TY - JOUR A1 - Liehr, Sascha A1 - Muanenda, Y. S. A1 - Münzenberger, Sven A1 - Krebber, Katerina T1 - Relative change measurement of physical quantities using dual-wavelength coherent OTDR JF - Optics Express N2 - We propose the use of alternating pulse wavelengths in a direct-detection coherent optical time domain reflectometry (C-OTDR) setup not only to measure strain and temperature changes but also to determine the correct algebraic sign of the change. The sign information is essential for the intended use in distributed mode shape analysis of civil engineering structures. Correlating relative backscatter signal shifts in the temporal/signal domain allows for measuring with correct magnitude and sign. This novel approach is simulated, experimentally implemented and demonstrated for temperature change measurement at a spatial resolution of 1 m. KW - Fiber optics sensors KW - Backscattering KW - Rayleigh KW - C-OTDR KW - Distributed sensing KW - Temperature measurement KW - Strain measurement PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-389449 DO - https://doi.org/10.1364/OE.25.000720 SN - 1094-4087 VL - 25 IS - 2 SP - 720 EP - 729 PB - Optical Society of America CY - Washington, DC, USA AN - OPUS4-38944 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pulz, Robert A1 - Rehmer, Birgit A1 - Skrotzki, Birgit T1 - Pyrometric temperature measurement of ceramic thermal shock samples JF - Measurement N2 - The determination of critical failure parameters during thermal shock requires a time and space resolved temperature measurement of the sample. High frequency pyrometry is a suitable technique for such a measurement task, which usually requires the knowledge of the optical properties of the investigated material. Another challenge is the infrared transparency of materials to be checked in the wavelength range of the pyrometer. The thermal shock disks are very thin, due to the need of homogeneous temperature distribution and to maintain a two-dimensional problem. To allow a pyrometric temperature measurement a universal calibration method for high frequency infrared cameras has been developed. Pyrometry in various media was demanded, as well as the estimation of optical properties (reflection, transmittance and emission) for the selected ceramics to be tested. KW - Temperature measurement KW - Ceramics KW - Emission coefficient KW - Radiation thermometry KW - Thermal shock PY - 2011 DO - https://doi.org/10.1016/j.measurement.2010.09.050 SN - 0263-2241 SN - 1873-412X VL - 44 IS - 1 SP - 259 EP - 266 PB - Elsevier Ltd. CY - London AN - OPUS4-22474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -