TY - CONF A1 - Nirmalananthan-Budau, Nithiya A1 - Moser, Marko A1 - Geißler, Daniel A1 - Behnke, Thomas A1 - Resch-Genger, Ute T1 - Multimodal cleavable reporters vs conventional labels for optical quantification of amino and carboxy groups on nanomaterials and microparticles N2 - Carboxy, amino, and thiol groups play a critical role in a variety of physiological and biological processes and are frequently used for bioconjugation reactions. Moreover, they enable size control and tuning of the surface during the synthesis of particle systems. Especially, thiols have a high binding affinity to noble metals and semiconductors (SC). Thus, simple, inexpensive, robust, and fast methods for the quantification of surface groups and the monitoring of reactions involving ligands are of considerable importance for the characterization of modified or stabilized nanomaterials including polymers. We studied the potential of the Ellman’s assay, recently used for the quantification of thiol ligands on SC nanocrystals by us1 and the 4-aldrithiol assay for the determination of thiol groups in molecular systems and on polymeric, noble and SC nanomaterials. The results were validated with ICP-OES and reaction mechanisms of both methods were studied photometrically and with ESI-TOF-MS. The investigation of the reaction mechanisms of both methods revealed the influence of different thiols on the stoichiometry of the reactions2, yielding different mixed disulfides and the thiol-specific products spectroscopically detected. The used methods can quantify freely accessible surface groups on nanoparticles, e.g., modified polystyrene nanoparticles. For thiol ligands coordinatively bound to surface atoms of, e.g., noble or SC nanomaterials, depending on the strength of the thiol-surface bonds, particle dissolution prior to assay performance can be necessary. We could demonstrate the reliability of the Ellman’s and aldrithiol assay for the quantification of surface groups on nanomaterials by ICP-OES and derived assay-specific requirements and limitations. Generally, it is strongly recommended to carefully control assay performance for new samples, components, and sample ingredients to timely identify possible interferences distorting quantification. T2 - BAM-BfR Seminar 2018 CY - Berlin, Germany DA - 15.02.2018 KW - Surface functionalization KW - Nanoparticles KW - Surface chemistry KW - Multimodal reporters PY - 2018 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. AN - OPUS4-44850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nirmalananthan-Budau, Nithiya A1 - Moser, Marko A1 - Geißler, Daniel A1 - Behnke, Thomas A1 - Resch-Genger, Ute T1 - Functional group analysis on 3D carrier materials with simple optical assays N2 - Carboxy, amino, and thiol groups play a critical role in a variety of physiological and biological processes and are frequently used for bioconjugation reactions. Moreover, they enable size control and tuning of the surface during the synthesis of particle systems. Especially, thiols have a high binding affinity to noble metals and semiconductors (SC). Thus, simple, inexpensive, robust, and fast methods for the quantification of surface groups and the monitoring of reactions involving ligands are of considerable importance for the characterization of modified or stabilized nanomaterials including polymers. We studied the potential of the Ellman’s assay, recently used for the quantification of thiol ligands on SC nanocrystals by us1 and the 4-aldrithiol assay for the determination of thiol groups in molecular systems and on polymeric, noble and SC nanomaterials. The results were validated with ICP-OES and reaction mechanisms of both methods were studied photometrically and with ESI-TOF-MS. The investigation of the reaction mechanisms of both methods revealed the influence of different thiols on the stoichiometry of the reactions2, yielding different mixed disulfides and the thiol-specific products spectroscopically detected. The used methods can quantify freely accessible surface groups on nanoparticles, e.g., modified polystyrene nanoparticles. For thiol ligands coordinatively bound to surface atoms of, e.g., noble or SC nanomaterials, depending on the strength of the thiol-surface bonds, particle dissolution prior to assay performance can be necessary. We could demonstrate the reliability of the Ellman’s and aldrithiol assay for the quantification of surface groups on nanomaterials by ICP-OES and derived assay-specific requirements and limitations. Generally, it is strongly recommended to carefully control assay performance for new samples, components, and sample ingredients to timely identify possible interferences distorting quantification. T2 - Colloquium of Optical Spectrometry (COSP) 2017 CY - Berlin, Germany DA - 27.11.2017 KW - Nanoparticle KW - Surface groups KW - Optical assays KW - Carboxy and amin PY - 2017 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. AN - OPUS4-43207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nirmalananthan-Budau, Nithiya A1 - Moser, Marko A1 - Behnke, Thomas A1 - Resch-Genger, Ute T1 - Optical Methods for the Quantification of Functional Groups on Particle Surfaces N2 - Polymer nanoparticles are of increasing importance for a wide range of applications in the material and life sciences. This includes their application as carriers for e.g., analyte-responsive ligands for DNA sequencing platforms, drugs as well as dye molecules for use as multichromophoric reporters for signal enhancement in optical assays or the fabrication of nanosensors and targeted probes in bioimaging studies. Application-relevant properties of nanometer- and micrometer-sized particles (NP) include their size (and size distribution), colloidal stability, biocompatibility, and ease of subsequent functionalization, e.g., with linkers, sensor molecules, and targeting ligands. In this respect, the knowledge of the chemical nature, the total number of surface groups and the number of groups accessible for subsequent coupling reactions with differently sized optical labels or biomolecules is mandatory. This requires robust, reliable and validated methods, which can be employed for the characterization of a broad variety of particle systems independent of their optical properties, i.e., scattering or the presence of encoding dyes, and can be preferably performed specifically, sensitively, and fast with inexpensive equipment. Particularly attractive methods are here straightforward colorimetric, and fluorometric assays. In this respect, we studied a variety of conventional labels for optical readout, utilizing e.g., a change in intensity and/or color of absorption and/or emission. While in common assays, most reporters are measured directly at the particle surface, which can easily lead to signal distortions by scattering and encoding dyes, we focus on the development of cleavable and multimodal labels. These labels are detectable both bound at the particle surface and after cleavage of a linker unit in the supernatant with different analytical methods like fluorometry together with elemental analysis, ICP-OES or ICP-MS for straightforward method validation by method comparison. Here, we present our newly-synthesized cleavable labels and their application for photometric quantification of amino, thiol and carboxy surface groups on different types of nanomaterials and compare the results obtained from surface group analysis relying on conventional labels. T2 - First European / 10th German BioSensor Symposium CY - Potsdam, Germany DA - 20.03.2017 KW - Optical quantification KW - Surface functional groups KW - Nanoparticle PY - 2017 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. AN - OPUS4-39788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nirmalananthan-Budau, Nithiya A1 - Moser, Marko A1 - Behnke, Thomas A1 - Resch-Genger, Ute T1 - New Approaches for the Quantification of Functional Groups on Micro- and Nanoparticle Surfaces N2 - Nanometer- and micrometer-sized particles are increasingly used as tolls in (bio)analytics with typical applications being carriers for e.g., drugs or dye molecules for use as multichromophoric reporters for signal amplification in optical assays, platforms for DNA sequencing as well as nanosensors and targeted probes for bioimaging studies. The application of such particles in the material and life sciences is closely linked to their size (and size distribution), shape, colloidal stability, biocompatibility, and ease of subsequent functionalization, e.g., with linkers, targeting ligands, and sensor molecules. The latter requires knowledge of the number of groups effectively accessible for subsequent coupling reactions and hence, selective and sensitive methods of analysis. Ideally, these methods are be robust, reliable, fast, performable with inexpensive equipment, and can be employed for the characterization of a broad variety of particle systems independent of their optical properties, i.e., scattering or the presence of encoding dyes. In this respect, we studied a variety of conventional and newly developed labels for optical readout on self-made particles with varying surface group density, utilizing e.g., changes in intensity and/or color of absorption and/or emission. We focus here on the development of a platform of cleavable and multimodal labels for optical assays which consist of a cleavable linker and an optically active reporter moiety. In contrast to conventional reporters measured directly at the particle surface, which are prone to signal distortions by scattering and encoding dyes, these cleavable labels can be detected colorimetrically or fluorometrically both bound at the particle surface and after quantitative cleavage of the linker in the transparent supernatant. Moreover, for heteroatom-containing reporters, they enable straightforward validation by method comparison with elemental analysis, ICP-OES or ICP-MS. Here, we present representative examples of our newly synthesized cleavable and multimodal labels and their application as reporters for the quantification of amino, thiol and carboxy surface groups on different nanomaterials and compare these results with measurements using conventional optical labels and results from measurements providing the total number of surface groups. T2 - ANAKON 2017 CY - Tübingen, Germany DA - 03.04.2017 KW - Optical quantification KW - Nanoparticle KW - Surface functional groups PY - 2017 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. AN - OPUS4-39787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -