TY - CONF A1 - Cakir, Cafer Tufan T1 - Unrevealing the depths of compositionally complex alloys with grazing exit XANES N2 - High entropy alloys (HEAs) are considered as a new class of alloys containing at least 5 elements with concentrations between 5 and 35 atomic percent. There has been a growing interest in HEAs in the material research field in recent years. Due to their adjustable composition, which enables the modifications of mechanical properties (such as hardness, strength and ductility etc) and their stability at high temperatures, HEAs have been the focus of various studies. Especially the corrosion behavior of HEAs has been a wide research interest. Since the grazing exit X-ray fluorescence (GEXRF) offers a non-destructive way to collect notable information regarding the high temperature oxidation, we consider it as a useful method to investigate how HEAs behave in corrosive environments. The main idea of grazing geometry is to enhance the fluorescence signal of the surface. This enables highly sensitive surface analyses of thin protective film on surface in sub-micrometer scale. Position-sensitive area detectors provide information regarding the signal emitted from the sample as a function of emission angle and thus allow depth-sensitive analysis. Furthermore, the data collected from samples of an incidence energy which lays within a specific energy range provides XANES data to determine oxidation states. Moreover, since GEXRF profiles can also be simulated through physical models (Urbach 1999), they enable us to determine the layer thickness of a given sample in a non-destructive way. In this contribution, we present the preliminary results of a conceptual study regarding layer properties of CrCoNi medium entropy alloy. The successful implementation of such methodological concept will pave the way for the investigation of more complex alloys with multiple layers, which is planned for the later phases of the project. T2 - XAFS 2021, The 18th International XAFS Conference CY - Online meeting DA - 02.08.2021 KW - GEXRF KW - High entropy alloys KW - XANES KW - Grazing exit KW - XAS PY - 2021 AN - OPUS4-54028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cakir, Cafer Tufan T1 - Unravelling the depths of complex alloys with grazing exit XANES N2 - High entropy alloys (HEAs) are considered as a new class of alloys containing at least 5 elements with concentrations between 5 and 35 atomic percent. There has been a growing interest in HEAs in the material research field in recent years. Due to their adjustable composition, which enables the modifications of mechanical properties (such as hardness, strength and ductility etc) and their stability at high temperatures, HEAs have been the focus of various studies. Especially the corrosion behavior of HEAs has been a wide research interest. Since the grazing exit X-ray fluorescence (GEXRF) offers a non-destructive way to collect notable information regarding the high temperature oxidation, we consider it as a useful method to investigate how HEAs behave in corrosive environments. The main idea of grazing geometry is to enhance the fluorescence signal of the surface. This enables highly sensitive surface analyses of thin protective film on surface in sub-micrometer scale. Position-sensitive area detectors provide information regarding the signal emitted from the sample as a function of emission angle and thus allow depth-sensitive analysis. Furthermore, the data collected from samples of an incidence energy which lays within a specific energy range provides XANES data to determine oxidation states. Moreover, since GEXRF profiles can also be simulated through physical models (Urbach 1999), they enable us to determine the layer thickness of a given sample in a non-destructive way. In this contribution, we present the preliminary results of a conceptual study regarding layer properties of CrCoNi medium entropy alloy. The successful implementation of such methodological concept will pave the way for the investigation of more complex alloys with multiple layers, which is planned for the later phases of the project. T2 - Denver X-Ray Conference DXC 2021 CY - Online meeting DA - 02.08.2021 KW - GEXRF KW - High entropy alloys KW - XANES KW - Grazing exit KW - XAS PY - 2021 AN - OPUS4-54027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cakir, Cafer Tufan A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Streli, Christina A1 - Radtke, Martin T1 - Scanning-Free Grazing Exit XANES Analysis of Stratified Samples and the Optimization of the Data Collection Process N2 - The components that are used in structural and in high temperature applications generally face significant challenges with respect to oxidation behaviours and metalworking processes. In most of the cases, harsh environmental conditions lead materials to degrade due to corrosion. To thoroughly investigate the corrosion processes and to determine oxidation states of metal components within the reaction products, we need special analytical tools. Grazing exit X-ray fluorescence (GEXRF) offers a non-destructive way to collect this information in sub-micrometre depth range. In order to obtain structural information, such as regarding oxidation states or atomic/molecular geometric arrangement, the GEXRF approach can also be combined with the X-ray absorption spectroscopy (XAS) method. The position and energy sensitive detector, with 264x264 pixel detector area, provides information regarding the signal emitted from the sample as a function of the emission angle and thus allows depth-sensitive analysis. Furthermore, the data collected from samples of an incidence energy which can be controlled with a resolution of 0.5 eV provides XANES data to determine oxidation states. We address the feasibility of our setup and provide a new optimization procedure (Bayesian Optimization and Gaussian Regression) to decrease measuring time. The results settle on a conceptual study on a reference sample (Cr-Oxide layer (300nm) on Cr layer (500nm) on Si wafer). T2 - Denver X-Ray Conference DXC 2022 CY - Washington D.C., USA DA - 07.08.2022 KW - GEXRF KW - High entropy alloys KW - High entropy materials KW - Optimization KW - XANES KW - Grazing exit KW - XAS PY - 2022 AN - OPUS4-56271 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cakir, Cafer Tufan A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Streli, Christina A1 - Radtke, Martin T1 - Optimization of Depth Resolved X-Ray Absorption Spectroscopy in Grazing Emission Mode for Characterizing Compositionally Complex Alloys N2 - The components that are used in structural and in high temperature applications generally face significant challenges with respect to oxidation behaviours and metalworking processes. In most of the cases, harsh environmental conditions lead materials to degrade due to corrosion. To thoroughly investigate the corrosion processes and to determine oxidation states of metal components within the reaction products, we need special analytical tools. Grazing exit X-ray fluorescence (GEXRF) offers a non-destructive way to collect this information in sub-micrometre depth range. In order to obtain structural information, such as regarding oxidation states or atomic/molecular geometric arrangement, the GEXRF approach can also be combined with the X-ray absorption spectroscopy (XAS) method. The position and energy sensitive detector, with 264x264 pixel detector area, provides information regarding the signal emitted from the sample as a function of the emission angle and thus allows depth-sensitive analysis. Furthermore, the data collected from samples of an incidence energy which can be controlled with a resolution of 0.5 eV provides XANES data to determine oxidation states. We address the feasibility of our setup and provide a new optimization procedure (Bayesian Optimization and Gaussian Regression) to decrease measuring time. The results settle on a conceptual study on a reference sample (Cr-Oxide layer (300nm) on Cr layer (500nm) on Si wafer). T2 - XAFS 2022, The 19th International XAFS Conference CY - Sydney, Australia DA - 10.07.2022 KW - GEXRF KW - High entropy alloys KW - XANES KW - Grazing exit KW - High entropy materials KW - Optimization KW - XAS PY - 2022 AN - OPUS4-56270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cakir, Cafer Tufan A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Streli, Christina A1 - Radtke, Martin T1 - High Speed for High Entropy Materials N2 - Time is the most valuable parameter in synchrotron experiments. This is costly and some of the experiments suffer from low efficiency due to low counting statistics. With today's high processing power long experiments are run in a shorter time and increase efficiency. With optimization algorithms time in "counting-hungry" experiments reduced by factor of 10. Our project is to develop a new method to analyze the chemical properties of complex materials non-destructively and efficiently, such as high entropy materials subjected to corrosion processes. A better understanding of the corrosion process will help to develop corrosion-resistant materials and reduce the cost of corrosion damage, which averages around 2.5 trillion USD annually. T2 - Berlin Science Week CY - Berlin, Germany DA - 01.11.2022 KW - GEXRF KW - High entropy alloys KW - XANES KW - High entropy materials KW - Grazing exit KW - XAS KW - Optimization PY - 2022 AN - OPUS4-56269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cakir, Cafer Tufan A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Streli, C. A1 - Radtke, Martin T1 - Bayesian optimization for depth resolved analysis of complex alloys with grazing exit XANES N2 - Compositionally complex alloys (CCAs) are a new class of alloys containing at least 5 elements with concentrations between 5 and 35 atomic percent. Due to their adjustable composition, which enables modifications of mechanical properties (such as hardness, strength and ductility etc) and their stability at high temperatures, CCAs have been the focus of various studies [1,2]. Especially the corrosion behavior of CCAs has been a wide research interest. However, there are only few studies that deals with the degradation process on such materials, which is highly relevant for the safety aspect for future component design. To thoroughly investigate the corrosion processes and to determine oxidation states of metal components within the reaction products, we need special analytical tools. Since the grazing exit X-ray fluorescence (GEXRF) offers a non-destructive way to collect notable information regarding the high temperature oxidation, we consider it as a useful method to investigate how CCAs behave in corrosive environments. The main idea of grazing geometry is to enhance the fluorescence signal of the surface. This enables highly sensitive surface analyses of thin protective film on surface in sub-micrometer scale [3]. When compared to a conventional CCD-based camera, the advantage and most important feature of the detector system (Color X-Ray Camera (CXC)) is that each pixel is an energy sensitive detector. The position and area sensitive detector, with 264x264 pixel detector area, provides information regarding the signal emitted from the sample as a function of the emission angle and thus allows depth-sensitive analysis. Furthermore, the data collected from samples of an incidence energy which can be controlled with a resolution of 0.5 eV provides XANES data to determine oxidation states. In this contribution, we address the feasibility of our setup and new optimization procedure (Bayesian Optimization and Gaussian Regression). The results of a conceptual study regarding layer properties of the reference sample (Cr-Oxide layer (300nm) on Cr layer (500nm) on Si wafer) and CrCoNi (Cr-Oxide (>1µm) layer on CrCoNi substrate) medium entropy alloy. T2 - European Conference on X-ray Spectrometry. EXRS 2022 CY - Bruges, Belgium DA - 26.06.2022 KW - GEXRF KW - High entropy alloys KW - XANES KW - Grazing exit KW - High entropy materials KW - XAS KW - Optimization PY - 2022 AN - OPUS4-56272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -