TY - CHAP A1 - Schumacher, Julia ED - Scott, B. ED - Mesarich, C. T1 - Role of light in the life cycle of Botrytis cinerea T2 - Plant Relationships. The Mycota N2 - The fungus Botrytis cinerea (Botryotinia fuckeliana) infects more than 500 plant species and causes a wide range of symptoms: soft rots, accompanied by collapse and water-soaking of tissues followed by the appearance of gray masses of conidia on leaves and soft fruits (gray mold), and spots that may turn brown to full-scale soft rotting on flower petals (Botrytis blight). In general, B. cinerea is responsible for severe economic losses that are either due to the damage of growing plants in the field or the rot of harvested fruits, flowers, and vegetables during storage under cold and humid conditions. B. cinerea has adapted to the plant host and its environment by evolving strategies to use plant tissues for proliferation in terms of a necrotrophic lifestyle, and to survive biotic stresses (host responses) as well as abiotic factors of the host’s environment such as sunlight and concomitant stresses. B. cinerea maintains a complex regulatory network of light-sensitive proteins and signal transduction pathways to use light for coordinating stress responses, virulence, and reproduction. Different light-controlled reproduction cycles enable B. cinerea to live in moderate climate zones by infecting and propagating in summer and resting in winter when green host tissues are unavailable. KW - Gray mold fungus KW - Plant pathogen KW - Light KW - Photoreceptors KW - Development PY - 2023 DO - https://doi.org/10.1007/978-3-031-16503-0_14 VL - 5 SP - 329 EP - 346 PB - Springer, Cham AN - OPUS4-56724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Fungi in extreme habitats: Lessons from the microcolonial black fungus Knufia petricola N2 - Fungi that share light-flooded habitats with phototrophs may profit from their excess photosynthetic products. But to cope with sunlight-associated stresses [e.g. high temperatures, UV radiation with associated DNA damage, accumulation of reactive oxygen species (ROS), desiccation and osmotic stresses] it is important for fungi to accurately sense and respond to changes in light. The genomes of black [dihydroxynaphthalene (DHN) melanin-containing] fungi from phyllosphere and exposed solid surfaces contain multiple photoreceptors (PRs). The plant pathogen Botrytis cinerea (Leotiomycetes) has a highly sophisticated photosensory and signalling system that helps to avoid light and to locate susceptible hosts. Rock-inhabiting Dothideomycetes and Eurotiomycetes including Knufia petricola possess equal numbers of PRs along with the same set of protective pigments. This similarity between black fungi from plant and rock surfaces suggests that photoperception and -regulation are important for fungi that receive nutrients through cooperation with phototrophs. T2 - Gordon Research Conference "Cellular and Molecular Fungal Biology" CY - Holderness, NH, USA DA - 26.06.2022 KW - Light KW - Stress KW - Photoperception KW - Pigments PY - 2022 AN - OPUS4-55249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Light-dependent development in Botrytis cinerea N2 - Sunlight is an important environmental factor is almost all ecosystems by being a source of energy, information, and stress. All organisms must protect themselves from the harmful effects of light such as UV radiation, ROS accumulation, heat, and desiccation. Finally, light qualities and quantities can be used for decision making, timing and as guide for directed growth when they are sensed and transduced into intracellular signals. Botrytis cinerea and other plant pathogens infecting the sun-exposed parts of the plant must cope with the high light conditions the host plant seeks. Further they experience an altered light spectrum (‘green gap’) when they colonize shaded parts of the plant; it is depleted for blue and red light that is absorbed by the plant chlorophyll and enriched for green and far-red light that is reflected or transmitted by the plant tissue. As these ambient light conditions trigger the shade avoidance response in the plant, the pathogens may trigger their own ‘shading response’ such as the upregulation of virulence determinants and inoculum production. B. cinerea maintains a highly sophisticated light signaling machinery that senses different light qualities to trigger a variety of responses, that are protection, morphogenesis, positive and negative tropisms, and entrainment. These characteristics render B. cinerea a valuable model to enlighten the role of light in parasitic fungus-plant interactions and beyond. The vegetative mycelium – the core of all infection and developmental programs – is not visibly pigmented and thus considered to be sensitive to biotic and abiotic stresses. However, the vegetative hyphae have a very limited half-life and are usually restricted to the invasive growth phase in which they are protected from light by the plant tissue. Fast colonization of host tissues and by this proper nutrient acquisition enables the rapid formation of long-lasting reproduction structures (melanized conidiophores with conidia, sclerotia) on the surfaces of rotted plant tissues. Depending on the light and temperature conditions, conidiation or sclerotial development is initiated. Taken together, B. cinerea uses light-regulated signaling networks to avoid light whenever possible; for example, by minimizing the half-life of sensitive cells that are hiding in plant tissues and by scheduling critical steps such as conidiogenesis, conidial germination and penetration of plant tissues for the night. T2 - BotrySclero2022 CY - Avignon, France DA - 13.06.2022 KW - Fungus KW - Light KW - Stress KW - Melanin PY - 2022 AN - OPUS4-55248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Photoperception in plant- and rock-associated black fungi N2 - Fungi that share light-flooded habitats with phototrophs may profit from their excess photosynthetic products. Sunlight-associated stresses are however multiple: high temperatures, UV radiation with associated DNA damage, accumulation of reactive oxygen species (ROS), desiccation and osmotic stresses. Ascomycota dominating light-flooded habitats accurately sense and respond to changes in light using it as a cue to coordinate growth, stress responses as well as to establish pathogenic or symbiotic relationships. Two species from two light-flooded habitats – phyllosphere and sun-exposed solid surfaces – were analysed for their photoreceptor distribution. In both habitats phototroph-associated and black [dihydroxynaphthalene (DHN) melanin-containing] fungi are prevalent. This diversity was sampled with the plant-associated fungus Botrytis cinerea (Leotiomycetes), while Knufia petricola (Eurotiomycetes) was included as a typical biofilm-former on sun-exposed solid surfaces e.g. rocks, building facades, roofs, and solar panels. The analysis has shown that genomes of black fungi contain more photoreceptors than animal pathogens and saprophytes such as Aspergillus nidulans and Neurospora crassa1,2. B. cinerea that causes the grey mould disease by infecting the above-ground parts of more than 200 dicots has a highly sophisticated photosensory and signalling system that helps to avoid light and to locate susceptible hosts1. Rock-inhabiting Dothideomycetes and Eurotiomycetes including Knufia petricola possess equal numbers of photoreceptors along with the same set of protective metabolites i.e. melanin, carotenoids and mycosporines2. This similarity between black fungi from plant and rock surfaces suggests that photoperception and -regulation are important for sun-stressed fungi that receive nutrients through cooperation with phototrophs. CRISPR/Cas9-based genetic tools for manipulating K. petricola were established3 and are currently used for elucidating the functions of the different photoreceptors in the biology of rock-inhabiting fungi. This work was supported by the grant SCHU 2833/4-1 from the German Research Foundation (DFG) and internal funds of the BAM. T2 - 19th Congress of the European Society for Photobiology CY - Online meeting DA - 30.08.2021 KW - Fungi KW - Light KW - Extreme environments PY - 2021 AN - OPUS4-53191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -