TY - CONF A1 - Maaß, Robert A1 - Rizzardi, Quentin A1 - Elfresh, Cameron A1 - Stauffer, Douglas A1 - Marian, Jaime T1 - Temperature-dependent intermittent plasticity of Nb microcrystals N2 - Intermittent microplasticity via dislocation avalanches indicates scale-invariance, which is a paradigm shift away from traditional bulk deformation. Recently, we have developed an experimental method to trace the spatiotemporal dynamics of correlated dislocation activity (dislocation avalanches) in microcrystals (Phys. Rev. Mat. 2 (2018) 120601; Phys. Rev. Mat. 3 (2019) 080601). Here we exploit the temperature sensitive deformation of bcc metals. A marked change of the slip-size distribution is observed in the studied microcrystals, with increasingly small event-sizes dominating with decreasing temperature. This shows how a reduction in thermal energy increasingly suppresses the length-scale of dislocation avalanches, indicating how long-range correlations become gradually limited to the scale of the lattice. Our results further show that the stress-strain response is composed of strain-increments that are either thermally activated or essentially athermal. Temperature-dependent small-scale testing in combination with state-of-the-art discrete dislocation dynamics (DDD) simulations of Nb microcrystals are used to reveal these insights. T2 - MS&T20 Virtual CY - Online meeting DA - 02.11.2020 KW - Microcrystals PY - 2020 AN - OPUS4-60700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert A1 - Riechers, Birte A1 - Das, Amlan A1 - Wang, Zengquan A1 - Dufresne, Eric A1 - Derlet, Peter M. T1 - Cluster dynamics and anomalous transport in metallic glasses N2 - Quenching a metallic liquid sufficiently fast can give rise to an amorphous solid, typically referred to as a metallic glass. This out-of-equilibrium material has a long suite of remarkable mechanical and physical properties but suffers from property deterioration via structural relaxation. As a function of time, relaxation may indeed constitute significant threads to safe applications. Consequently, relaxation of glasses has a long history across different amorphous materials and typical characterization methods promote a picture of gradually evolving and smooth relaxation, as for example obtained from mechanical spectroscopy. However, the true structural dynamics and underlying mechanisms remain far from understood and have hampered a physically informed atomic-scale picture of transport and physical aging of glasses. Here we exploit the ability to track atomic-scale dynamics with x-ray photon correlation spectroscopy (XPCS) and resolve an unprecedented spectrum of short- and long-term relaxation time scales in metallic glasses. Conducted across temperatures and under the application of stress, the results reveal anything else than smooth aging and gradual energy minimization. In fact, temporal fluctuations persist throughout isothermal conditions over several hundred thousand of seconds, demonstrating heterogeneous dynamics at the atomic scale. In concert with microsecond molecular dynamic simulations, we identify possible mechanisms of correlated atomic-scale dynamics that can underly the temporal fluctuations and structural decorrelations. Despite temporally heterogeneous, the Kohlrausch-Williams-Watts functions is well suited to capture the average intermediate relaxation time regime, but at very long time scales an asymptotic power-law emerges. This indicates anomalous diffusion and gives overall strong evidence for temporal fractional diffusion in metallic glasses. We discuss these results in terms of the structural fast and slow relaxation modes as well as a true microstructure in metallic glasses. T2 - Department Seminar OSU 2023 CY - Columbus, OH, USA DA - 22.09.2023 KW - Metallic glass KW - Transport KW - Structure KW - Dynamics PY - 2023 AN - OPUS4-60699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert A1 - Riechers, Birte A1 - Das, Amlan A1 - Wang, Zengquan A1 - Dufresne, Eric A1 - Derlet, Peter M. T1 - Intermittent cluster dynamics and temporal fractional diffusion in a bulk metallic glass N2 - Inspired by the ability to track atomic-scale dynamics with x-ray photon correlation spectroscopy (XPCS)1 and recent results of long-term atomistic simulations on material transport2, we reveal here an unprecedented spectrum of short- and long-term relaxation dynamics. Tracked along a 300 000 s long isotherm at 0.98Tg, a Zr-based bulk metallic glass exhibits temporal fluctuations that persist throughout the entire isotherm, demonstrating a continuous heterogeneous dynamics at the probed length scale. In concert with microsecond molecular dynamic simulations, we identify intermittent cluster dynamics as the origin for temporal signatures in the corresponding intensity cross-correlations. Despite temporally heterogeneous aging, the Kohlrausch-Williams-Watts functions is well suited to capture the average intermediate relaxation time regime, but at very long time scales an asymptotic power-law better describes the data. This indicates anomalous diffusion and gives overall strong evidence for temporal fractional diffusion in metallic glasses. We discuss these results in terms of the underlying structural fast and slow relaxation modes and their manifestation in the temporal form of the structural decorrelations. T2 - 9th IDMRCS CY - Chiba, Japan DA - 12.08.2023 KW - Metallic glass KW - Transport KW - Structure KW - Dynamics PY - 2023 AN - OPUS4-60696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert A1 - Riechers, Birte A1 - Rashidi, Reza A1 - Ott, Catherine A1 - Derlet, Peter M. A1 - Das, Saurabh M. A1 - Liebscher, Christian A1 - Samwer, Konrad T1 - Elastic Microstructures in Metallic Glasses N2 - Metallic glasses (MGs) are disordered solids that exhibit a range of outstanding mechanical, thermomechanical, and functional properties. Whilst being a promising class of structural materials, well-defined and exploitable structure-property relationships are still lacking. This offsets them strongly from the crystalline counterparts, for which length-scale based property determination has been key for decades. In recent years, both atomistic simulations and experiments have nurtured the view of heterogeneities that manifest themselves either as a structural partitioning into well-relaxed percolated network components and more frustrated domains in atomistic simulations, or as spatially-resolved property fluctuations revealed with atomic force microscopy. These signatures depend sensitively on the processing history and likely reflect emerging medium-range order fluctuations at the scale of 1-10 nanometers. Here we demonstrate and discuss the emergence of spatially resolved property fluctuations at length scales that are one to two orders of magnitude larger. Such long-range decorrelation length scales are hard to reconcile in a monolithic glass but may offer the perspective of experimentally easy-to-access length-scale based structure-property relationships. Whilst long-range property fluctuations can be seen in both the plastic and elastic response, we focus here on high-throughput elastic nanoindentation mapping across the surface of a Zr-based model glass. After a deconvolution of surface topography and curvature effects, the spatially-resolved elastic response reveals an elastic microstructure with a correlation length of ca. 150-170 nm. Analytical scanning-transmission electron microscopy (STEM) is used to link the elastic property fluctuations to the chemistry and structure of the MG. In concert, nano-elastic mapping and STEM suggests that structural variations in the glass are responsible for the unexpectedly large length scales. We discuss these findings in terms of the materials processing history and the perspective of exploiting nanoindentation-based spatial mapping to uncover structural length scales in atomically disordered solids. T2 - 7th International Indentation Workshop – IIW7 CY - Hyderabad, India DA - 17.12.2023 KW - Metallic glass KW - Nanoindentation KW - Microstructure PY - 2023 AN - OPUS4-60692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shaanika, Sam A1 - Sobol, Oded A1 - Böllinghaus, Thomas T1 - Compatibility of welded austenitic stainless steel (316L) tube for green hydrogen applications N2 - The increase in the energy demand and the need to comply to net zero carbon regulations, as per the Paris 2015 climate agreement by 2050, has necessitated the urgency to consider hydrogen as alternative energy carrier. Moreover, hydrogen interaction with metals tend to cause degradation of the mechanical properties in terms of the ductility of the materials. More concern is on the weldment and repair of tubes or pipelines of hydrogen transportation and storage systems. In this study, the heat inducted weld tubes of the cold drawn and annealed austenitic stainless steel (316L) were investigated by slow strain rate test. To achieve the most realistic component-related testing, hollow tube specimens have been fabricated from 1/2-inch Swagelok pipes filled with internal gaseous hydrogen or inert air for reference. The hydrogen concentration measurement is undertaken before and after the autoclave high-pressure pre-charging of the specimens using carrier gas hot extraction. SEM analysis was used to carry out fractographic analysis to determine the crack initiation sites, crack size and was compared for the base material and heat affected zone influence in the gaseous hydrogen. The effect of hydrogen on the material compatibility of the welded austenitic stainless steel is assessed and compared to none-welded tubes tested in defined testing parameters that contribute to Hydrogen Assisted Cracking. A better understanding on the impact of weldment on the structural integrity for stainless steel is elucidated for green hydrogen application. T2 - IIW 77th Annual Assembly 2024 CY - Rhodes, Greece DA - 07.07.2024 KW - Austenitic stainless steel KW - Slow strain rate KW - Burst pressure KW - Orbital welding KW - Heat Induction PY - 2024 AN - OPUS4-60698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chaudhuri, Somsubhro A1 - Stamm, Michael A1 - Krankenhagen, Rainer A1 - Lapšanská, Ivana A1 - Lancon, Thibault T1 - Passive infrared thermography as an inspection tool for operational wind turbine rotor blades N2 - The growing wind energy infrastructure presents a significant challenge in the maintenance and operation of wind turbines (WT) and their intricate components. An important aspect of WT maintenance is the inspection of wind turbine rotor blades (WTB) to ensure the overall health and safety of the turbine. This inspection process involves both visual and mechanical examinations of the blades to identify any indicators of damage or wear that could compromise their performance and, consequently, the structural integrity of the entire WT system. The complexity of WTBs is compounded by their ever-expanding dimensions, exceeding 100 meters in length for 16 MW WT systems, and their multi-material composition. Within this context, passive infrared thermography emerges as a potential alternative to conventional contact- or proximity-based inspection methods. Unlike active thermography, passive thermography uses solar radiation and ambient temperature variation for thermal contrast, eliminating the need for traditional heat lamps, flash, or laser-based techniques. A novel inspection method has been developed to semi-autonomously assess wind turbine blades (WTBs) while the wind turbine (WT) is operational, from ground level. This approach leverages optimal thermal contrast, which depends on prevailing weather conditions during field measurements, enabling the visualization of both external and internal features of the WTBs through post-processing techniques. In this study, thermal data obtained through passive thermography is compared with contemporaneous visual imagery to definitively classify observed features in thermal images as either surface or sub-surface features. This analysis, coupled with corresponding weather conditions, provides valuable insights into the capabilities and limitations of the inspection technique. Additionally, finite-element-based (FE) thermal simulations of a WTB section are employed to parametrically assess the influence of weather conditions, beyond those observed during field measurements, based on a validated model. In addition, the thermal images also consist of thermal signatures of leading-edge turbulence due to possible leading-edge erosion in WTBs. These are primarily vortices, and their shape and size depend on the morphology of the damage as well as the rotational speed of the WTBs. The inspections are accompanied by automatic data evaluation of the thermal signatures. To improve the precision of erosion damage identification, a fully convolutional network (FCN) is employed, trained, and tested using over 1000 annotated thermographic blade images. Additionally, the study introduces strategies for grouping smaller damage indications and simplification rules based on realistic thermal imaging resolutions. As leading-edge erosion could potentially lead to annual energy production (AEP) losses, this technique could prove to be a powerful tool in establishing the presence of damage and the resulting AEP loss. T2 - 20th World Conference on Non-Destructive Testing CY - Incheon, South Korea DA - 27.05.2024 KW - Non-destructive testing KW - Thermografie KW - Wind turbine rotor blades KW - Windenergie Anlage Rotorblätter KW - Thermography PY - 2024 AN - OPUS4-60695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Jonathan A1 - Merz, Benjamin A1 - Poka, Konstantin A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Visual surface structure analysis of high-resolution images from visual in-situ process monitoring in laser powder bed fusion N2 - Parameter studies are a common step in selecting process parameters for powder bed fusion of metals with laser beam (PBF-LB/M). Density cubes manufactured with varied process parameters exhibit distinguishable surface structures visible to the human eye. Industrial visual in-situ monitoring systems for PBF-LB/M currently have limited resolution and are incapable of reliably capturing differences in the surface structures. For this work, a 65 MPixel high resolution monochrome camera is integrated in an industrial PBF-LB/M machine together with a high intensity led bar. Post-exposure images are taken to analyze differences in light reflection on the specimen’s surface. The grey level co-occurrence matrix is used to quantify the in-situ measured visual surface structure of nickel-based super alloy IN939 density cubes. The properties of the grey level co-occurrence matrix correlate to the energy input and resulting porosity of specimens. Low energy samples with lack of fusion flaws show an increased contrast in the grey level co-occurrence matrix compared to specimens with an optimal energy input. The potential of high-resolution images as reference data in in-situ process monitoring in PBF-LB/M is discussed. T2 - 77th IIW Annual Assembly and International Conference CY - Rhodos, Greece DA - 06.07.2024 KW - Additive manufacturing KW - Powder bed fusion KW - In-situ monitoring KW - Image processing KW - Lack of fusion PY - 2024 AN - OPUS4-60688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yang, Fan A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical Investigations of Porosity Mitigation in High-Power Laser Beam Welding with an External Magnetic Field N2 - The application of an external magnetic field has been found to significantly mitigate the porosity ratio in laser beam welded joints of AlMg3 aluminum alloy. To investigate the suppression mechanism, a 3D transient multi-physics coupled numerical model of laser beam welding (LBW), including laser propagation, laser-material interaction, and magnetohydrodynamic effects, has been developed to calculate the keyhole dynamics and weld pool behaviors during the welding process. The induced time-averaged Lorenz force is directed downward. Under the effects of the external magnetic field, the fluid flow pattern and the weld pool profile are both affected. The keyhole geometry reconstruction algorithm is proposed to calculate the keyhole diameter and its fluctuation, which is used to evaluate the keyhole stability. The results indicate that the oscillating magnetic field does not affect keyhole stability obviously in the LBW of aluminum alloy. Moreover, an electromagnetic expulsive force is induced on the bubble because of the time-averaged downward Lorentz force. This electromagnetic expulsive force can accelerate the bubble escape speed considerably. An analytical model is developed for investigating the bubble escape window, which shows that the bubble escape window is expanded by 45% under the effect of the external magnetic field. The calculated results based on the developed model agree well with the experimental results. T2 - 77th IIW Annual Assembly and International Conference CY - Rhodes, Greece DA - 07.07.2024 KW - Numerical simulation KW - Deep penetration laser beam welding; Keyhole stability KW - Porosity defects KW - Magnetic field PY - 2024 AN - OPUS4-60667 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Kalinka, Gerhard A1 - Loose, Florian T1 - Advanced lightweight applications – recycling versus reliability and fossil energy footprint N2 - Advanced light weight applications like aircrafts and wind turbine blades are made of fibre reinforced plastics (FRP) with continuous fibre reinforcement and must withstand a high thermo-mechanical cyclic loading. The quality of the fibre matrix interface has a high impact on the fatigue life and was continuously improved over the years since the 50th. The fatigue life of glass fibre reinforced plastics (GFRP) used in aircraft industry is 10 to 100 times higher compared to glass fibre non crimp fabrics used for wind turbine blades. To assure a constant and reliable high quality and strength of reinforcement fibres, synthetic fibre production is state of the art (CF, GF). There is a need for recycling GFRP and CFRP waste due to the upcoming use. Pyrolysis and solvolysis are more expensive than the mechanical route however enable a more sustainable recycling. Natural fibres and recycled synthetic fibres have a high scatter in quality and strength. Hence it is a challenge to optimize the production / recycling processes to get a reliable quality for any demanding (second life) application. Chemical routes for using renewables resources and recycling, is going to be a good approach especially for polymer-matrix systems to get 100% quality (back) compared to the state of the art. Finally, a proper design, life-time extension and repair is preferable to recycling to keep the carbon footprint as low as possible. T2 - 27. INTERNATIONALES DRESDNER LEICHTBAUSYMPOSIUM CY - Dresden, Germany DA - 13.06.2024 KW - Polymer Matrix Composites KW - Carbon Fibre KW - Recycling KW - Circular Economy PY - 2024 UR - https://leichtbausymposium.de/deu/ AN - OPUS4-60683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liepold, Philipp A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Investigation of Solidification cracking susceptibility via Modified Varestraint Transvarestraint testing of high-strength filler material N2 - The Modified Varestraint Transvarestraint test is a local variant of the globally used Varestraint test. With these tests, measuring solidification cracking susceptibility as a function of welding parameters is possible. A wide range of welding parameters for four high-strength steel filler wires, including three solid wires and one-flux cored metal wire, were tested. All wires do show a very low solidification cracking susceptibility, regardless of the paramaters. On a low level, it could be shown that solidification cracking susceptibility increases with heat input and welding speed. T2 - IIW Annual Assembly CY - Rhodos, Greece DA - 07.07.2024 KW - MVT KW - Varestraint KW - Transvarestraint KW - Solidification cracking PY - 2024 AN - OPUS4-60684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -