TY - JOUR A1 - Raute, J. A1 - Jokisch, T. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Effects on crack formation of additive manufactured Inconel 939 sheets during electron beam welding JF - Vaccum N2 - The potential of additive manufacturing for processing precipitation hardened nickel-base superalloys, such as Inconel 939 is considerable, but in order to fully exploit this potential, fusion welding capabilities for additive parts need to be explored. Currently, it is uncertain how the different properties from the additive manufacturing process will affect the weldability of materials susceptible to hot cracking. Therefore, this work investigates the possibility of joining additively manufactured nickel-based superalloys using electron beam welding. In particular, the influence of process parameters on crack formation is investigated. In addition, hardness measurements are performed on cross-sections of the welds. It is shown that cracks at the seam head are enhanced by Welding speed and energy per unit length and correlate with the hardness of the weld metal. Cracking parallel to the weld area shows no clear dependence on the process variables that have been investigated, but is related to the hardness of the heat-affected zone. KW - Electron beam welding KW - Hot Cracks KW - Superalloy KW - Inconel 939 PY - 2021 DO - https://doi.org/10.1016/j.vacuum.2021.110649 SN - 0042-207X VL - 195 SP - 10649 PB - Elsevier Ltd. AN - OPUS4-53689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -