TY - CONF A1 - Krankenhagen, Rainer A1 - Weigel, Sandra T1 - Photothermal investigation of original and degraded asphalt N2 - Asphalt is one of the most common materials used in road construction. It is subject to both chemical and structural aging processes during use. At least to our knowledge, it is not currently known whether these aging processes also lead to a measurable change in the thermal properties of asphalt. If so, these changes could be exploited for non-destructive testing of the aging condition in situ. Photothermal analysis of a component surface involves looking at the time course of the surface temperature during and after pulse-like heating with an expanded laser beam. In the case of concrete surfaces, this method works well under laboratory conditions. It allowed the determination of the thermal effusivity. Now it should be investigated whether the photothermal signal allows conclusions to be made regarding the aging state of the asphalt. Within the scope of this paper, 2 asphalt specimens were investigated: a closed asphalt with 3% void content (SMA 11S) and an open-pore asphalt with 25% void content (PA 8). Both samples were artificially degraded according to a standardized procedure, leaving a portion of the surface unaffected. Subsections from both areas were then separated for photothermal testing. It was found, that the photothermal method is apparently not sensitive enough to detect aging on asphalt in general. However, it is noteworthy that both asphalt types heat up significantly faster than would be expected from the theory of heat conduction, which might be explained by the specific microstructure. T2 - 22nd Conference ECTP "European Confence on thermophysical properties" CY - Venice, Italy DA - 10.09.2023 KW - Asphalt KW - Ageing KW - Photothermal PY - 2023 AN - OPUS4-58857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stamm, Michael A1 - Krankenhagen, Rainer A1 - Chaudhuri, Somsubhro T1 - EvalTherm - Weather-dependent passive thermography of unheated wind turbine blades N2 - Evaluation of passive Thermography for the inspection of wind turbine blades. Comparison of passive thermography from the ground with drone-supported images and active thermography. Better understand the influence of weather conditions through field measurements. Development of an inspection planning tool that incorporates weather forecasts. Use FEM simulations to predict thermal contrasts of different damages under different environmental conditions. T2 - Kolloquium CY - Saarbrücken, Germany DA - 28.09.2022 KW - Thermography KW - Wind turbine rotor blades KW - FEM PY - 2022 AN - OPUS4-56913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krankenhagen, Rainer A1 - D'Accardi, E. T1 - Quantitative Bewertung von Randeffekten bei einer einfachen thermografischen Transmissionsmessung mittels FEM N2 - Der Einsatz von Simulationen mit FEM (Finite Element Method) ermöglicht die die quantitative Beschreibung von Wärmeleitungsprozessen in komplexen Geometrien, bei denen analytische Ansätze nicht angewandt werden können, weil die zugrunde liegenden Vereinfachungen nicht gelten. Bei der genauen Modellierung eines kompletten thermografischen Experiments sieht sich der Modellierer einer ganzen Reihe von technischen und physikalischen Parametern gegenüber, die nicht immer bekannt sind und daher geschätzt werden müssen. Im konkreten Fall wurde ein relativ einfaches Experiment mit einfachen Geometrien betrachtet: ein durch Additive Manufacturing gefertigter Metallblock wurde mit einem Laserpuls homogen erwärmt. Aus dem Zeitverlauf der Oberflächentemperatur an der nicht erwärmten Rückseite des gleichmäßig dicken Blocks sollte die thermische Diffusivität des Volumenmaterials ermittelt werden. Bei dem Versuch, die experimentellen Daten durch eine passende Simulation zu beschreiben, ergab sich zunächst eine deutliche Abweichung: die gemessenen Temperaturen waren generell zu niedrig, was auf einen zusätzlichen Wärmeverlustmechanismus hinwies. Es erwies sich, dass die freie Auflage des Materialblocks auf einem flachen Bolzen zur Probenfixierung bei der Simulation des Experiments zu berücksichtigen ist, um eine gute Übereinstimmung zwischen Experiment und thermischer Simulation zu erzielen. Der Beitrag illustriert damit die Möglichkeiten und Potentiale von FEM-Simulationen bei der quantitativen Bewertung von thermografischen Inspektionen zur zerstörungsfreien Prüfung. T2 - Thermografie-Kolloquium der DGZfP CY - Saarbrücken, Germany DA - 28.9.2022 KW - Thermische Simulation KW - Aktive Thermografie KW - Thermischer Kontakt PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560641 UR - https://www.ndt.net/search/docs.php3?id=27487 PB - NDT.net CY - Bad Breisig AN - OPUS4-56064 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krankenhagen, Rainer A1 - Zirker, Stefan T1 - Photothermal determination of thermal properties of concrete – a method evaluation N2 - The evaluation of thermal properties is probably an underrated tool for the onsite health monitoring of concrete structures. The photothermal approach offers a possibility to realize a real onsite measurement. This contribution presents the application of the photothermal approach under lab conditions on three different concrete types. The obtained results were compared with those of a commercial device based on the Transient Plane Source (TPS) method. Both agreed well within the estimated uncertainty ranges and therefore demonstrate the applicability of the photothermal method for this kind of investigations. First results of a concrete sample with different water contents support the potential of this method for the characterization of concrete in general. T2 - NDTCE 2022 CY - Zurich, Switzerland DA - 16.8.2022 KW - Thermal effusivity KW - Thermal conductivity KW - Moisture PY - 2022 AN - OPUS4-56063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krankenhagen, Rainer A1 - Maierhofer, Christiane T1 - Thermische Kontraste - der Blick hinter die Fassade N2 - Die Thermografie beruht auf der bildlichen Darstellung von Temperaturunterschieden oder auch thermischen Kontrasten an der Oberfläche eines Untersuchungsobjektes. Diese bilden sich nur her-aus, wenn sich das Untersuchungsobjekt gerade erwärmt oder abkühlt. Der Beitrag erklärt mittels eines stark vereinfachten Modells die Entstehung solcher Kontraste als dynamischen Effekt ver-schiedener Abkühlgeschwindigkeiten. Neben Laborergebnissen werden beispielhaft einige Ergeb-nisse von einem mittelalterlichen Baudenkmal präsentiert, um das Verständnis für die thermografi-sche Inspektion von Fassaden zu vertiefen. T2 - 14. Konservierungswissenschaftliches Kolloquium Berlin Brandenburg CY - Berlin, Germany DA - 12.11.2021 KW - Aktive Thermografie KW - Bauthermografie KW - Ablösungen KW - Metallanker PY - 2021 AN - OPUS4-53757 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krankenhagen, Rainer T1 - Active IR Thermography N2 - This is an overview about physics and principles of active thermography.The generation and detection of thermal contrasts is described. Two applications are explained more in detail: a large mural at a building wall heated by sun and crack detection supported by additional heating. T2 - NDT&E Advanced Training Workshop 2019 CY - Berlin, Germany DA - 12.06.2019 KW - NDT KW - Thermography KW - Civil engineering PY - 2019 AN - OPUS4-49790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krankenhagen, Rainer T1 - Entwicklung einer reproduzierbaren und quantifizierbaren Heißluftquelle für thermografische Untersuchungen N2 - Der Beitrag beschreibt den Aufbau und die Entwicklung einer Heißluftquelle als Wärmequelle für die aktive Thermografie. Als Ausgangspunkt wird zunächst die Quellenlage betrachtet. In der Literatur über Thermografie spielt Heißluft als Wärmequelle nur in weniger als 0,1% eine Rolle, die Ursache dafür ist nicht bekannt. Es wird vermutet, dass dieser Erwärmungsmethode unterstellt wird, sie hätte Nachteile bezüglich Homogenität der Erwärmung sowie Leistungseintrag. In einer der raren Publikationen über einen Verfahrensvergleich schnitt die Heißluft-Thermografie jedoch nicht schlechter als die Vergleichsverfahren mit optischer Anregung ab, bei gleichzeitig deutlichem Zeitgewinn und geringerem technischen Aufwand. Danach wird der fertige Versuchsaufbau mit seinen wesentlichen Komponenten dargestellt. Der Einfluss der Geometrie der Luftaustrittsdüse auf die erreichbare Wärmeverteilung an einem flachen Blech wurde an mehreren Düsen untersucht. Hierbei erwies sich eine langgestreckte Umlenkdüse mit einer Strahlumlenkung von etwa 20° als optimal zur Erzeugung einer möglichst homogenen Erwärmung. Ein weiterer zu optimierender Parameter war die erreichbare Schaltdynamik des Heißgasstromes. Beim schnellen Schalten großer Volumenströme treten Druckstöße mit entsprechenden Temperaturänderungen auf. Hinzu kommt, dass der verwendete MFC (mass flow controller) bei großen Volumenströmen zum Einschwingen bei Schaltprozessen neigt. Daher enthält der Aufbau einen offenen Bypass zur Stabilisierung des Volumenstroms. Mit dem so realisierten Messplatz wurde die Reproduzierbarkeit der erzielten Erwärmung durch mehrfache Wiederholungsmessungen über einen längeren Zeitraum untersucht. Hierzu wurde ein auch zu Validierungszwecken genutzter PVC-Block mit 13 mm Dicke jeweils für 60 s erwärmt und die Oberflächentemperatur des PVC-Blocks mit einer IR-Kamera aufgezeichnet. Bei jeweiligem Neuaufbau ohne Justierhilfe ergab sich eine Reproduzierbarkeit von etwa 22% bei 5 Versuchen. Unter Nutzung einer Justierhilfe (Schablone für Abstand in der Kamerasoftware) ließ sich die Reproduzierbarkeit auf 5% bei 7 Versuchen reduzieren. Ein weiterer zu klärender Punkt war der erzielbare Wärmeeintrag im Vergleich zu einer Anregung mit Blitzlampen. Hierzu wurde eine Messung mit 60 s Heißluftheizung direkt mit einer Evaluierungsmessung mit Blitzlampen am gleichen PVC-Probekörper mit 4 FBB an der Rückseite verglichen. Die Inhomogenität der Erwärmung wurde durch eine Phasenauswertung unterdrückt. Die Phasenauswertung gestattete den Nachweis aller 4 FBB, wobei das Signal zu Rausch-Verhältnis bei der Heißlufterwärmung deutlich besser war. Der direkte Vergleich der Temperaturkurven zeigt, dass bei 60 s Heizlufterwärmung ca. 4,5 mal mehr Energie als bei der Blitzanregung vom Probekörper absorbiert wurde. Hieraus lässt sich die eingekoppelte Heizleistung mit 100 mW/cm² abschätzen. Das entspricht in etwa dem Niveau, wie es auch mit bewegten Halogenstrahlern, bewegten IR-Strahlern oder der Sonne erreicht wird. Diese Ergebnisse belegen, dass eventuell vorhandene Vorbehalte gegenüber einer Heißluft als Wärmequelle für die aktive Thermografie zumindest für thermisch langsame Materialien wie Kunststoffe oder mineralische Baustoffe unbegründet sind. Die Einsatzgrenzen bei der Untersuchung thermisch schnellerer Materialien wie Metalle steht noch aus, hier ist mit Abstrichen zu rechnen. Auf der anderen Seite lässt eine mögliche Düsenoptimierung noch deutliche Verbesserungen erwarten. T2 - Thermografiekolloquium der DGZfP 2019 CY - Halle, Germany DA - 19.09.2019 KW - Thermografie KW - Zerstörungsfreie Prüfung KW - Heißluftquelle PY - 2019 AN - OPUS4-49217 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ziegler, Mathias A1 - Maierhofer, Christiane A1 - Krankenhagen, Rainer A1 - Röllig, Mathias T1 - Characterization of defects in fibre reinforced composites (FRC) using passive and active thermography N2 - Impact damages and delaminations in fibre-reinforced composites (FRC) might not be visible at the surface, but could have an influence on the resistance and on the long-term behaviour of the component. Therefore, and especially for safety relevant structures, non-destructive methods are required for the assessment of such damages. Active thermography methods are suitable to characterize damages after loading using different kind of excitation techniques and various configurations of infrared (IR) camera and heating sources. Here, flash lamps, impulse excitation with infrared radiator and lock-in technique with halogen lamps or widened laser beams are suited. In addition, non-optical sources like sonotrodes (requiring direct contact to the structure) or induction generators (only suited for carbon fibre reinforced polymer (CFRP) structures) could be applied as well. For the investigation of the evolution of the damage during the impact, passive thermography can be applied in-situ. Elastic and plastic deformations alter the temperature of the structure and thus the temperature on the surface. In this contribution, at first the general principles of quantitative defect characterisation in FRC using active thermography with flash, impulse and lock-in excitation are described. Optical and thermal properties of the FRC material and its anisotropy are considered. Results of phase differences obtained at flat bottom holes with flash and lock-in thermography are compared for qualifying both methods for quantitative defect characterization. Secondly, the damage evolution of CFRP and GFRP structures under impact load and static tensile loading is described. The spatial and temporal evolution of the surface temperature enables us to distinguish matrix cracks or fibre-matrix separation from delaminations between the layers. Afterwards, all results for loading defects, obtained by passive and active thermography, are compared with each other. Fig. 1 and 2 show the difference of passive and flash thermography obtained at impact and tensile loaded CFRP plates, respectively. As one purpose of these investigations is the development of standards within national (DIN) and European (CEN) standardisation bodies, new draft and final standards are presented and further needs are discussed at the end of the presentation. T2 - INTERNATIONAL SCHOOL OF QUANTUM ELECTRONICS, 62nd Course, Progress in Photoacoustic & Photothermal Phenomena CY - Erice, Italy DA - 06.09.2018 KW - Thermography KW - Flash thermography KW - Lock-in thermography KW - CFRP KW - GFRP PY - 2018 AN - OPUS4-46283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krankenhagen, Rainer A1 - Ziegler, Mathias A1 - Maierhofer, Christiane T1 - Systematic errors in the evaluation of uncorrected data from thermographic lock-in measurements N2 - Lock-in thermography (LT) is based on the correct evaluation of phase differences between the temperature oscillations at different surface regions of the object under test during periodic heating. Since the usual heating procedures contain a DC component, the actual heating pattern achieved is not harmonic. This causes systematic deviations when phase differences are determined by means of harmonic analysis, e.g. with FFT analysis. The resulting errors depend clearly on the ratio between DC and AC amplitude, which is demonstrated at simulated and experimentally recorded temperature transients. Further experimental LT data obtained by different oscillating energy inputs showed a variety of possible shapes of transients with different DC components. T2 - 14th QIRT Conference CY - Berlin, Germany DA - 26.6.2018 KW - Lock-in thermography KW - Non-destructive testing KW - FFT PY - 2018 AN - OPUS4-45377 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krankenhagen, Rainer T1 - Active IR thermography N2 - Längerer Vortrag zu Grundlagen der Kontrastentstehung und Messung von thermischen Kontrasten im Kontext der ZfP im Bauwesen. T2 - NDT & E Advanced Training Workshop 2018 CY - Berlin, Germany DA - 28.6.2018 KW - Thermografie PY - 2018 AN - OPUS4-45371 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -