TY - CONF A1 - Battistella, Beatrice T1 - Isotopic Fractionation in Lithium-Ion Batteries (LIBs): A New Key to Understand Degradation N2 - The presentation summarizes the research work of division 1.6 on Li isotope fractionation in Li-ion batteries (LIB). This work interrogates whether changes in Li isotopic distribution in LIB components can be used as a diagnostic tool to monitor interphases growth at the electrodes surfaces and as a benchmark to track battery degradation. For this purpose, different analytical techniques have been employed to study the electrodes of commercial and lab-scale cells, providing bulk (MC-ICP-MS) and local (GD-MS, LA-ICP-MS) information about the Li isotope distribution changes upon cells cycle aging. The results show Li isotope fractionation in full Li ion cells upon aging, suggesting that the 6Li accumulation on the surface of the negative electrode might be used as a new benchmark to track the solid electrolyte interphase growth T2 - ADLERSHOFER KOLLOQUIUM Analytik – Abteilung 1 CY - Berlin, Germany DA - 28.10.2025 KW - MC-ICP-MS KW - Li-ion Batteries KW - Li Isotopes KW - LA-ICP-MS KW - GD-MS PY - 2025 AN - OPUS4-64511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Battistella, Beatrice T1 - Uncovering Li-ion Battery Degradation: Possibilities Offered by GD-MS Analysis N2 - Uncovering Li-ion Battery Degradation: Possibilities Offered by GD-MS Analysis Since their introduction, lithium-ion batteries (LIBs) have revolutionized the energy storage market, which they now dominate thanks to their high energy density, power capability, and efficiency.1, 2 Despite widespread adoption, global demand for LIBs is projected to grow by around 27% per year.3 This raises concerns about the availability of critical minerals essential to LIB production. Meeting future demand will therefore require next-generation LIBs—an ambition that hinges on a deeper understanding of the degradation processes that limit performance and lifetime. Because LIBs are chemically and physically complex systems, capacity fade stems from multiple degradation phenomena that act concurrently as cells age.4 In particular, the formation and growth of interfacial layers at the electrodes during repeated charge–discharge cycling make a substantial contribution to component degradation.5 Glow Discharge Mass Spectrometry (GD-MS) offers depth-resolved elemental and isotopic analysis of battery electrodes and has proven to be a powerful tool for tracking degradation in LIBs. Using a ASTRUM Swift GD-MS spectrometer, we identified degradation pathways in both cathodes and anodes across various cell chemistries, linking electrochemical behavior with changes in structure and elemental distributions. These insights help clarify the mechanisms that accelerate aging and capacity loss. T2 - Nu Instruments Webinar CY - Online meeting DA - 15.10.2025 KW - Li-ion Batteries KW - Isotope KW - LA-ICP-MS KW - GD-MS PY - 2025 AN - OPUS4-64396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Battistella, Beatrice T1 - Interfaces Under the Isotopic Lens: Rethinking Degradation in Lithium-Ion Batteries N2 - This work investigates Li isotope fractionation in Li-ion batteries, questioning whether there is a correlation between chenges in isotopic distribution and battery capacity loss (cell degradation). The results point to Li-isotope distribution as a new benchmark for electrode/electrolyte interfaces investigation, which can potentialy provide information about the interface formation mechanism. T2 - SALSA Make and Measure 2025 CY - Berlin, Germany DA - 10.09.2025 KW - Li-ion Batteries KW - Isotope KW - LA-ICP-MS KW - GD-MS PY - 2025 AN - OPUS4-64220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hussein, S. A1 - Kühl, A. A. A1 - Golusda, L. A1 - Plattner, C. A1 - Heinze, N. A1 - Sturm, G. A1 - Freise, C. A1 - Traub, Heike A1 - Schannor, Mathias A1 - Trajanoski, Z. A1 - Taupitz, M. A1 - Siegmund, B. A1 - Paclik, D. T1 - Phenotype and function of human monocytes remain mainly unaffected by very small superparamagnetic iron oxide particles N2 - The field of medical application of organic or inorganic nanoparticles is extensive. Medical nanoparticles offer benefits but pose risks. For safe use in diagnostics and therapy, they should be inert, non-immunogenic, non-aggregating, and avoid long-term accumulation in sensitive tissues like bone marrow or the brain. We have developed in-house very small superparamagnetic iron oxide nanoparticles (VSOP), 7 nm in size, which have been successfully used in preclinical magnetic resonance imaging (MRI) to detect intestinal inflammation, neuroinflammation and atherosclerosis. This study examines nanoparticle effects on human blood cells focusing on monocytes in vitro as a first step toward clinical application. Whole blood and monocytes from healthy donors and patients with inflammatory bowel disease were treated with VSOP in vitro and analyzed for changes in their transcriptome, phenotype and function. RNA sequencing of monocytes identified the transferrin receptor as one of the most significantly downregulated genes after VSOP treatment, likely to limit iron uptake. Whereas whole blood RNA sequencing showed significant changes only in three non-coding genes. CyTOF analysis confirmed that VSOP-treated monocytes remain inactive, with no increased proliferation or altered migration. Metabolically, VSOP uptake enhanced the oxygen consumption rate. This effect was likely due to phagocytosis rather than effects mediated by the VSOP itself, as phagocytosis of latex beads showed comparable results. In summary, the analysis of peripheral blood mononuclear cells and monocytes suggests that VSOP treatment has no major impact on immune cell phenotype or function indicating VSOP as a promising diagnostic tool in MRI for inflammatory bowel disease. KW - Imaging KW - Nanoparticle KW - Monocytes KW - Contrast agent KW - Diagnostics KW - ICP-MS KW - LA-ICP-MS KW - VSOP PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-632012 DO - https://doi.org/10.3389/fnano.2025.1584000 SN - 2673-3013 VL - 7 SP - 1 EP - 16 PB - Frontiers Media CY - Lausanne AN - OPUS4-63201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Billimoria, K. A1 - Andresen, Elina A1 - Resch-Genger, Ute A1 - Goenaga-Infante, H. T1 - A Strategy for Quantitative Imaging of Lanthanide Tags in A549 Cells Using the Ratio of Internal Standard Elements N2 - One remaining handicap for spatially resolved elemental quantification in biological samples is the lack of a suitable internal standard (IS) that can be reliably measured across both calibration standards and samples. In this work, multielement quantitative intracellular imaging of cells tagged with lanthanide nanoparticles containing key lanthanides, e.g., Eu and Ho, is described using a novel strategy that uses the ratio of IS elements and LA-ICP-TOFMS analysis. To achieve this, an internal standard layer is deposited onto microscope slides containing either gelatin calibration standards or Euand Ho-tagged cell samples. This IS layer contains both gallium (Ga) and indium (In). Monitoring either element as an IS individually showed significant variability in intensity signal between sample or standards prepared across multiple microscope slides, which is indicative of the difficulties in producing a homogeneous film at intracellular resolution. However, normalization of the lanthanide signal to the ratio of the IS elements improved the calibration correlation coefficients from 0.9885 to 0.9971 and 0.9805 to 0.9980 for Eu and Ho, respectively, while providing a consistent signal to monitor the ablation behavior between standards and samples. By analyzing an independent quality control (QC) gelatin sample spiked with Eu and Ho, it was observed that without normalization to the IS ratio the concentrations of Eu and Ho were highly biased by approximately 20% in comparison to the expected values. Similarly, this overestimation was also observed in the lanthanide concentration distribution of the cell samples in comparison with the normalized data. KW - Nanoparticle KW - Nano KW - Luminescence KW - Quality assurance KW - Synthesis KW - Standardization KW - Reference material KW - ICP-MS KW - LA-ICP-MS KW - Quantification KW - Bioimaging PY - 2024 DO - https://doi.org/10.1021/acs.analchem.4c02763 SN - 0003-2700 VL - 96 IS - 30 SP - 12570 EP - 12576 AN - OPUS4-60768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Billimoria, K. A1 - Diaz Fernandez, Y. A. A1 - Andresen, Elina A1 - Sorzabal-Bellido, I. A1 - Huelga-Suarez, G. A1 - Bartczak, D. A1 - Ortiz de Solórzano, C. A1 - Resch-Genger, Ute A1 - Goenaga Infante, H. T1 - The potential of bioprinting for preparation of nanoparticle-based calibration standards for LA-ICP-ToF-MS quantitative imaging N2 - This paper discusses the feasibility of a novel strategy based on the combination of bioprinting nano-doping technology and laser ablation-inductively coupled plasma time-of-flight mass spectrometry analysis for the preparation and characterization of gelatin- based multi-element calibration standards suitable for quantitative imaging. To achieve this, lanthanide up-conversion nanoparticles were added to a gelatin matrix to produce the bioprinted calibration standards. The features of this bioprinting approach were com- pared with manual cryosectioning standard preparation, in terms of throughput, between batch repeatability and elemental signal homogeneity at 5 μm spatial resolution. By using bioprinting, the between batch variability for three independent standards of the same concentration of 89 Y (range 0–600 mg/kg) was reduced to 5% compared to up to 27% for cryosectioning. On this basis, the relative standard deviation ( RSD ) obtained between three independent calibration slopes measured within 1 day also reduced from 16% (using cryosectioning ) to 5% (using bioprinting), supporting the use of a single standard preparation replicate for each of the concentrations to achieve good calibration performance using bioprinting. This helped reduce the analysis time by approximately 3-fold. With cryosectioning each standard was prepared and sectioned individually, whereas using bio-printing it was possible to have up to six different standards printed simultaneously, reducing the preparation time from approximately 2 h to under 20 min (by approxi- mately 6-fold). The bio-printed calibration standards were found stable for a period of 2 months when stored at ambient temperature and in the dark. KW - Environmental analysis KW - LA-ICP-MS KW - Lanthanide KW - Tag KW - Fluorescence KW - Nanoparticles KW - Reference material KW - Quality assurance KW - 3D-printing KW - Synthesis KW - Production KW - Multimodal PY - 2022 DO - https://doi.org/10.1093/mtomcs/mfac088 SN - 1756-591X VL - 14 IS - 12 SP - 1 EP - 9 PB - Oxford University Press CY - Oxford AN - OPUS4-57018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kader, A. A1 - Brangsch, J. A1 - Reimann, C. A1 - Kaufmann, Jan Ole A1 - Mangarova, D. B. A1 - Moeckel, J. A1 - Adams, L. C. A1 - Zhao, J. A1 - Saatz, Jessica A1 - Traub, Heike A1 - Buchholz, R. A1 - Karst, U. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Visualization and Quantification of the Extracellular Matrix in Prostate Cancer Using an Elastin Specific Molecular Probe N2 - One of the most commonly diagnosed cancers in men is prostate cancer (PCa). Understanding tumor progression can help diagnose and treat the disease at an early stage. Components of the extracellular matrix (ECM) play a key role in the development and progression of PCa. Elastin is an essential component of the ECM and constantly changes during tumor development. This article visualizes and quantifies elastin in magnetic resonance imaging (MRI) using a small molecule probe. Results were correlated with histological examinations. Using an elastin-specific molecular probe, we were able to make predictions about the cellular structure in relation to elastin and thus draw conclusions about the size of the tumor, with smaller tumors having a higher elastin content than larger tumors. Human prostate cancer (PCa) is a type of malignancy and one of the most frequently diagnosed cancers in men. Elastin is an important component of the extracellular matrix and is involved in the structure and organization of prostate tissue. The present study examined prostate cancer in a xenograft mouse model using an elastin-specific molecular probe for magnetic resonance molecular imaging. Two different tumor sizes (500 mm3 and 1000 mm3) were compared and analyzed by MRI in vivo and histologically and analytically ex vivo. The T1-weighted sequence was used in a clinical 3-T scanner to calculate the relative contrast enhancement before and after probe administration. Our results show that the use of an elastin-specific probe enables better discrimination between tumors and surrounding healthy tissue. Furthermore, specific binding of the probe to elastin fibers was confirmed by histological examination and laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS). Smaller tumors showed significantly higher signal intensity (p > 0.001), which correlates with the higher proportion of elastin fibers in the histological evaluation than in larger tumors. A strong correlation was seen between relative enhancement (RE) and Elastica–van Gieson staining (R2 = 0.88). RE was related to inductively coupled plasma–mass spectrometry data for Gd and showed a correlation (R2 = 0.78). Thus, molecular MRI could become a novel quantitative tool for the early evaluation and detection of PCa. KW - Magnetic resonance imaging KW - MRI KW - Molecular imaging KW - Cancer KW - LA-ICP-MS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538410 DO - https://doi.org/10.3390/biology10111217 VL - 10 IS - 11 SP - 1 EP - 14 PB - MDPI CY - Basel AN - OPUS4-53841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Phukphatthanachai, P. A1 - Panne, Ulrich A1 - Traub, Heike A1 - Pfeifer, Jens A1 - Vogl, Jochen T1 - Quantification of sulphur in copper and copper alloys by GDMS and LA-ICP-MS, demonstrating metrological traceability to the international system of units N2 - The quantification of the sulphur mass fraction in pure copper and copper alloys by GDMS and LA-ICP-MS revealed a lack of traceability mainly due to a lack of suitable certified reference materials for calibrating the instruments. Within this study GDMS and LA-ICP-MS were applied as routine analytical tools to quantify sulphur in copper samples by applying reference materials as calibrators, which were characterized for their sulphur mass fraction by IDMS beforehand. Different external calibration strategies were applied including a matrix cross type calibration. Both techniques with all calibration strategies were validated by using certified reference materials (others than those used for calibration) and good agreement with the reference values was achieved except for the matrix cross type calibration, for which the agreement was slightly worse. All measurement results were accompanied by an uncertainty statement. For GDMS, the relative expanded (k = 2) measurement uncertainty ranged from 3% to 7%, while for LA-ICP-MS it ranged from 11% to 33% when applying matrix-matched calibration in the sulphur mass fraction range between 25 mg kg-1 and 1300 mg kg-1. For cross-type calibration the relative expanded (k = 2) measurement uncertainty need to be increased to at least 12% for GDMS and to at least 54% for LA-ICP-MS to yield metrological compatibility with the reference values. The so obtained measurement results are traceable to the international system of units (SI) via IDMS reference values, which is clearly illustrated by the unbroken chain of calibrations in the metrological traceability scheme. KW - Sulfur KW - Copper KW - GDMS KW - LA-ICP-MS KW - Uncertainty KW - Traceability KW - SI PY - 2021 DO - https://doi.org/10.1039/d1ja00137j SN - 0267-9477 VL - 36 IS - 11 SP - 2404 EP - 2414 PB - Royal Society of Chemistry AN - OPUS4-53412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adams, L. C. A1 - Brangsch, J. A1 - Kaufmann, Jan Ole A1 - Mangarova, D. B. A1 - Moeckel, J. A1 - Kader, A. A1 - Buchholz, R. A1 - Karst, U. A1 - Botnar, R. M. A1 - Hamm, B. A1 - Makowski, M. R. A1 - Keller, S. T1 - Effect of Doxycycline on Survival in Abdominal Aortic Aneurysms in a Mouse Model N2 - Background. Currently, there is no reliable nonsurgical treatment for abdominal aortic aneurysm (AAA). This study, therefore, investigates if doxycycline reduces AAA growth and the number of rupture-related deaths in a murine ApoE−/− model of AAA and whether gadofosveset trisodium-based MRI differs between animals with and without doxycycline treatment. Methods. Nine ApoE−/− mice were implanted with osmotic minipumps continuously releasing angiotensin II and treated with doxycycline (30 mg/kg/d) in parallel. After four weeks, MRI was performed at 3T with a clinical dose of the albumin-binding probe gadofosveset (0.03 mmol/kg). Results were compared with previously published wild-type control animals and with previously studied ApoE−/− animals without doxycycline treatment. Differences in mortality were also investigated between these groups. Results. In a previous study, we found that approximately 25% of angiotensin II-infused ApoE−/− mice died, whereas in the present study, only one out of 9 angiotensin II-infused and doxycycline-treated ApoE−/− mice (11.1%) died within 4 weeks. Furthermore, doxycycline-treated ApoE−/− mice showed significantly lower contrast-to-noise (CNR) values in MRI compared to ApoE−/− mice without doxycycline treatment. In vivo measurements of relative signal enhancement (CNR) correlated significantly with ex vivo measurements of albumin staining (R2 = 0.58). In addition, a strong visual colocalization of albumin-positive areas in the fluorescence albumin staining with gadolinium distribution in LA-ICP-MS was shown. However, no significant difference in aneurysm size was observed after doxycycline treatment. Conclusion. The present experimental in vivo study suggests that doxycycline treatment may reduce rupture-related deaths in AAA by slowing endothelial damage without reversing aneurysm growth. KW - Ggadolinium KW - MRI KW - Magnetic resonance imaging KW - Osmotic minipumps KW - Tetracyclin KW - Antibiotics KW - Angiotensin II KW - LA-ICP-MS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527015 DO - https://doi.org/10.1155/2021/9999847 SP - 9999847 PB - Hindawi CY - London AN - OPUS4-52701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adams, L. C. A1 - Brangsch, J. A1 - Reimann, C. A1 - Kaufmann, Jan Ole A1 - Buchholz, R. A1 - Karst, U. A1 - Botnar, R. M. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Simultaneous molecular MRI of extracellular matrix collagen and inflammatory activity to predict abdominal aortic aneurysm rupture N2 - Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease with an up to 80% mortality in case of rupture. Current biomarkers fail to account for size-independent risk of rupture. By combining the information of different molecular probes, multi-target molecular MRI holds the potential to enable individual characterization of AAA. In this experimental study, we aimed to examine the feasibility of simultaneous imaging of extracellular collagen and inflammation for size-independent prediction of risk of rupture in murine AAA. The study design consisted of: (1) A outcome-based longitudinal study with imaging performed once after one week with follow-up and death as the end-point for assessment of rupture risk. (2) A week-by-week study for the characterization of AAA development with imaging after 1, 2, 3 and 4 weeks. For both studies, the animals were administered a type 1 collagen-targeted gadolinium-based probe (surrogate marker for extracellular matrix (ECM) remodeling) and an iron oxide-based probe (surrogate marker for inflammatory activity), in one imaging session. In vivo measurements of collagen and iron oxide probes showed a significant correlation with ex vivo histology (p < 0.001) and also corresponded well to inductively-coupled plasma-mass spectrometry and laser-ablation inductively-coupled plasma mass spectrometry. Combined evaluation of collagen-related ECM remodeling and inflammatory activity was the most accurate predictor for AAA rupture (sensitivity 80%, specificity 100%, area under the curve 0.85), being superior to information from the individual probes alone. Our study supports the feasibility of a simultaneous assessment of collagen-related extracellular matrix remodeling and inflammatory activity in a murine model of AAA. KW - Atherosclerosis KW - Specific probe KW - Magnetic resonance imaging KW - Gadolinium KW - Iron oxide KW - Ferumoxytol KW - Inductively‑coupled mass spectrometry KW - ICP-MS KW - LA-ICP-MS KW - Laser ablation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525864 UR - https://www.nature.com/articles/s41598-020-71817-x DO - https://doi.org/10.1038/s41598-020-71817-x VL - 10 IS - 1 SP - 15206 PB - Springer Nature Limited CY - London, New York, Berlin, Shanghai and Tokyo AN - OPUS4-52586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -