TY - JOUR A1 - Hajhariri, Aliasghar A1 - Eberwein, Robert A1 - Camplese, Davide A1 - Scarponi, Giordano Emrys A1 - Cozzani, Valerio A1 - Seidlitz, Holger T1 - Cryogenic storage safety: Experimental evaluation of insulation under extreme conditions N2 - Hydrogen is recognized as a keystone of the global energy transition, offering a clean, high-energy-density energy carrier ideal for storage and transportation. Among various storage options, liquid hydrogen (LH2) is especially advantageous for both mobile and stationary applications. However, ensuring the safety and performance of LH2 storage systems under extreme thermal conditions, such as fire exposure, remains an engineering challenge. This study introduces an experimental framework, called the Cryogenic High-Temperature Thermal Vacuum Chamber (CHTTVC), designed to investigate the thermal-hydraulic response of vacuum-insulated cryogenic tanks under fire-like conditions. The apparatus enables evaluation of insulation performance, such as perlite and multilayer insulation (MLI), with a focus on thermal degradation, heat ingress, and vacuum stability. Results indicate that combustible MLIs undergo substantial thermal degradation, leading to heat ingress rates of up to 6.5 kW and the formation of hazardous combustion by-products. In contrast, non-combustible MLIs and bulk insulation materials restrict heat ingress to approximately 3 kW while more effectively preserving vacuum integrity. Combustible MLIs also exhibit pronounced pressure increases in the evacuated section, reaching ∼6 × 104 Pa, nearly six times higher than those observed for non-combustible counterparts. Analysis of effective emissivity further reveals an enhancement in radiative heat transfer, approximately five times, for combustible MLIs following degradation. Additionally, marked thermal stratification develops under both nominal and extreme heat loads, with temperature gradients approaching 10 °C per 100 mm during sustained thermal exposure. KW - Multi-Layer Insulation KW - Cryogenic Storage KW - Safety PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-655380 DO - https://doi.org/10.1016/j.jlp.2026.105961 SN - 0950-4230 VL - 101 SP - 1 EP - 20 PB - Elsevier Ltd. AN - OPUS4-65538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Camplese, Davide A1 - Cozzolino, Chiara A1 - Scarponi, Giordano Emrys A1 - Eberwein, Robert A1 - Otremba, Frank A1 - Cozzani, Valerio T1 - Safety Assessment of MLI Super-Insulation Systems for Cryogenic Liquid-Hydrogen Tanks in Fire Scenarios N2 - In the context of green energy transition, cryogenic tanks insulated by MLI and vacuum are emerging as a leading solution to store hydrogen in heavy-duty vehicles. However, the integrity of such tanks can be jeopardized by fire. In such a scenario, MLI materials degradation can occur, leaving the tank unprotected from the fire heat flux, with consequent rapid pressurization and a high risk of failure. This study presents a safety assessment of non-combustible MLI under fire exposure based on the estimation of the time to mechanical failure of the equipment. This is calculated through an innovative model that simulates the thermomechanical response of the tank, including the MLI thermal degradation and the pressure-relief valve (PRV) operation. The application to several case studies that consider a typical LH2 tank featuring a wide range of MLI configurations demonstrated the likelihood of failure in case of exposure to a hydrocarbon pool fire, providing also comprehensive insights into the impact of the insulation characteristics and operating conditions on the time to failure. T2 - Loss Prevention 2025 CY - Bologna, Italien DA - 09.06.2025 KW - LH2 KW - LNG KW - Fire KW - Insulation KW - Safety KW - Tank PY - 2025 DO - https://doi.org/10.3303/CET25116036 SN - 2283-9216 IS - 116 SP - 211 EP - 216 PB - AIDIC AN - OPUS4-63739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eberwein, Robert A1 - Heßmann, Jennifer A1 - Werner, Jan A1 - Scarponi, Giordano Emrys A1 - Cozzani, Valerio A1 - Otremba, Frank T1 - Investigation of Realistic Fire Scenarios Involving Cryogenic Storage Tanks N2 - The number of vehicles using or transporting cryogenic fuels such as Liquefied Hydrogen (LH2) or Liquefied Natural Gas (LNG) increases fast in the land transportation sector. Does this also entail new risks for instance from a BLEVE? A key to answer this question is to research representative fires by its characterization and its effect on the insulation. At BAM’s technical test side in Germany, a test series was started to answer this question among others. This paper presents results on a pool fire under a colorimeter, that simulates a tank. The investigation points out, that the full fire characterization approach allows to represent the fire. The findings are relevant for the investigation of a representative design fire that is applicable for the approval and improvement of tanks as well as to research accident scenarios and their consequences. T2 - Loss Prevention 2025 CY - Bologna, Italien DA - 09.06.2025 KW - LH2 KW - LNG KW - Fire KW - Tank KW - Safety PY - 2025 DO - https://doi.org/10.3303/CET25116031 SN - 2283-9216 IS - 116 SP - 181 EP - 186 PB - AIDIC AN - OPUS4-63738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tamburini, Federica A1 - Kluge, Martin A1 - Habib, Abdel Karim A1 - Ustolin, Federico A1 - Cozzani, Valerio A1 - Paltrinieri, Nicola T1 - Exploring experimental tests concerning liquid hydrogen releases N2 - In recent years, the adoption of liquid hydrogen (LH2) has increased significantly in industrial and transport applications, driven by its low carbon footprint, thereby aiding the fight against global warming. Additionally, its high volumetric energy density, compared to gaseous or compressed hydrogen, enhances hydrogen storage capabilities. However, safety remains a major concern due to its physical-chemical properties and inherent hazardous characteristics, especially in the event of spillage scenarios. Therefore, to better understand the consequences of LH2 releases onto or into water, large-scale experimental tests were conducted by Bundesanstalt für Materialforschung und -prüfung (BAM) within the Safe Hydrogen Fuel Handling and Use for Efficient Implementation (SH2IFT) project at the Test Site Technical Safety of BAM, comprising 75 single spill events at varied release rates and orientations. While the rapid phase transition (RPT) phenomenon was not observed, selfignition of the hydrogen-air cloud occurred, accompanied by blast wave overpressure and heat radiation, without a discernible ignition source. These findings emphasize the need for further investigation into LH2 safety. Leveraging experimental data for real-world applications provides insights into safe LH2 infrastructure implementation, laying foundational knowledge for addressing safety challenges and advancing LH2 technology. KW - Liquid Hydrogen KW - Rapid phase transition KW - Ignition KW - Safety PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-618644 DO - https://doi.org/10.1016/j.psep.2024.11.014 SN - 0957-5820 VL - 192 SP - 1330 EP - 1343 PB - Elsevier CY - Amsterdam AN - OPUS4-61864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Camplese, Davide A1 - Scarponi, Giordano Emrys A1 - Chianese, Carmela A1 - Hajhariri, Aliasghar A1 - Eberwein, Robert A1 - Otremba, Frank A1 - Cozzani, Valerio T1 - Modeling the performance of multilayer insulation in cryogenic tanks undergoing external fire scenarios N2 - Multilayer Insulation (MLI) is frequently used in vacuum conditions for the thermal insulation of cryogenic storage tanks. The severe consequences of the degradation of such materials in engulfing fire scenarios were recently evidenced by several large-scale experimental tests. In the present study, an innovative modelling approach was developed to assess the performance of heat transfer in polyester-based MLI materials for cryogenic applications under fire conditions. A specific layer-by-layer approach was integrated with an apparent kinetic thermal degradation model based on thermogravimetric analysis results. The modeling results provided a realistic simulation of the experimental data obtained by High-Temperature Thermal Vacuum Chamber tests reproducing fire exposure conditions. The model was then applied to assess the behavior of MLI systems for liquid hydrogen tanks in realistic fire scenarios. The results show that in intense fire scenarios degradation occurs rapidly, compromising the thermal insulation performances of the system within a few minutes. KW - Multilayer Insulation KW - Cryogenic Vessels KW - Liquefied Hydrogen KW - Liquefied Natural Gas KW - Safety KW - Fire PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599418 DO - https://doi.org/10.1016/j.psep.2024.04.061 SN - 0957-5820 VL - 186 SP - 1169 EP - 1182 PB - Elsevier B.V. AN - OPUS4-59941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Colmenares, Daniel A1 - Costa, Giancarlo A1 - Civera, Marco A1 - Surace, Cecilia A1 - Karoumi, Raid T1 - Quantification of the human–structure interaction effect through full-scale dynamic testing: The Folke Bernadotte Bridge N2 - An analytical expression for the frequency response function of a coupled pedestrian-bridge system is presented and evaluated using an experimental measurement campaign performed on the Folke Bernadotte Bridge in Stockholm, Sweden. A finite element model and the modal models that consider the human–structure interaction effect are calibrated with respect to the measurements. The properties of the spring–mass–damper model representing the pedestrians were identified, considering the different structural modes of the system. Good agreement was obtained between the experimental and theoretical frequency response functions. A sensitivity analysis of the obtained solution was performed, validating the determined analytical expression for the frequency response function of the coupled pedestrian-bridge system that takes into account the human–structure interaction effect. KW - Safety KW - Building and Construction KW - Architecture KW - Civil and Structural Engineering KW - Risk KW - Reliability KW - Quality PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584038 DO - https://doi.org/10.1016/j.istruc.2023.06.133 SN - 2352-0124 VL - 55 SP - 2249 EP - 2265 PB - Elsevier AN - OPUS4-58403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jankuj, V. A1 - Spitzer, Stefan A1 - Krietsch, Arne A1 - Bernatik, A. T1 - Safety of Alternative Energy Sources: a Review N2 - The article summarizes a short review of the literature focused on safety in the field of alternative energy sources. With an increasing orientation towards sustainable and renewable energy sources, new technologies will come to the fore. These facts must be demonstrated in occupational health and safety. Several studies focused on alternative energy sources are mentioned and show the trends for the future. Especially in the area of hydrogen and battery technologies, systems should pay attention to acquisitions as a normal part of our lives. Safety research is essential for the acceptance of cleaner, efficient, and sustainable future. T2 - Loss Prevention CY - Prag, Czechia DA - 06.06.2022 KW - Safety KW - Alternative Energy Sources PY - 2022 DO - https://doi.org/10.3303/CET2290020 SN - 2283-9216 VL - 90 SP - 115 EP - 120 PB - AIDIC CY - Milano AN - OPUS4-55030 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kunc, F. A1 - Nirmalananthan-Budau, Nithiya A1 - Rühle, Bastian A1 - Sung, Y. A1 - Johnston, L.J. A1 - Resch-Genger, Ute T1 - Interlaboratory Comparison on the Quantification of Total and Accessible Amine Groups on Silica Nanoparticles with qNMR and Optical Assays N2 - Risk assessment of nanomaterials requires not only standardized toxicity studies but also validated methods for nanomaterial surface characterization with known uncertainties. In this context, a first bilateral interlaboratory comparison on Surface group quantification of nanomaterials is presented that assesses different reporter-free and labeling methods for the quantification of the total and accessible number of amine functionalities on commercially available silica nanoparticles that are widely used in the life sciences. The overall goal of this comparison is the identification of optimum methods as well as achievable measurement uncertainties and the comparability of the results across laboratories. We also examined the robustness and ease of implementation of the applied analytical methods and discussed method-inherent limitations. In summary, this comparison presents a first step toward the eventually required standardization of methods for surface group quantification. KW - Nano KW - Nanomaterial KW - Surface KW - Method KW - QNMR KW - Quantification KW - Comparison KW - Quality assurance KW - Optical probe KW - Sensor KW - Interlabority comparison KW - Standardization KW - Optical assay KW - Functional group analysis KW - Silica KW - Particle KW - Safety KW - Environment PY - 2021 DO - https://doi.org/10.1021/acs.analchem.1c02162 SN - 1520-6882 VL - 93 IS - 46 SP - 15271 EP - 15278 PB - ASC Publications AN - OPUS4-53818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ogrinc, N. A1 - Rossi, A. M. A1 - Durbiano, F. A1 - Becker, Roland A1 - Milavec, M. A1 - Bogozalec Kosir, A. A1 - Kakoulides, E. A1 - Ozer, H. A1 - Akcadag, F. A1 - Goenaga-Infante, H. A1 - Quaglia, M. A1 - Mallia, S. A1 - Umbricht, G. A1 - O'Connor, G. A1 - Guettler, B. T1 - Support for a European metrology network on food safety Food-MetNet N2 - This paper describes Food-MetNet, a coordinated preparatory initiative to establish the European Metrology Network on Food Safety (EMN-FS). Food-MetNet aims to establish a long-term ongoing dialogue between the metrology community and relevant stakeholders, in particular, European Union Reference Laboratories (EURLs), National Reference Laboratories (NRLs) and the Joint Research Centre (JRC). This dialogue is meant to support the collection of needs from stakeholders, the take-up of metrological research output and the development of the roadmaps needed to navigate future research. KW - Network KW - Metrology KW - Food KW - Safety KW - Stakeholders PY - 2021 DO - https://doi.org/10.1016/j.measen.2021.100285 VL - 18 SP - 1 EP - 4 PB - Elsevier AN - OPUS4-53740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiesner, Anja A1 - Krentel, Daniel A1 - Patzelt, Anne-Katrin T1 - InnoBOSK - Neues Netzwerk für besser abgestimmte zivile Sicherheitstechnik N2 - Innovative Lösungen im Bereich der zivilen Sicherheitstechnologie müssen sehr genau auf die Ansprüche der Endanwender*innen abgestimmt werden. Das vom Bundesministerium für Bildung und Forschung (BMBF) geförderte Innovationsforum InnoBOSK der Bundesanstalt für Materialforschung und -prüfung (BAM) ermöglicht erstmalig die Vernetzung von Behörden und Organisationen mit Sicherheitsaufgaben (BOS) mit kleinen und mittleren Unternehmen (KMU). Während verschiedener Workshops, einer zweitägigen Konferenz und auf der digitalen Plattform des Projekts können Anbieter*innen und Endanwender*innen technischer Ausstattung in der zivilen Gefahrenabwehr in Kontakt treten. KW - BOS KW - KMU KW - Netzwerk KW - Security KW - Safety PY - 2021 SN - 0948-7913 VL - 52 IS - 2/2021 SP - 35 EP - 38 PB - Walhalla Fachverlag CY - Regensburg AN - OPUS4-53594 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -