exothermic reactions on cell level. Thus, the cell temperature increases dramatically causing the so-called thermal runaway (TR). This process can lead to flames and/or explosion of the cell. Furthermore, the TR of one cell can initiate the TR of adjacent cells causing the so-called propagation, possibly, leading to the TR of the whole battery. Herein, we will show the latest result of our safety tests on cell level employing an external heater as TR-trigger. Regarding single cell tests, we will compare different hazardous features during the TR, e.g., cell temperature, occurrence of flames, peak pressure, and toxic gases, depending on the cell format, cell energy and the cathode type. The same cell parameters will be used to discuss the results of the propagation tests. Moreover, the influence of the state of charge (SOC) and the present atmosphere (air vs. N2) as well as the repeatability will be discussed. Overall, the study comprises over 180 tests on cell level. The findings regarding the TR behaviour can be used to create a hazard-classification scheme of LIBs, e.g., allowing the definition of (cell type specific) conditions for a safe transport. Furthermore, the results can increase the general understanding of the TR mechanism promoting the development of advanced measures to enhance the safety on cell level in the future. T2 - Advanced Battery Power 2023 CY - Aachen, Germany DA - 27.04.2023 KW - Thermal Runaway KW - Lithium Ion Batteries KW - Safety PY - 2023 AN - OPUS4-59267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Wichser, A. A1 - Abad Andrade, Carlos Enrique A1 - Bleiner, D. T1 - Multivariate data analysis for laser-induced XUV spectroscopy (LIXS) N2 - The application of multivariate data analysis is essential in extracting the full potential of laser-induced XUV spectroscopy (LIXS) for high-precision elemental mapping. LIXS offers significant advantages over traditional laser-induced breakdown spectroscopy in UV-vis (LIBS), including higher precision and a wider dynamic range,[1,2] while making it possible to determine light elements like lithium and fluorine. However, it is challenged by the presence of unresolved transition arrays (UTAs) for heavier elements. These UTAs add considerable complexity to the spectral data, often concealing crucial information. In this study, we employ well-established multivariate data analysis techniques and intensive data preprocessing to unravel this contained information. The refined analysis reveals a high level of detail, enabling the precise identification of inhomogeneities within material samples. Our approach has particular relevance for studying aging processes in lithium-ion batteries (LIBs), specifically in relation to varying cathode materials and fluorine-containing polymer binder content. By combining elemental distribution with structural information, this improved method can offer a more comprehensive understanding of sample inhomogeneities and aging processes in LIBs, contributing to the development of more reliable and sustainable battery technologies. T2 - Berliner Chemie in Praxis Symposium - BCPS 2023 CY - Berlin, Germany DA - 06.10.2023 KW - Lithium Ion Batteries KW - Laser-induced XUV spectroscopy KW - Multivariate data analysis PY - 2023 AN - OPUS4-58588 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Wichser, A. A1 - Abad Andrade, Carlos Enrique A1 - Bleiner, D. T1 - Study of lithium-ion battery aging using laser-induced XUV spectroscopy (LIXS) N2 - Laser-induced XUV spectroscopy (LIXS) is an emerging technique for elemental mapping. In comparison to conventional laser-induced breakdown spectroscopy in UV-vis (LIBS), it has a higher precision and wider dynamic range, and it is well suited for the quantification light elements like lithium and fluorine. Further it can spot oxidation states. The XUV spectra are produced at a very early stage of the plasma formation. Therefore, effects from plasma evolution on the reproducibility can be neglected. It has been shown, that high-precision elemental quantification in precursor materials for lithium-ion batteries (LIBs) can be performed using LIXS. Based on these results, LIXS mapping was used to investigate aging processes in LIBs. Different cathode materials with varying compositions of fluorine containing polymer binders were compared at different stages of aging. Due to effects comparable to X-ray photoelectron spectroscopy but in reverse, monitoring of changes in the oxidation state is envisioned, which makes information about the chemical environment of the observed elements accessible. The combination of elemental distribution and structural information leads to a better understanding of aging processes in LIBs, and the development of more sustainable and safe batteries. T2 - Conference on Applied Surface and Solid Material Analysis - AOFKA 2023 CY - Zurich, Switzerland DA - 11.09.2023 KW - Lithium Ion Batteries KW - Laser-induced XUV spectroscopy KW - Multivariate data analysis PY - 2023 AN - OPUS4-58587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Hoffmann, V. A1 - Morcillo, Dalia A1 - Agudo Jacome, Leonardo A1 - Leonhardt, Robert A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique A1 - You, Zengchao T1 - Chemical characterization of aging processes in high energy-density lithium-ion batteries N2 - Introduction Lithium-ion batteries (LIBs) are one key technology to overcome the climate crisis and energy transition challenges. Demands of electric vehicles on higher capacity and power drives research on innovative cathode and anode materials. These high energy-density LIBs are operated at higher voltages, leading to increased electrolyte decay and the current collectors' degradation. Even though this fundamental corrosion process significantly affects battery performance, insufficient research is being done on the aluminum current collector. Fast and convenient analytical methods are needed for monitoring the aging processes in LIBs. Methods In this work glow-discharge optical emission spectrometry (GD-OES) was used for depth profile analysis of aged cathode material. The measurements were performed in pulsed radio frequency mode. Under soft and controlled plasma conditions, high-resolution local determination (in depth) of the elemental composition is possible. Scanning electron microscopy (SEM) combined with a focused ion beam (FIB) cutting and energy dispersive X-ray spectroscopy (EDX) was used to confirm GD-OES results and obtain additional information on elemental distribution. Results The aging of coin cells manufactured with different cathode materials (LCO, LMO, NMC111, NMC424, NMC532, NMC622, and NMC811) was studied. GD-OES depth profiling of new and aged cathode materials was performed. Quantitative analysis was possible through calibration with synthetic standards and correction by sputter rate. Different amounts of aluminum deposit on the cathode surface were found for different materials. The deposit has its origin in the corrosion of the aluminum current collector. The results are compatible with results from FIB-EDX. However, GD-OES is a faster and less laborious analytical method. Therefore, it will accelerate research on corrosion processes in high energy-density batteries. Innovative aspects - Quantitative depth profiling of cathode material -Monitoring of corrosion processes in high energy-density lithium-ion batteries - Systematic investigation of the influence of different cathode materials T2 - ANAKON 2023 CY - Vienna, Austria DA - 11.04.2023 KW - Lithium Ion Batteries KW - GD-OES KW - Depth-profiling PY - 2023 AN - OPUS4-58586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -