TY - CONF A1 - Johann, Sergej A1 - Stührenberg, Jan A1 - Tandon, Aditya A1 - Dragos, Kosmas A1 - Bartholmai, Matthias A1 - Strangfeld, Christoph A1 - Smarsly, Kay T1 - Implementation and validation of robot-enabled embedded sensors for structural health monitoring N2 - In the past decades, structural health monitoring (SHM) has matured into a viable supplement to regular inspections, facilitating the execution of repair and maintenance work in the early stages of structural damage. With the advent of wireless technologies and advancements in information and communication technologies, civil infrastructure has been increasingly instrumented with wireless sensor nodes to record, analyze, and communicate data relevant to SHM. A promising method for SHM is to embed sensors directly into concrete for recording SHM data from inside structural elements. In this paper, a sensor system for embedment into concrete is proposed, able to assess SHM data recorded from concrete. Power is supplied to the sensors on-demand by quadruped robots, which also collect the SHM data via radio-frequency identification (RFID), providing an automated and efficient SHM process. In laboratory experiments, the capability of the sensor system of automatically collecting the SHM data using quadruped robots is validated. In summary, the integration of RFID technology and robot-based inspection presented in this study demonstrates a vital approach to evolve current SHM practices towards more digitalized and automated SHM. T2 - 11th European Workshop On Structural Health Monitoring CY - Potsdam, Germany DA - 10.06.2024 KW - Structural health monitoring KW - RFID-based sensors KW - Smart sensors KW - Embedded sensors KW - Legged robots KW - Quadruped robots PY - 2024 AN - OPUS4-60336 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wosniok, Aleksander A1 - Königsbauer, Korbinian A1 - Krebber, Katerina A1 - Schaller, M.-Barbara A1 - Färber, Jan A1 - Nöther, Nils T1 - Distributed polymer optical fiber sensors using digital I-OFDR for geotechnical infrastructure health monitoring N2 - We present a distributed polymer optical fiber sensor system for deformation monitoring of geotechnical infrastructure. The sensor system is based on the digital incoherent optical frequency domain reflectometry (I-OFDR) for the detection of local strain events along a perfluorinated polymer optical fiber (PF-POF) used as a sensing fiber. For the best possible load transfer, the PF-POFs were integrated onto geosynthetics which pose a sensor carrier for the sensing fiber. By using elastic PF-POF instead of a standard glass fiber as a sensing fiber the strain range of geosynthetics-integrated fiber optic sensors could be extended up to 10 % in accordance with the end-user requirements. T2 - 11th European Workshop on Structural Health Monitoring CY - Potsdam, Germany DA - 10.06.2024 KW - Digital I-OFDR KW - Distributed polymer optical fiber sensor KW - Distributed strain sensing KW - Smart geosynthetics KW - Structural health monitoring PY - 2024 AN - OPUS4-60308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wosniok, Aleksander A1 - Schukar, Marcus A1 - Wang, Bin A1 - Breithaupt, Mathias A1 - Kriegsmann, Andreas A1 - Woody, Paul T1 - Distributed fiber optic strain sensing for structural health monitoring of 70 MPa hydrogen vessels N2 - We report on the development and testing of 70 MPa hydrogen pressure vessels with integrated fiber optic sensing fibers for automotive use. The paper deals with the condition monitoring of such composite pressure vessels (CPVs) using the optical backscatter reflectometry (OBR) applied for a distributed fiber optic strain sensing along fully integrated polyimide-coated single-mode glass optical fiber (SM-GOF). The sensing fibers were embedded into the vessel structure by wrapping them over the polymer liner during the manufacturing process of the carbon fiber reinforced polymer (CFRP). Detecting local strain events by the integrated fiber optic sensors can be an opportunity for monitoring the material degradation of CPVs under static and cyclic loading. T2 - 11th European Workshop on Structural Health Monitoring CY - Potsdam, Germany DA - 10.06.2024 KW - Fiber optic sensor KW - Distributed strain sensing KW - Composite pressure vessel KW - Structural health monitoring KW - Fiber-reinforced plastics PY - 2024 AN - OPUS4-60307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Ávila Calderón, Luis A. A1 - Rehmer, Birgit A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit T1 - Effect of heat treatment on the hierarchical microstructure and properties of 316L stainless steel produced by Laser Powder Bed Fusion (PBF-LB/M). N2 - Laser Powder Bed Fusion (PBF-LB/M) of AISI 316L stainless steel has gained popularity due to its exceptional capacity to produce complex geometries and hierarchical microstructures, which can increase the yield strength while maintaining good ductility. Nevertheless, owing to high thermal gradients encountered during the process, the as printed 316L stainless steel often exhibit microstructural heterogeneities and residual stresses, which can limit its performance in demanding environments. Hence, employing heat treatments which balance the reduction of residual stresses while retaining improved static strength may be beneficial in various scenarios and applications. This study investigates the impact of post-processing heat treatments on the microstructure of 316L stainless steel manufactured via PBF-LB/M, along with its correlation with micro-hardness properties. To this end, 6 different heat treatments, i.e., 450 °C for 4h, 700 °C for 1h, 700 °C for 3h, 800 °C for 1h, 800 °C for 3h, and 900 °C for 1h, were applied to different specimens and Vickers hardness measurements (HV1) were performed in all states. At 800 °C, although the cellular structure appears to be retained, there is an observable increase in cellular size. However, while treatments exceeding 900 °C indicate no significant grain growth compared to other conditions, the cellular structure is entirely dissolved, which leads to a reduced Vickers hardness. The effect of the heat treatments on other microstructural features such as grain size and morphology, melt pool boundaries (MPB), crystallographic texture, chemical segregation, dispersoids and phase stability are also discussed in the present work T2 - 4th Symposium on Materials and Additive Manufacturing CY - Berlin, Germany DA - 12.06.2024 KW - Additive manufacturing KW - Heat treatment KW - Microstructure PY - 2024 AN - OPUS4-60304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Luzin, V. A1 - Čapek, J. A1 - Polatidis, E. A1 - Bruno, Giovanni T1 - Laser Powder Bed Fusion: Fundamentals of Diffraction-Based Residual Stress Determination N2 - The general term additive manufacturing (AM) encompasses processes that enable the production of parts in a single manufacturing step. Among these, laser powder bed fusion (PBF-LB) is one of the most commonly used to produce metal components. In essence, a laser locally melts powder particles in a powder bed layer-by-layer to incrementally build a part. As a result, this process offers immense manufacturing flexibility and superior geometric design capabilities compared to conventional processes. However, these advantages come at a cost: the localized processing inevitably induces large thermal gradients, resulting in the formation of large thermal stress during manufacturing. In the best case, residual stress remains in the final parts produced as a footprint of this thermal stress. Since residual stress is well known to exacerbate the structural integrity of components, their assessment is important in two respects. First, to optimize process parameter to minimize residual stress magnitudes. Second, to study their effect on the structural integrity of components (e.g., validation of numerical models). Therefore, a reliable experimental assessment of residual stress is an important factor for the successful application of PBF-LB. In this context, diffraction-based techniques allow the non-destructive characterization of the residual stress. In essence, lattice strain is calculated from interplanar distances by application of Braggs law. From the known lattice strain, macroscopic stress can be determined using Hooke’s law. To allow the accurate assessment of the residual stress distribution by such methods, a couple of challenges in regard of the characteristic PBF-LB microstructures need to be overcome. This presentation highlights some of the challenges regarding the accurate assessment of residual stress in PBF-LB on the example of the Nickel-based alloy Inconel 718. The most significant influencing factors are the use of the correct diffraction elastic constants, the choice of the stress-free reference, and the consideration of the crystallographic texture. Further, it is shown that laboratory X-ray diffraction methods characterizing residual stress at the surface are biased by the inherent surface roughness. Overall, the impact of the characteristic microstructure is most significant for the selection of the correct diffraction elastic constants. In view of the localized melting and solidification, no significant gradients of the stress-free reference are observed, even though the cell-like solidification sub-structure is known to be heterogeneous on the micro-scale. T2 - 4th Symposium on Materials and Additive Manufacturing CY - Berlin, Germany DA - 12.06.2024 KW - Additive Manufacturing KW - Residual Stress KW - Electron Backscatter Diffraction KW - Laser Powder Bed Fusion PY - 2024 AN - OPUS4-60294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Ávila Calderón, Luis Alexander A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit A1 - Bruno, Giovanni T1 - Formation of Creep Damage of 316L Produced by Laser Powder Bed Fusion N2 - The damage mechanisms of metallic components produced by process laser powder bed fusion differ significantly from those typically observed in conventionally manufactured variants of the same alloy. This is due to the unique microstructures of additively manufactured materials. Herein, the focus is on the study of the evolution of creep damage in stainless steel 316L specimens produced by laser powder bed fusion. X-ray computed tomography is used to unravel the influence of the process-specific microstructure from the influence of the initial void distribution on creep damage mechanisms. The void distribution of two specimens tested at 600 °C and 650 °C is analyzed before a creep test, after an interruption, and after fracture. The results indicate that the formation of damage is not connected to the initial void distribution. Instead, damage accumulation at grain boundaries resulting from intergranular cracking is observed. T2 - 4th Symposium on Materials and Additive Manufacturing - Additive 2024 CY - Berlin, Germany DA - 12.06.2024 KW - AISI 316L KW - Additive Manufacturing KW - Computed Tomography KW - Creep KW - Laser Powder Bed Fusion KW - Microstructure KW - PBF-LB/M/316L PY - 2024 AN - OPUS4-60295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Heldmann, A. A1 - Hofmann, M. A1 - Polatidis, E. A1 - Čapek, J. A1 - Petry, W. A1 - Serrano-Munoz, Itziar A1 - Bruno, Giovanni T1 - Diffraction and Single-Crystal Elastic Constants of Laser Powder Bed Fused Inconel 718 N2 - Laser powder bed fusion (PBF-LB/M) of metallic alloys is a layer-wise additive manufacturing process that provides significant scope for more efficient designs of components, benefiting performance and weight, leading to efficiency improvements for various sectors of industry. However, to benefit from these design freedoms, knowledge of the high produced induced residual stress and mechanical property anisotropy associated with the unique microstructures is critical. X-ray and neutron diffraction are considered the benchmark for non-destructive characterization of surface and bulk internal residual stress. The latter, characterized by the high penetration power in most engineering alloys, allows for the use of a diffraction angle close to 90° enabling a near cubic sampling volume to be specified. However, the complex microstructures of columnar growth with inherent crystallographic texture typically produced during PBF-LB/M of metallics present significant challenges to the assumptions typically required for time efficient determination of residual stress. These challenges include the selection of an appropriate set of diffraction elastic constants and a representative lattice plane suitable for residual stress analysis. In this contribution, the selection of a suitable lattice plane family for residual stress analysis is explored. Furthermore, the determination of an appropriate set of diffraction and single-crystal elastic constants depending on the underlying microstructure is addressed. In-situ loading experiments have been performed at the Swiss Spallation Neutron Source with the main scope to study the deformation behaviour of laser powder bed fused Inconel 718. Cylindrical tensile bars have been subjected to an increasing mechanical load. At pre-defined steps, neutron diffraction data has been collected. After reaching the yield limit, unloads have been performed to study the accumulation of intergranular strain among various lattice plane families. T2 - 11th European Conference on Residual Stresses CY - Prag, Czech Republic DA - 03.06.2024 KW - Additive Manufacturing KW - Laser Powder Bed fusion KW - Diffraction Elastic Constants KW - Microstructure KW - Electron Backscatter Diffraction PY - 2024 AN - OPUS4-60289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Karapanagiotis, Christos A1 - Heimann, Jan A1 - Duffner, Eric A1 - Charmi, Amir A1 - Schukar, Marcus A1 - Hashemi, Seyedreza A1 - Prager, Jens T1 - Towards predictive maintenance of hydrogen pressure vessels based on multi-sensor data fusion and digital twin modeling N2 - Hydrogen pressure vessels are among the most essential components for reliable hydrogen technology. Under current regulations, a mostly conservative strategy is employed, restricting the usage time of hydrogen pressure vessels without providing information on the real remaining lifetime. During the service life, pressure vessels are inspected periodically. However, no established method that can provide continuous monitoring or information on the remaining safe service life of the vessel. In this paper, we propose a sensor network for Structural Health Monitoring (SHM) of hydrogen pressure vessels where data from all sensors are collected and centrally evaluated. Specifically, we integrate three different SHM sensing technologies namely Guided Wave ultrasonics (GW), Acoustic Emission testing (AT), and distributed Fiber Optic Sensing (FOS). This integrated approach offers significantly more information and could therefore enable a transition from costly and time-consuming periodic inspections to more efficient and modern predictive maintenance strategies, including Artificial Intelligence (AI)-based evaluation. This does not only have a positive effect on the operational costs but enhances safety through early identification of critical conditions in the overall system in real-time. We demonstrate an experimental set-up of a lifetime test where a Type IV Composite Overwrapped Pressure Vessel (COPV) is investigated under cyclic loading instrumented with AT, FOS, and GW methods. We acquired data from the sensor network until the pressure vessel failed due to material degradation. The data collected using the three different SHM sensor technologies is planned to be evaluated individually, using data fusion, and AI. In the future, we aim to integrate the measurement setup into a hydrogen refueling station with the data stream implemented into a digital signal processing chain and a digital twin. T2 - 11th European Workshop on Structural Health Monitoring CY - Potsdam, Germany DA - 10.06.2024 KW - Hydrogen KW - Ultrasonic guided waves KW - Fiber optic sensors KW - Acoustic emission KW - Machine learning KW - Pressure vessels KW - Structural health monitoring PY - 2024 AN - OPUS4-60277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Karapanagiotis, Christos A1 - Schukar, Marcus A1 - Breithaupt, Mathias A1 - Duffner, Eric A1 - Ulbricht, Alexander A1 - Prager, Jens A1 - Krebber, Katerina T1 - Structural health monitoring of hydrogen pressure vessels using distributed fiber optic sensing N2 - We report on distributed fiber optic sensing-based monitoring of hydrogen composite overwrapped pressure vessels (COPV) to simultaneously increase the operational lifespan and mitigate maintenance costs. Our approach represents, to the best of our knowledge, the first application of distributed fiber optic sensing for COPV Type IV monitoring, where the sensing fibers are attached to the surface, rather than integrated into the composite material. Specifically, we attach an optical fiber of 50 m to the pressure vessel's surface, covering both the cylindrical and dome sections. We note that our fiber optic sensing technique relies on swept wavelength interferometry providing strain information along the entire length of the optical fiber with high spatial resolution even at the millimeter scale. When the vessel is pressurized, the sensing optical fiber shows a linear strain response to pressure at every position along the fiber. After thousands of load cycles, the vessel finally fails with the optical fiber detecting and precisely localizing the damage in the vessel’s blind dome area. Furthermore, we discuss the potential of state-of-the-art signal processing methods and machine learning for advancing predictive maintenance. This could reduce the number of regular inspections, mitigate premature maintenance costs, and simultaneously increase the vessel’s remaining safe service life. We believe that the structural health monitoring of hydrogen pressure vessels with fiber optic sensors can enhance trust in hydrogen technology contributing to the energy transition in the future. T2 - 11th European Workshop on Structural Health Monitoring CY - Potsdam, Germany DA - 10.06.2024 KW - Hydrogen KW - Composites KW - Pressure vessels KW - Fiber optic sensors KW - Machine learning KW - Structural health monitoring PY - 2024 AN - OPUS4-60275 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Chaudry, Mohsin Ali A1 - Scheuschner, Nils A1 - Blasón González, Sergio A1 - Madia, Mauro A1 - Hilgenberg, Kai T1 - Development of representative test specimens by thermal history transfer in laser powder bed fusion N2 - The use of components manufactured by laser powder bed fusion (PBF LB/M) and subjected to fatigue loading is still hampered by the uncertainty about the homogeneity of the process results. Numerous influencing factors including the component’s geometry contribute to the risk of process instability and resulting inhomogeneity of properties. This drastically limits the comparability of different built parts and requires expensive full component testing. The thermal history as the spatiotemporal temperature distribution has been identified as a major cause for flaw formation. Therefore, it can be hypothesized that a similar thermal history between components and test specimens enhances their comparability. Following this assumption, a strategy is developed to transfer the intrinsic preheating temperature as a measure of comparability of thermal histories from a region of interest of a complex component to a simple test specimen. This transfer concept has been successfully proved by the use of FEM-based macroscale thermal simulations, validated by calibrated infrared thermography. An adoption of the specimen manufacturing process by the adjustment of the inter layer times was established to manufacture specimens which are representatives of a specific region of a large-scale component in terms of the thermal history similarity criterion. The concept is schematically illustrated in Figure 1 and was demonstrated using a pressure vessel geometry from the chemical industry. T2 - 4th Symposium on Materials and Additive Manufacturing CY - Berlin, Germany DA - 12.06.2024 KW - Additive manufacturing KW - Thermal history KW - Laboratory specimens KW - In situ monitoring KW - Representative specimens PY - 2024 AN - OPUS4-60260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -