TY - CONF A1 - Rhode, Michael A1 - Masoud Nia, Niloufar A1 - Nietzke, Jonathen A1 - Kannengiesser, Thomas T1 - Ti and Nb microalloying of HSLA steels and its effect on hydrogen diffusion and trapping N2 - Fine-grain, high-strength, low-alloy (HSLA) structural steels with yield strengths > 600 MPa are now the state of the art in construction applications such as mobile cranes and civil engineering. HSLA grades derive their strength from a combination of specific heat treatment and the underlying chemical composition. In this context, Ti or Nb are essential to obtain a fine-grained microstructure as well as the necessary carbides or nitrides for precipitation strengthening. In this context, the specific effect of Ti or Nb-rich compounds on hydrogen trapping and diffusion is well known for special laboratory cast alloys, but unknown for realistic steel compositions. For this reason, a series of S690Q-based alloys were synthesized, close to a real steel composition, but with well controlled Ti or Nb additions in different amounts. Specimens were obtained from these alloys by electrochemical discharge machining (EDM). The specimens were tested using the well-established electrochemical permeation technique. From the experimental results, the hydrogen diffusion coefficients and the analytical subsurface hydrogen concentration were calculated. In addition, the hydrogen trapping behavior at elevated temperatures was interpreted by thermal desorption analysis (TDA) using different heating rates of hydrogen charged samples. The results showed that in contrast to metallurgically "pure" laboratory cast alloys, realistic chemical compositions were similar in their hydrogen trapping behavior, despite some small differences. All investigated steel grades exhibited shallow and reversible hydrogen trapping, regardless of their chemical composition. Of course, the experiments only allowed the calculation of effective diffusion coefficients and trapping energies, which represent an average of the entire microstructure. Nevertheless, HSLA steels are typically joined by arc welding, which includes the risk of delayed hydrogen assisted cracking. From the point of view of welding practice, however, a more or less identical hydrogen diffusion behavior means that no special "metallurgically specific", justifiable measures need to be considered, despite the well-established processes such as "soaking" or dehydrogenation heat treatment. T2 - MPAC 2025 CY - Stuttgart, Germany DA - 06.10.2025 KW - HACC KW - Hydrogen KW - HSLA PY - 2025 AN - OPUS4-64337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Ti and Nb influence on the HAZ microstructures of weld-simulated high-strength structural steel S690QL N2 - High-strength low-alloyed (HSLA) steels with yield strength / proof stress ≥ 600 MPa are the basis of modern light-weight steel constructions. Indeed, the economic and ecological benefits strongly depend on their processability in terms of welding. In this context, the use of highly productive welding processes, suitable welding consumables is of vital interest and requires a fundamental understanding of the microstructural changes in the HSLA steel and especially the heat-affected zone (HAZ) of the welded joint. Microalloying elements, such as Ti or Nb, are essential to achieve the desired mechanical properties. In this context, the underlying standards (such as EN 10025-6) only specify maximum values, resulting in different manufacturer customized microalloy concepts. Furthermore, even small deviations can have a drastic effect expressed by an excessive hardening or softening despite identical welding conditions and filler metal. The reason is the different thermal stability of the Ti and Nb-related precipitates (typically carbides or carbon nitrides). As a result, it is difficult (or even impossible) to adequately predict the weldability. Against this background, different microalloying routes with varying Ti and Nb contents for a S690QL reference grade were systematically investigated in terms of lab-cast alloys close to realistic chemical compositions. To investigate the influence of the welding heat input on the HAZ microstructure formation, physical simulations were carried with specified peak temperatures and cooling times (by a dilatometry). The focus was the identification of the occurring phase transformations during cooling and the final HAZ microstructure. In this context, a double welding cycle was simulated to further identify the behavior of the so-called intercritical HAZ (where softening is likely to occur) in case of the common multi-layer welding for thick plates. The results showed: (1) microalloying has significant influence on the formation of the individual HAZ dependent on (2) the thermal stability of the Ti or Nb-precipitates and (3) synergistic effects of further elements such as Mo and their effect on phase transformations in the HAZ. The results represent a microstructure-based validation of welding processing of such HSLA-steels e.g. in terms of preferred microalloy and weld heat input combinations. T2 - 49th MPA Conference CY - Stuttgart, Germany DA - 06.10.2025 KW - High-strength steel KW - Microalloy elements KW - Welding KW - Weld simulation KW - Microstructure PY - 2025 AN - OPUS4-64319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Component test for simulation of in-service welding on hydrogen pipelines N2 - Hydrogen is set as the energy carrier of tomorrow and most countries will achieve large-scale hydrogen transport through the conversion of the natural gas (NG) grid and the construction of new pipelines. The interaction between hydrogen and the pipeline materials differs fundamentally from that of NG, as hydrogen is readily absorbed into the material. Considering the possible hydrogen embrittlement (HE), the compatibility of the pipeline materials (low-alloyed steels with a wide strength/thickness range) must be investigated. However, pipelines require intervention for maintenance, repair, or grid expansion with welding on/onto the pipelines while in service, i.e. the well-known "hot tapping" and "stoppling". The challenges compared to NG can be broadly divided into the possible austenitization of the inner pipe material exposed to hydrogen and the welding itself. Both result in a significant increase in hydrogen solubility and could potentially pose challenges in terms of HE. Emphasis is placed on the word "could" because knowledge of "hot tapping" on hydrogen pipelines is scarce due a lack of service experience. To this end, this study proposes a concept for a component-like demonstrator with the objectives: (1) safe feasibility of "hot tapping" on pressurized model hydrogen pipeline sections, (2) facilitate ex-post sample extraction for the purpose of quantifying the absorbed hydrogen concentrations, and (3) ensure in-situ temperature measurement during welding to monitor the pipeline surface temperature. For safety reasons in the event of an unintentional "burn-through", a solid cylinder was inserted in the demonstrator to restrict the hydrogen gas volume to a small, pressurized layer. Reference pipeline surface temperature measurements were ensured on comparable, unpressurized geometries. The investigated range of welding conditions was investigated for representative material/thickness combinations (DN60 to DN300), suggesting the feasibility of the demonstrator for the determination of reliable in-service welding conditions for both installed and new pipelines for hydrogen service. T2 - 49th MPA Conference CY - Stuttgart, Germany DA - 06.10.2025 KW - Hydrogen KW - Pipeline KW - In-service welding KW - Component test PY - 2025 AN - OPUS4-64317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - A decarbonized future requires pipelines for CO2? A brief overview on perspectives and challenges N2 - Despite the use of hydrogen, for example, in various industrial production processes, CO2 emissions are still unavoidable in the medium term. For example, cement, lime and glass production or waste recycling (waste-to-energy plants) will continue to emit CO2 due to the processing involved chemical reactions. Conversely, the chemical industry with its value chains needs CO2 / carbon as a primary raw material for all compounds that fall within the organic chemistry. In this connection, carbon capture utilization (CCU) will play a key role here. In addition to “natural” methods (via reforestation and the dilution of moors), carbon capture storage (CSS) is already playing a major role, for example by injecting it into old natural gas underground caverns. The resulting quantities of CO2 have to be transported on a large scale and similar to hydrogen pipelines, there are concrete plans for CO2 pipeline networks. For this reason, this presentation provides an introduction to the topic and briefly outlines the associated challenges. On the one hand, these lie in the qualification (testing and construction) and especially in the operation of the pipelines with regard to strict monitoring of the gas quality (e.g. carbonic acid corrosion) and in the avoidance of critical service conditions (sudden pressure fluctuations), which can lead to localized condensation. Among other things, this can lead to the lowering of the typically welded low-alloyed steel pipes below the ductile brittle transition temperature (DBTT) and thus can have an impact on pipeline integrity. T2 - 49th MPA Conference CY - Stuttgart, Germany DA - 06.10.2025 KW - CO2 KW - Pipeline KW - Welding KW - Testing PY - 2025 AN - OPUS4-64316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Hydrogen trap characterization in 200 and 1,000 bar charged CoCrNi medium entropy alloy compared to steel AISI 316L N2 - Multiple principal element alloys (MPEAs) represent a new class of metallic materials. MPEAs, such as the CoCrNi medium entropy alloy (MEA), have attracted considerable research attention as potential materials to replace, for example, austenitic steels in high-pressure hydrogen environments. Due to the relatively new alloy concept, studies on the specific hydrogen diffusion and trapping behavior of high-pressure hydrogen-charged CoCrNi MEAs are rare so far. For this reason, a CoCrNi-MEA was investigated and compared to an austenitic stainless steel, AISI 316L. Both materials were subjected to high pressure hydrogen loading for two different pressures: 200 bar and 1,000 bar. After charging, thermal desorption analysis (TDA) was used with three heating rates from 0.125 K/s to 0.500 K/s to clarify the specific hydrogen desorption and trapping behavior. To the best of our knowledge, this study is the first to characterize hydrogen diffusion and trapping in 1,000 bar high-pressure charged CoCrNi. For this purpose, the underlying TDA spectra were analyzed in terms of peak deconvolution into a metallurgically justifiable number of defined peaks. The individual peak temperatures and activation energies “EA” were calculated. The following conclusions can be drawn from the results obtained: (1) Exposure to 200 bar or 1,000 bar leads to an increase in hydrogen absorption, regardless of the material investigated, expressed by a significantly increased desorption rate at 1,000 bar. However, the effusion peaks typically occur only at high temperatures. The (2) TDA showed that a four-peak deconvolution scenario was sufficient to describe the trapping behavior and the "EA" indicated the dominance of irreversible traps. In addition, the average trapping energy is higher than in the 316L. The (3) charge pressure related hydrogen solubility was in the order of: CoCrNi-MEA < 316L for both pressures and (4) charging at 1000 bar results in an average concentration of 49 wt.ppm (CoCrNi-MEA) and > 75 wt.ppm (316L). In summary, the CoCrNi-MEA was characterized by a reduced solubility, but very deep entrapment compared to the 316L. For this reason, further application potentials of the MEA may arise. T2 - FEMS Euromat 2025 - 18th European Congress and Exhibition on Advanced Materials and Processes CY - Granada, Spain DA - 15.09.2025 KW - Medium entropy alloy KW - Hydrogen KW - Trapping KW - Diffusion KW - High-pressure charging PY - 2025 AN - OPUS4-64160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Component test for the assessment of in-service welding on/onto pressurized hydrogen pipelines N2 - Hydrogen is the energy carrier of tomorrow and requires a reliable large-scale transport infrastructure. In addition to new pipelines, the conversion of existing natural gas (NG) pipeline grids is an essential part. The transport of hydrogen is fundamentally different from that of NG, as hydrogen can be absorbed into the pipeline material. Given the effects of hydrogen embrittlement, the material compatibility (low alloy steels in a wide range of strengths and thicknesses) must be investigated. However, pipelines e.g. require maintenance or the need for installation of additional outlets with the necessity of welding on/onto the pipelines while they are still in service, i.e. with gas flow under high pressure, such as the well-known "hot tapping". This in-service welding poses challenges for hydrogen operations. The challenge can be roughly divided into the possible austenitization of the inner pipe material exposed to hydrogen, the welding itself, which causes an increased temperature range. Both lead to a significant increase in hydrogen solubility and diffusivity compared to room temperature. In addition, possible surface reactions of the present iron oxides (e.g. magnetite or hematite) with the hot hydrogen should be considered. In this context, the knowledge of hydrogen pipelines is scarce due to the lack of operational experience. Fundamental experimental investigations are required to investigate the transferability from NG to hydrogen pipeline grids. For this reason, the present study presents a specially designed mock-up / demonstrator concept for the realistic assessment of the welding process conditions. The mock-up was designed to allow in-situ temperature measurement during the welding process as well as ex-post sample extraction for quantification of the absorbed hydrogen concentration. For safety reasons, the required volume of pressurized hydrogen was limited by inserting a solid cylinder to ensure a 1 cm thick layer of hydrogen gas. Welding experiments on the DN60 and DN200 pressurized mock-ups showed the possibility of safe welding on or onto pressurized hydrogen pipelines. Indeed, the austenitizing temperature was reached on the inner surface of the pipeline, especially on thinner-walled pipelines, using current welding parameter recommendations. This corresponded to an increased hydrogen uptake in the welded area of several ppm. From this point of view, the suggested component concept is a viable strategy for the screening of several materials and welding parameter combinations under realistic operational conditions. T2 - FEMS Euromat 2025 - 18th European Congress and Exhibition on Advanced Materials and Processes CY - Granada, Spain DA - 15.09.2025 KW - In-service welding KW - Pipeline KW - Hydrogen KW - Component test PY - 2025 AN - OPUS4-64159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Numerical simulation of weld heat input effect on microstructure and hydrogen diffusion in thick-walled S690 submerged arc welded joints N2 - High-strength, low-alloy (HLSA) steels such as S690 are an attractive option for heavy industries such as offshore wind turbines and peripheral equipment due to their combination of excellent mechanical properties and weldability. The construction of these thick-walled structures requires highly efficient welding processes such as submerged arc welding (SAW). However, SAW presents challenges related to delayed hydrogen assisted cold cracking (HACC). Despite its importance, the effect of different diffusion coefficients on the cold cracking susceptibility of different microstructures within SAW-welded S690 steels is not fully understood. For this reason, the present study focuses on comparing the cold cracking susceptibility of thermomechanically rolled (TM) or quenched and tempered (QL) variants of S690 steel. SAW was performed on specimens of both steel grades to produce weldments consisting of weld metal, heat-affected zone (HAZ), and base metal. Electrochemical hydrogen permeation tests (ISO 17081) were performed to determine the microstructure specific coefficients. Using the obtained coefficients, a numerical model was developed to identify the time- and microstructure-dependent local hydrogen diffusion and its influence on the distribution within the welds. The results showed that the TM grade exhibited slightly accelerated hydrogen diffusion compared to the QL grade, which is beneficial for hydrogen reduction and increases the HACC resistance. However, the further simulations with different ply sequences showed that the welding heat input (i.e. welding ply sequence) had a significantly higher effect on hydrogen accumulation. Specifically, increased welding heat input and increased thicknesses decrease hydrogen diffusivity. For this reason, microstructure-specific hydrogen diffusion played a minor role in thick-layer SAW joints compared to the need to control the welding parameters (layer sequence, individual layer thickness, welding heat input). T2 - FEMS Euromat 2025 - 18th European Congress and Exhibition on Advanced Materials and Processes CY - Granada, Spain DA - 15.09.2025 KW - Hydrogen assisted cracking KW - Welding KW - High strength steels KW - Numerical simulation KW - Electrochemical permeation PY - 2025 AN - OPUS4-64158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Effect of Ti and Nb on hydrogen trapping in welded S690 HSLA steel and effect on delayed cold cracking N2 - Fine-grain, high-strength, low-alloy (HSLA) structural steels with yield strengths > 600 MPa are now the state of the art in construction applications such as mobile cranes and civil engineering. HSLA grades derive their strength from a combination of specific heat treatment and the underlying chemical composition. In this context, Ti or Nb are essential to obtain a fine-grained microstructure as well as the necessary carbides or nitrides for precipitation strengthening. In this context, the specific effect of Ti or Nb-rich compounds on hydrogen trapping and diffusion is well known for special laboratory cast alloys, but unknown for realistic steel compositions. For this reason, a series of S690Q-based alloys were synthesized, close to a real steel composition, but with well controlled Ti or Nb additions in different amounts. Specimens were obtained from these alloys by electrochemical discharge machining (EDM). The specimens were tested using the well-established electrochemical permeation technique. From the experimental results, the hydrogen diffusion coefficients and the analytical subsurface hydrogen concentration were calculated. In addition, the hydrogen trapping behavior at elevated temperatures was interpreted by thermal desorption analysis (TDA) using different heating rates of hydrogen charged samples. The results showed that in contrast to metallurgically "pure" laboratory cast alloys, realistic chemical compositions were similar in their hydrogen trapping behavior, despite some small differences. All investigated steel grades exhibited shallow and reversible hydrogen trapping, regardless of their chemical composition. Of course, the experiments only allowed the calculation of effective diffusion coefficients and trapping energies, which represent an average of the entire microstructure. Nevertheless, HSLA steels are typically joined by arc welding, which includes the risk of delayed hydrogen assisted cracking. From the point of view of welding practice, however, a more or less identical hydrogen diffusion behavior means that no special "metallurgically specific", justifiable measures need to be considered, despite the well-established processes such as "soaking" or dehydrogenation heat treatment. Of course, a closer look at the heat-affected zone (HAZ) or the weld metal of the specific welds is necessary. However, especially in the case of thick-walled welds, it is assumed that the weld metal and HAZ are similar to the base material due to the multi-layer welding, which results in multiple annealing cycles of the weld metal and HAZ. T2 - FEMS Euromat 2025 - 18th European Congress and Exhibition on Advanced Materials and Processes CY - Granada, Spain DA - 15.09.2025 KW - Hydrogen assisted cracking KW - HSLA KW - Diffusion KW - Electrochemical permeation PY - 2025 AN - OPUS4-64156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Weld heat input effect on microstructure and hydrogen diffusion in thick-walled S690 submerged arc welded joints N2 - High-strength, low-alloy (HLSA) steels such as S690 are an attractive option for heavy industries such as offshore wind turbines and peripheral equipment due to their combination of excellent mechanical properties and weldability. The construction of these thick-walled structures requires highly efficient welding processes such as submerged arc welding (SAW). However, SAW faces challenges related to delayed hydrogen assisted cold cracking (HACC). Despite its importance, the effect of different diffusion coefficients on the cold cracking susceptibility of different microstructures within SAW-welded S690 steels is not fully understood. For this reason, the present study focuses on comparing the cold cracking susceptibility of thermomechanically rolled (TM) or quenched and tempered (QL) variants of S690 steel. Submerged arc welding was performed on both steel grades at different welding heat inputs. From these thick-walled welds, metallic membranes were extracted from the weld metal, the heat-affected zone (HAZ), and the two base metals. The specimens were subjected to electrochemical hydrogen permeation tests (according to ISO 17081) to determine the microstructure-specific hydrogen diffusion coefficients. In general, increased welding heat input and thickness decreased the hydrogen diffusion coefficients, i.e., the time required for hydrogen diffusion increased. In addition, the results showed that the TM grade exhibited slightly accelerated hydrogen diffusion coefficients compared to the QL grade, which is beneficial for hydrogen reduction and increases the HACC resistance. As a result, the microstructure-specific assessment of hydrogen diffusion in the BM, HAZ or WM of the SAW joint was less important for a given set of welding parameters compared to other welding processes such as gas metal arc welding (GMAW). The reason is that in multilayer SAW, the relatively large welding heat input and multiple annealing resulted in similar microstructures, resulting in very close hydrogen diffusion coefficients. From this point of view, it is sufficient to characterize the hydrogen diffusion coefficients of both the weld metal and the base material. T2 - 78th IIW Annual Assembly and International Conference CY - Genoa, Italy DA - 26.06.2025 KW - Hydrogen assisted cracking KW - Submerged arc welding KW - Diffusion KW - Electrochemical permeation KW - Microstructure PY - 2025 AN - OPUS4-63543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Characterization of hydrogen trapping in a CoCrFeMnNi high-entropy alloy charged up to 1000 bar high-pressure hydrogen N2 - First studies on the mechanical behavior of high-entropy alloys (HEAs) in high-pressure hydrogen environment are available. In contrast, the underlying hydrogen absorption, diffusion and trapping in these HEAs like the Cantor-alloy was less in the scientific scope so far. For that reason, the CoCrFeMnNi-HEA was compared to a conventional AISI 316L austenitic steel, by exposing to high-pressure hydrogen charging at 200 bar and very-high pressure at 1,000 bar. Thermal desorption analysis (TDA) was applied with different heating rates (0.125 K/s to 0.500 K/s), see Fig. 1a to d. The underlying TDA spectra were analyzed in terms of a reasonable peak deconvolution to into a defined number of peaks and the calculation of the activation energies for the respective and predominant hydrogen trap sites. Both materials show a comparable hydrogen diffusivity. The obtained activation energies suggest that in case of the CoCrFeMnNi-HEAs an interaction of the austenitic phase as well as the direct atomic bonding of hydrogen to the metal atoms are the dominant traps, since “impurities” such as carbides or inclusions are only present in trace amounts. Available literature suggests that the Cr and Mn-content is here of special interest for the direct hydrogen bonding at solute atoms. In addition, the trap occupancy rate must be considered in terms of a pressure-related hydrogen absorption. The derived apparent hydrogen solubility was in the order: 316L < CoCrFeMnNi-HEA for both charging pressures. Especially, the 1,000 bar values lead to noteworthy results with > 70 wt.ppm for the AISI 316L and >130 wt.ppm for the CoCrFeMnNi. In fact, both the hydrogen diffusion and trapping data on gaseous high-pressure hydrogen charged HEAs are rare so far. The results of the present study allow a deeper understanding of hydrogen trapping in the regarded CoCrFeMnNi-system. T2 - 78th IIW Annual Assembly and International Conference CY - Genoa, Italy DA - 26.06.2025 KW - Hydrogen KW - Thermal desorption analysis KW - High-pressure charging KW - Trapping KW - Diffusion PY - 2025 AN - OPUS4-63542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -