TY - JOUR A1 - Camplese, Davide A1 - Scarponi, Giordano Emrys A1 - Chianese, Carmela A1 - Hajhariri, Aliasghar A1 - Eberwein, Robert A1 - Otremba, Frank A1 - Cozzani, Valerio T1 - Modeling the performance of multilayer insulation in cryogenic tanks undergoing external fire scenarios JF - Process Safety and Environmental Protection N2 - Multilayer Insulation (MLI) is frequently used in vacuum conditions for the thermal insulation of cryogenic storage tanks. The severe consequences of the degradation of such materials in engulfing fire scenarios were recently evidenced by several large-scale experimental tests. In the present study, an innovative modelling approach was developed to assess the performance of heat transfer in polyester-based MLI materials for cryogenic applications under fire conditions. A specific layer-by-layer approach was integrated with an apparent kinetic thermal degradation model based on thermogravimetric analysis results. The modeling results provided a realistic simulation of the experimental data obtained by High-Temperature Thermal Vacuum Chamber tests reproducing fire exposure conditions. The model was then applied to assess the behavior of MLI systems for liquid hydrogen tanks in realistic fire scenarios. The results show that in intense fire scenarios degradation occurs rapidly, compromising the thermal insulation performances of the system within a few minutes. KW - Multilayer Insulation KW - Cryogenic Vessels KW - Liquefied Hydrogen KW - Liquefied Natural Gas KW - Safety KW - Fire PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599418 DO - https://doi.org/10.1016/j.psep.2024.04.061 SN - 0957-5820 VL - 186 SP - 1169 EP - 1182 PB - Elsevier B.V. AN - OPUS4-59941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Colmenares, Daniel A1 - Costa, Giancarlo A1 - Civera, Marco A1 - Surace, Cecilia A1 - Karoumi, Raid T1 - Quantification of the human–structure interaction effect through full-scale dynamic testing: The Folke Bernadotte Bridge JF - Structures N2 - An analytical expression for the frequency response function of a coupled pedestrian-bridge system is presented and evaluated using an experimental measurement campaign performed on the Folke Bernadotte Bridge in Stockholm, Sweden. A finite element model and the modal models that consider the human–structure interaction effect are calibrated with respect to the measurements. The properties of the spring–mass–damper model representing the pedestrians were identified, considering the different structural modes of the system. Good agreement was obtained between the experimental and theoretical frequency response functions. A sensitivity analysis of the obtained solution was performed, validating the determined analytical expression for the frequency response function of the coupled pedestrian-bridge system that takes into account the human–structure interaction effect. KW - Safety KW - Building and Construction KW - Architecture KW - Civil and Structural Engineering KW - Risk KW - Reliability KW - Quality PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584038 DO - https://doi.org/10.1016/j.istruc.2023.06.133 SN - 2352-0124 VL - 55 SP - 2249 EP - 2265 PB - Elsevier AN - OPUS4-58403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jankuj, V. A1 - Spitzer, Stefan A1 - Krietsch, Arne A1 - Bernatik, A. T1 - Safety of Alternative Energy Sources: a Review JF - Chemical Engineering Transactions N2 - The article summarizes a short review of the literature focused on safety in the field of alternative energy sources. With an increasing orientation towards sustainable and renewable energy sources, new technologies will come to the fore. These facts must be demonstrated in occupational health and safety. Several studies focused on alternative energy sources are mentioned and show the trends for the future. Especially in the area of hydrogen and battery technologies, systems should pay attention to acquisitions as a normal part of our lives. Safety research is essential for the acceptance of cleaner, efficient, and sustainable future. T2 - Loss Prevention CY - Prag, Czechia DA - 06.06.2022 KW - Safety KW - Alternative Energy Sources PY - 2022 DO - https://doi.org/10.3303/CET2290020 SN - 2283-9216 VL - 90 SP - 115 EP - 120 PB - AIDIC CY - Milano AN - OPUS4-55030 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kunc, F. A1 - Nirmalananthan-Budau, Nithiya A1 - Rühle, Bastian A1 - Sung, Y. A1 - Johnston, L.J. A1 - Resch-Genger, Ute T1 - Interlaboratory Comparison on the Quantification of Total and Accessible Amine Groups on Silica Nanoparticles with qNMR and Optical Assays JF - Analytical chemistry N2 - Risk assessment of nanomaterials requires not only standardized toxicity studies but also validated methods for nanomaterial surface characterization with known uncertainties. In this context, a first bilateral interlaboratory comparison on Surface group quantification of nanomaterials is presented that assesses different reporter-free and labeling methods for the quantification of the total and accessible number of amine functionalities on commercially available silica nanoparticles that are widely used in the life sciences. The overall goal of this comparison is the identification of optimum methods as well as achievable measurement uncertainties and the comparability of the results across laboratories. We also examined the robustness and ease of implementation of the applied analytical methods and discussed method-inherent limitations. In summary, this comparison presents a first step toward the eventually required standardization of methods for surface group quantification. KW - Nano KW - Nanomaterial KW - Surface KW - Method KW - QNMR KW - Quantification KW - Comparison KW - Quality assurance KW - Optical probe KW - Sensor KW - Interlabority comparison KW - Standardization KW - Optical assay KW - Functional group analysis KW - Silica KW - Particle KW - Safety KW - Environment PY - 2021 DO - https://doi.org/10.1021/acs.analchem.1c02162 SN - 1520-6882 VL - 93 IS - 46 SP - 15271 EP - 15278 PB - ASC Publications AN - OPUS4-53818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ogrinc, N. A1 - Rossi, A. M. A1 - Durbiano, F. A1 - Becker, Roland A1 - Milavec, M. A1 - Bogozalec Kosir, A. A1 - Kakoulides, E. A1 - Ozer, H. A1 - Akcadag, F. A1 - Goenaga-Infante, H. A1 - Quaglia, M. A1 - Mallia, S. A1 - Umbricht, G. A1 - O'Connor, G. A1 - Guettler, B. T1 - Support for a European metrology network on food safety Food-MetNet JF - Measurement: Sensors N2 - This paper describes Food-MetNet, a coordinated preparatory initiative to establish the European Metrology Network on Food Safety (EMN-FS). Food-MetNet aims to establish a long-term ongoing dialogue between the metrology community and relevant stakeholders, in particular, European Union Reference Laboratories (EURLs), National Reference Laboratories (NRLs) and the Joint Research Centre (JRC). This dialogue is meant to support the collection of needs from stakeholders, the take-up of metrological research output and the development of the roadmaps needed to navigate future research. KW - Network KW - Metrology KW - Food KW - Safety KW - Stakeholders PY - 2021 DO - https://doi.org/10.1016/j.measen.2021.100285 VL - 18 SP - 1 EP - 4 PB - Elsevier AN - OPUS4-53740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiesner, Anja A1 - Krentel, Daniel A1 - Patzelt, Anne-Katrin T1 - InnoBOSK - Neues Netzwerk für besser abgestimmte zivile Sicherheitstechnik JF - Notfallvorsorge – Die Zeitschrift für Bevölkerungsschutz und Katastrophenhilfe N2 - Innovative Lösungen im Bereich der zivilen Sicherheitstechnologie müssen sehr genau auf die Ansprüche der Endanwender*innen abgestimmt werden. Das vom Bundesministerium für Bildung und Forschung (BMBF) geförderte Innovationsforum InnoBOSK der Bundesanstalt für Materialforschung und -prüfung (BAM) ermöglicht erstmalig die Vernetzung von Behörden und Organisationen mit Sicherheitsaufgaben (BOS) mit kleinen und mittleren Unternehmen (KMU). Während verschiedener Workshops, einer zweitägigen Konferenz und auf der digitalen Plattform des Projekts können Anbieter*innen und Endanwender*innen technischer Ausstattung in der zivilen Gefahrenabwehr in Kontakt treten. KW - BOS KW - KMU KW - Netzwerk KW - Security KW - Safety PY - 2021 SN - 0948-7913 VL - 52 IS - 2/2021 SP - 35 EP - 38 PB - Walhalla Fachverlag CY - Regensburg AN - OPUS4-53594 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hilgenberg, Kai A1 - Daum, Werner A1 - Maierhofer, Christiane A1 - Altenburg, Simon A1 - Bruno, Giovanni A1 - Heckel, Thomas A1 - Skrotzki, Birgit A1 - Zerbst, Uwe A1 - Kranzmann, Axel A1 - Bettge, Dirk A1 - Sommer, Konstantin A1 - Seeger, Stefan A1 - Nitsche, Michael A1 - Günster, Jens A1 - Evans, Alexander T1 - Additive manufacturing at the BAM: We focus on Safety JF - Advanced Materials and Processes N2 - In Germany, the Federal Institute for Materials Research and Testing (BAM) is addressing challenges in the implementation of additive manufacturing on the industrial landscape for safety-critical applications. KW - Process development KW - Additive Manufacturing KW - In-situ Process Monitoring KW - Non-destructive Materials KW - Characterisation KW - Safety KW - Fatigue KW - Environment KW - Standardisation PY - 2019 UR - https://static.asminternational.org/amp/201910/22/ SN - 0882-7958 VL - 177 IS - 7 SP - 22 EP - 26 PB - ASM International CY - Materials Park, OH, USA AN - OPUS4-49780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liebner, Christian A1 - Shenton, M. T1 - Identifying hazardous conditions for compression heat igniting the chemically unstable gas Tetrafluoroetyhlene in industrial scale JF - Chemical engineering transactions N2 - Tetrafluoroethylene (TFE) is an industrial scale starting material e.g. for polymer production (PTFE, FEP). When ignited the chemically unstable TFE is capable of decomposing in an explosive way. Explosion propagation through pipe systems of production plants have led to damage and fatalities within the last seven decades. Incident analyses identified compression heat a relevant source of ignition. Chemical plants consist of pipes, vessels, separating valves, strainers and other components. Before restarting the process after maintenance work, different parts of the plant components could be filled with TFE, nitrogen or air at different initial pressures ranging from vacuum or atmospheric to TFE at operating pressure. Valve opening procedures may cause a temperature increase in the gas phase. Compression takes place at polytropic conditions. Heat losses cannot be neglected. The temperature development in the gas depends upon the surface to volume ratio of the enclosure, geometrical influences, the state of gas flow, how fast the valve opens, and the heat capacity of the gas being compressed. Laboratory scale tests (Meyer, 2009) revealed ignition of TFE/air due to compression heat. Tests in pipes of 28 mm inner diameter, i.e. already industrial scale, were performed by (Kluge et. al., 2016). In the present contribution initial test results from a 63 mm pipe will be compared with existing 28 mm pipe data. A description of the experimental setup as well as an explanation of the hazard diagram will be given. Furthermore, a method allowing for the identification of hazardous conditions will be discussed. T2 - Konferenz LossPrevention 20149 CY - Delft, Netherlands DA - 16.06.2019 KW - Tetrafluoroethylene KW - Explosion KW - Safety PY - 2019 UR - https://www.aidic.it/cet/19/77/000.html SN - 978-88-95608-74-7 DO - https://doi.org/10.3303/CET1977026 SN - 2283-9216 VL - 77 SP - 151 EP - 156 PB - AIDIC - Associazione Italiana di Ingegneria Chimica CY - Milano AN - OPUS4-49564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hofmann-Böllinghaus, Anja A1 - van Hees, P. T1 - Editorial façade fire safety JF - Fire and Materials N2 - This Special Issue of Fire and Materials brings together a collection of papers that were presented at the 2016 Interflam conference in the Fire & Facades session along with recent submissions to the Fire and Materials Journal that are very relevant to the Fire and Facades subject. Having attended the Interflam conference, all Fire and Materials Journal editors who attended realised the importance of this topic. We felt it important that this session content would both be reviewed and made available to a wider audience and that it was timely that we featured this increasing important topic in our journal. Accordingly, authors of selected papers were invited to update and extend their papers for journal submission, and other appropriate peer review papers subsequently submitted to the Journal were included in the collection. KW - Fire KW - Safety KW - Facade PY - 2018 DO - https://doi.org/10.1002/fam.2663 SN - 0308-0501 SN - 1099-1018 VL - 42 IS - 5 SP - 465 EP - 465 PB - Wiley CY - Weinheim AN - OPUS4-45748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Ben A1 - Mair, Georg T1 - Risks and safety level of composite cylinders JF - International Journal of Hydrogen Energy N2 - The increasing amount of composite transport systems for hydrogen leads to new and therefore unknown potential hazards for general public. Due to lack of experience, risks of new technologies tend to be rated higher than existing familiar applications. An approach for probabilistic safety assessment of technologies or products requires the definition of minimal acceptable reliability levels. This ensures that the probability of a critical failure with a certain consequence is limited to an acceptable risk. But what is the acceptable risk and which risk results from specific probabilities of occurrence and consequences? This is always a very complex question. The following example is based on a probabilistic approach for safety assessment of composite cylinders developed at the BAM (Federal Institute for Materials Research and Testing). KW - Reliability KW - Cylinder KW - Safety KW - Consequence PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0360319917303117 DO - https://doi.org/10.1016/j.ijhydene.2017.01.145 SN - 0360-3199 SN - 1879-3487 VL - 42 IS - 19 SP - 13810 EP - 13817 PB - Elsevier Ltd. AN - OPUS4-40691 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -