TY - JOUR A1 - Cosimi, Andrea A1 - Stöbener, Daniel D. A1 - Nickl, Philip A1 - Schusterbauer, Robert A1 - Donskyi, Ievgen A1 - Weinhart, Marie T1 - Interfacial nanoengineering of hydrogel surfaces via block copolymer self-assembly N2 - Synthetic polymer hydrogels are valuable matrices for biotransformations, drug delivery, and soft implants. While the bulk properties of hydrogels depend on chemical composition and network structure, the critical role of interfacial features is often underestimated. This work presents a nanoscale modification of the gel−water interface using polymer brushes via a straightforward “grafting-to” strategy, offering an alternative to more cumbersome “grafting-from” approaches. Functional block copolymers with photoreactive anchor blocks are successfully self-assembled and UV-immobilized on hydrogel substrates despite their low solid content (<30 wt %). This versatile technique works on both bulk- and surface-immobilized hydrogels, demonstrated on poly(hydroxypropyl acrylate), poly(N-isopropylacrylamide), and alginate gels, allowing precise control over grafting density. X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry revealed a homogeneous bilayered architecture. By “brushing-up”, the hydrogels’ interface can be tailored to enhance protein adsorption, improve cell adhesion, or impair the diffusive uptake of small molecules into the bulk gels. This effective interfacial nanoengineering method is broadly applicable for enhancing hydrogel performance across a wide range of applications. KW - Brushing-up KW - Benzophenone KW - LCTS-type polymer KW - Poly(glycidyl ether) (PGE) KW - Fibroblast adhesion KW - XPS KW - ToF-SIMS PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652966 DO - https://doi.org/10.1021/acsami.4c18632 SN - 1944-8244 VL - 17 IS - 6 SP - 10073 EP - 10086 PB - American Chemical Society (ACS) CY - Washington, DC AN - OPUS4-65296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madbouly, Loay Akmal A1 - Sturm, Heinz A1 - Doolin, Alexander A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Chemical Analysis of Commercial Functionalized Graphene Nanoplatelets along the Production Process with Raman Spectroscopy and X-ray Photoelectron Spectroscopy N2 - Commercial applications increasingly rely on functionalized graphene nanoplatelets (GNPs) supplied as powders, aqueous suspensions, and printable inks, yet their process−structure−property relationships across the production chain remain to be fully mapped. Here we apply a correlative Raman spectroscopy (Raman) and X-ray photoelectron spectroscopy (XPS) workflow to nine independent industrial graphene batches spanning three surface chemistries, raw (R), fluorinated (F), and nitrogen-functionalized (N), in all three physical forms which are powders, suspensions, and inks. Raman mapping (with a 532 nm excitation laser) showed that I2D/IG is highest for N samples and lowest for R-ink. A 2D-vs-G correlation places all samples on a trajectory parallel to the pure-doping vector, which can correlate to holes in the graphene lattice. The mean point-defect spacing is LD = 8.4−10.0 nm. High-resolution XPS resolves the accompanying chemical changes: F-powder exhibits distinct C−F (289 eV), C−F2 (292 eV), and C−F3 (293 eV) components and loses roughly half its F content upon dispersion in deionized water or ink formulation; inks of all chemistries show a pronounced O−C=O peak near 289−290 eV originated from the ink compounds. N-functionalized samples showed a prominent C−N (285.5 eV) only for the ink formulated N-functionalized sample. This study establishes a process-aware blueprint linking the functionalization route and formulation step to lattice disorder and surface chemistry, offering transferable quality-control metrics for graphene supply chains in industrial products/applications such as coatings, storage devices, and printed electronics. KW - Functionalized graphene KW - Raman Spectroscopy KW - XPS KW - Chemical analysis PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652548 DO - https://doi.org/10.1021/acs.jpcc.5c06820 SN - 1932-7447 VL - 129 IS - 50 SP - 22033 EP - 22040 PB - American Chemical Society (ACS) AN - OPUS4-65254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tavernaro, Isabella A1 - Rajotte, Isabelle A1 - Thibeault, Marie-Pier A1 - Sander, Philipp C. A1 - Kodra, Oltion A1 - Lopinski, Gregory A1 - Radnik, Jörg A1 - Johnston, Linda J. A1 - Brinkmann, Andreas A1 - Resch-Genger, Ute T1 - Quantifying surface groups on aminated silica nanoparticles of different size, surface chemistry, and porosity with solution NMR, XPS, optical assays, and potentiometric titration N2 - We assessed the quantification of surface amino functional groups (FGs) for a large set of commercial and custom-made aminated silica nanoparticles (SiO2 NPs) with sizes of 20–100 nm, prepared with different sol–gel routes, different amounts of surface amino FGs, and different porosity with four methods providing different, yet connected measurands in a bilateral study of two laboratories, BAM and NRC, with the overall aim to develop standardizable measurements for surface FG quantification. Special emphasis was dedicated to traceable quantitative magnetic resonance spectroscopy (qNMR) performed with dissolved SiO2 NPs. For the cost efficient and automatable screening of the amount of surface amino FGs done in a first step of this study, the optical fluorescamine assay and a potentiometric titration method were utilized by one partner, i.e., BAM, yielding the amount of primary amino FGs accessible for the reaction with a dye precursor and the total amount of (de)protonatable FGs. These measurements, which give estimates of the minimum and maximum number of surface amino FGs, laid the basis for quantifying the amount of amino silane molecules with chemo-selective qNMR with stepwise fine-tuned workflows, involving centrifugation, drying, weighting, dissolution, measurement, and data evaluation steps jointly performed by BAM and NRC. Data comparability and relative standard deviations (RSDs) obtained by both labs were used as quality measures for method optimization and as prerequisites to identify method-inherent limitations to be later considered for standardized measurement protocols. Additionally, the nitrogen (N) to silicon (Si) ratio in the near-surface region of the SiO2 NPs was determined by both labs using X-ray photoelectron spectroscopy (XPS), a well established surface sensitive analytical method increasingly utilized for microparticles and nano-objects which is currently also in the focus of international standardization activities. Overall, our results underline the importance of multi-method characterization studies for quantifying FGs on NMs involving at least two expert laboratories for effectively identifying sources of uncertainty, validating analytical methods, and deriving NM structure–property relationships. KW - Advanced Materials KW - Amino Groups KW - Calibration KW - Characterization KW - Functional groups KW - Method Comparison KW - Nano Particle KW - Validation KW - XPS KW - Optical Assay KW - Quantification KW - Surface Analysis KW - Reference Materials KW - Synthesis KW - Fluorescence PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-649992 DO - https://doi.org/10.1039/d5na00794a VL - 7 IS - 21 SP - 6888 EP - 6900 PB - Royal Society of Chemistry AN - OPUS4-64999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madbouly, Loay Akmal A1 - Mrkwitschka, Paul A1 - Stockmann, Jörg Manfred A1 - Jones, Elliot A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Comparative Elemental Analysis of Commercial Functionalized Graphene Nanoplatelets Along the Production Chain With X‐Ray Photoelectron and Energy‐Dispersive X‐Ray Spectroscopy N2 - Graphene has been commercialized for over a decade, primarily in the form of suspensions and inks. In this study, we investigate the properties of graphene nanoplatelets (GNPs) and their functionalized derivatives, incorporating fluorine or nitrogen as functional groups (FG). The analysis was conducted on three forms, that is, powders, suspensions, and inks, using X‐ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) with energy‐dispersive X‐ray spectroscopy (EDX). The objective of this work is to establish a rapid and comprehensive systematic approach for elemental analysis of commercial functionalized graphene, which can be used for quality control. Functionalization is employed to tailor the material's physical and chemical properties. In our study, graphene samples, functionalized with fluorine or ammonia in a plasma reactor, were investigated. Both XPS and EDX were applicable for all three forms and showed, in general, similar trends between the three forms, so that both XPS and EDX can be used for quality control of GNPs along the production chain. KW - Commercial graphene KW - Functionalized graphene KW - Graphene inks KW - SEM/EDS KW - XPS PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625752 DO - https://doi.org/10.1002/sia.7386 SN - 1096-9918 SP - 1 EP - 7 PB - Wiley AN - OPUS4-62575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stockmann, Jörg Manfred A1 - Radnik, Jörg A1 - Bütefisch, Sebastian A1 - Weimann, Thomas A1 - Hodoroaba, Vasile-Dan T1 - A New XPS Test Material for More Reliable Analysis of Microstructures N2 - A reference material is required for small‐area XPS because it has been used more frequently for surface control in recent years and many operators use incorrect field of views. To address this problem, we developed a test material starting in 2019. We optimised this XPS test material dedicated to the control of analysis position on the sample, with respect to the following factors: type of XPS instruments available on the market, the manufacturing process and sample handling. Test structures are now aligned along lines instead of on a circle radius, so that the individual structures can be accessed more quickly and easily. In addition, a larger test structure of 300 μm and another one in an intermediate size of 18 μm were added. Smaller test structures under 50 μm have been annotated with finder grids/arrows around them so that they are easier to find. Further, the manufacturing process was changed from e‐beam lithography to a mask process to be able to offer the test material at a favourable price. The use of masks also had to be adapted for the new manufacturing process so that the smallest square structures are also realised as such and do not show any distortion of the structure boundaries. The quality control using a metrological SEM confirmed a very reproducible manufacturing process. It is demonstrated that the test material can be successfully employed to find the most suitable beam size of the XPS system used for the analysis of small (μm range) surface features. KW - Small-area measurements KW - Test material KW - XPS KW - XPS imaging PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-616577 DO - https://doi.org/10.1002/sia.7367 SP - 1 EP - 6 PB - Wiley AN - OPUS4-61657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin T1 - Accessing radiation damage to biomolecules on the nanoscale by particle-scattering simulations N2 - Radiation damage to DNA plays a central role in radiation therapy to cure cancer. The physico-chemical and biological processes involved encompass huge time and spatial scales. To obtain a comprehensive understanding on the nano and the macro scale is a very challenging tasks for experimental techniques alone. Therefore particle-scattering simulations are often applied to complement measurements and aide their interpretation, to help in the planning of experiments, to predict their outcome and to test damage models. In the last years, powerful multipurpose particle-scattering framework based on the Monte-Carlo simulation (MCS) method, such as Geant4 and Geant4-DNA, were extended by user friendly interfaces such as TOPAS and TOPAS-nBio. This shifts their applicability from the realm of dedicated specialists to a broader range of scientists. In the present review we aim to give an overview over MCS based approaches to understand radiation interaction on a broad scale, ranging from cancerous tissue, cells and their organelles including the nucleus, mitochondria and membranes, over radiosensitizer such as metallic nanoparticles, and water with additional radical scavenger, down to isolated biomolecules in the form of DNA, RNA, proteins and DNA-protein complexes. Hereby the degradation of biomolecules by direct damage from inelastic scattering processes during the physical stage, and the indirect damage caused by radicals during the chemical stage as well as some parts of the early biological response is covered. Due to their high abundance the action of hydroxyl radicals (•OH) and secondary low energy electrons (LEE) as well as prehydrated electrons are covered in additional detail. Applications in the prediction of DNA damage, DNA repair processes, cell survival and apoptosis, influence of radiosensitizer on the dose distribution within cells and their organelles, the study of linear energy transfer (LET), the relative biological effectiveness (RBE), ion beam cancer therapy, microbeam radiation therapy (MRT), the FLASH effect, and the radiation induced bystander effect are reviewed. KW - DNA KW - Protein KW - G5P KW - OH KW - Au KW - AuNP KW - Radiation KW - SSB KW - DSB KW - Beta decay KW - Brachytherapy KW - Cancer treatment KW - Clustered nanoparticles KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - Livermore model KW - Low energy electrons KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - OH radical KW - Particle scattering KW - Penelope model KW - Proteins KW - Radiation damage KW - Radiation therapy KW - Radiationtherapy KW - Radioactive decay KW - Radiolysis KW - Radiotherapy KW - Simulation KW - TOPAS KW - TOPAS-nbio KW - Base damage KW - Base loss KW - DNA radiation damage KW - Direct damage KW - Dissociative electron attachment (DEA) KW - Dissociative electron transfer (DET) KW - Double-strand break (DSB) KW - ESCA KW - Hydrated DNA KW - Hydrated electron KW - Hydration shell KW - Hydroxyl radical KW - Indirect damage KW - Ionization KW - Ionisation KW - NAP-XPS KW - Near ambient pressure xray photo electron spectroscopy KW - Net-ionization reaction KW - Prehydrated electron KW - Presolvated electron KW - Quasi-direct damage KW - ROS KW - Radical KW - Reactive oxygen species KW - Single-strand break (SSB) KW - XPS KW - Xray KW - Xray photo electron spectrocopy KW - Cosolute KW - Ectoin KW - Ectoine KW - GVP KW - Gene five protein KW - Hydroxyectoine KW - Ionizing radiation damage KW - OH radical scavenger KW - Monte-Carlo simulations KW - Nanodosimetry KW - Osmolyte KW - Particle scattering simulations KW - Protein unfolding KW - Radical Scavenge KW - Radical scavenger KW - Single-stranded DNA-binding proteins KW - SAXS KW - Bio-SAXS KW - X-ray scattering KW - ssDNA KW - dsDNA KW - FLASH effect KW - Bystander effect KW - Ion beam therapy KW - Bragg peak KW - LET KW - MCNP KW - Photons KW - Electrons KW - Carbon ions KW - MRT KW - RNA KW - RBE KW - base loss KW - abasic side KW - DMSO KW - Cells PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573240 DO - https://doi.org/10.1088/2399-6528/accb3f SN - 2399-6528 VL - 7 IS - 4 SP - 042001 PB - Institute of Physics (IOP) Publishing CY - London AN - OPUS4-57324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - 1,3-Dimethyl-imidazolium dimethyl phosphate ([MMIM]+[DMP]−) analyzed by XPS and HAXPES N2 - The ionic liquid 1,3-dimethyl-imidazolium-dimethylphosphate ([MMIM]+[DMP]−) was analyzed using (hard) x-ray photoelectron spectroscopy. Here, XPS and HAXPES spectra are shown in comparison. For the acquisition of the XPS spectra, monochromatic Al Kα radiation at 1486.6 eV was used, while for the acquisition of the HAXPES spectra, monochromatic Cr Kα radiation at 5414.8 eV was applied. Here, survey scans and high-resolution spectra of P 2p, P 2s, C 1s, O 1s, and N 1s for both methods and P 1s, P KL2,3L2,3, and P KL1L2,3 for HAXPES are shown. KW - C7H15N2O4P KW - [MMIM]+[DMP]− KW - Lonic liquid KW - Hard x-ray photoelectron spectroscopy KW - HAXPES KW - XPS PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571604 DO - https://doi.org/10.1116/6.0002297 VL - 30 IS - 1 SP - 1 EP - 20 PB - AIP Publishing AN - OPUS4-57160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wetzel, Annica A1 - von der Au, Marcus A1 - Dietrich, P. M. A1 - Radnik, Jörg A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia T1 - The comparison of the corrosion behavior of the CrCoNi medium entropy alloy and CrMnFeCoNi high entropy alloy N2 - This work presents the determination of the corrosion characteristics of CrCoNi (medium entropy alloy) and CrMnFeCoNi (high entropy alloy) in 0.1 M NaCl and 0.1 M H2SO4. The morphology and chemical composition of the oxide layers formed on CrCoNi and CrMnFeCoNi were comparatively analyzed by scanning Kelvin probe microscopy (SKPFM) and scanning electron microscopy (SEM) and supported with chemical analysis by means of inductively coupled plasma mass spectrometry (ICP-MS) and X-Ray photoelectron spectroscopy (XPS). The analysis of the 3p core level peaks showed that the oxide layer (native and after anodic passivation) on CrCoNi consisted mainly of Cr oxides, while the oxide layer on CrMnFeCoNi was primarily composed of a mixture of Cr and Fe oxides. In addition, XPS was utilized to assess the oxide layer thicknesses. These results were compared to the thicknesses obtained by means of electrochemical impedance spectroscopy (EIS), with both approaches yielding values up to about 4 nm depending on the electrolyte and the alloy. Cyclic polarization measurements indicated superior corrosion resistance of CrCoNi in both aqueous environments compared to CrMnFeCoNi, as well as to AISI 304 stainless steel. KW - Medium entropy alloy KW - High entropy alloy KW - SKPFM KW - XPS KW - Passivation KW - Corrosion PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559902 DO - https://doi.org/10.1016/j.apsusc.2022.154171 SN - 0169-4332 VL - 601 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-55990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chemello, Giovanni A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Analysis of Industrial Graphene-Based Flakes – First Results on Morphological Characterization, Sample Preparation and Chemical Composition N2 - In order to bridge the gap between lab-scale and industrial-scale production of graphene it is necessary to develop processes, equipment and measurement procedures to control the material features. One of the crucial reasons of graphene’s limited commercialization is the lack of standard procedures to properly characterize and define the material chemical and structural properties down to the nanometer level. This leads to many issues regarding material synthesis repeatability, inappropriateness choice of measurands and measurement reproducibility which heavily affect the consistency of the material performance. In our study, a comparative analysis is performed on two different series (G5 and G6) of industrial graphene powders, each series produced with four types of functionalization: raw graphene, oxygen-functionalized, nitrogen-functionalized and fluorine-functionalized. All the 8 sample variants were analyzed from a chemical and morphological point of view in the form of powders prepared as slightly pressed in metallic sample holders. The results of the comparative chemical analyses XPS and EDS show a good agreement in the concentration values for all the elements present in the samples, despite the different analysis volumes addressed by the two techniques. For this reason, the samples can be considered homogeneous in both lateral and vertical direction. A clear influence of the morphology on the composition is evident. Therefore, such correlative measurements of morphology and composition are necessary for a comprehensive characterization of industrial graphene flakes. KW - Graphene powder KW - XPS KW - HAXPES KW - SEM KW - EDS KW - Functionalized graphene PY - 2022 DO - https://doi.org/10.1017/S1431927622004342 SN - 1435-8115 VL - 28 IS - Suppl 1 SP - 1006 EP - 1008 PB - Cambridge University Press CY - New York, NY AN - OPUS4-55512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knigge, Xenia A1 - Guo, Z. A1 - Valsami-Jones, E. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Influence of Sterilization on the Surface of Nanoparticles Studied with XPS / HAXPES in Comparison to SEM / EDS N2 - Nanosafety is becoming increasingly important as nanomaterials are widely used in industrial processes and consumer products. For nanotoxicity measurements prior sterilization of the samples is necessary, but as structure activity relationships are made with properties of pristine particles, the question arises, if the sterilization process has an impact on the physico-chemical properties of nanoparticles and thus on the biological behavior. This question will be addressed in this talk. For this purpose, results from SEM and EDS measurements are combined with those of a novel lab-based HAXPES spectrometer in order to obtain a more complete picture. At the end, an influence of sterilization will be evident, which indicates a restructuring of the nanoparticles owing to sterilization. T2 - Microscopy & Microanalysis 2022 CY - Portland, USA DA - 31.07.2022 KW - XPS KW - HAXPES KW - SEM KW - EDS KW - Nanoparticles PY - 2022 DO - https://doi.org/10.1017/S1431927622004287 VL - 28 SP - 986 EP - 988 PB - Cambridge University Press AN - OPUS4-55352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -