TY - JOUR A1 - Bertin, Annabelle T1 - Emergence of polymer stereocomplexes for biomedical applications JF - Macromolecular chemistry and physics N2 - Polylactide (PLA) and poly(methyl methacrylate) (PMMA) constitute, already for several decades, the gold standards for various biomedical applications due to their biocompatibility/inertness. Moreover, they have an additional property: they can form stereocomplexes (SCs) that have a more compact crystalline structure than the individual components. As a result, polymer SCs display improved thermal and mechanical properties, as well as delayed drug release and biodegradation rate in the case of drug delivery systems and biomaterials based on PLA, which is of prime importance in the biomedical field. In this article, the potential of SCs for biomedical applications in the areas of drug delivery, tissue engineering, and nanostructured surfaces is highlighted. KW - Biomedical applications of polymers KW - Polylactide KW - Poly(methyl methacrylate) KW - Self-assembly KW - Stereocomplexation PY - 2012 DO - https://doi.org/10.1002/macp.201200143 SN - 1022-1352 SN - 1521-3935 VL - 213 IS - 22 SP - 2329 EP - 2352 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-27212 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Weiß, André T1 - Temperature inside burning polymer specimens: Pyrolysis zone and shielding JF - Fire and materials N2 - On the basis of two examples, temperature measurements are proposed within burning polymer specimen during the cone calorimeter test; especially to gain deeper insight into the actual pyrolysis conditions and flame retardancy mechanism. The heating and pyrolysis within a poly(methyl methacrylate) specimen were characterized, discussing the characteristic maximum heating rates (165-90°Cmin-1 decreasing with depth within the specimen and >275°Cmin-1 at the initial surface), pyrolysis temperature (454-432°C decreasing in accordance with decreasing heating rates), thickness of the pyrolysis zone (0.5-1.3 mm) and its velocity (1.2-2.1 mm min-1) as a function of sample depth and burning time. Thermally thick behaviour corresponds to a pyrolysis zone thickness of 0.74 mm and a velocity of 1.51 mm min-1 and occurs until the remaining specimen thickness is less than 8 mm. The shielding effect against radiation occurring in a layered silicate epoxy resin nanocomposite was investigated. It is the main flame retardancy effect of the silicate-carbon surface layer formed under fire. The reradiation from the hot surface is increased by a factor of around 4-5 when an irradiance of 70kWm-2 is applied. The energy impact into the pyrolysis zone is crucially reduced, resulting in a reduction of fuel production and thus heat release rate. KW - Cone calorimeter KW - Pyrolysis KW - Nanocomposite KW - Poly(methyl methacrylate) KW - Pyrolysis zone KW - Pyrolysis front KW - Shielding effect PY - 2010 DO - https://doi.org/10.1002/fam.1007 SN - 0308-0501 SN - 1099-1018 VL - 34 IS - 5 SP - 217 EP - 235 PB - Heyden CY - London AN - OPUS4-21724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Park, S.-C. A1 - Tuma, Dirk A1 - Kim, S A1 - Lee, Y.R. A1 - Shim, J.-J. T1 - Sorption of C. I. disperse red 60 in polystyrene and PMMA films and polyester and nylon 6 textiles in the presence of supercritical carbon dioxide JF - Korean journal of chemical engineering KW - Supercritical fluid dyeing KW - Supercritical carbon dioxide KW - C.I. disperse red 60 KW - Poly(methyl methacrylate) KW - Polystyrene KW - Polyester KW - Nylon KW - Sorption KW - Überkritische Fluide PY - 2010 DO - https://doi.org/10.2478/s11814-010-0098-6 SN - 0256-1115 VL - 27 IS - 1 SP - 299 EP - 309 PB - Inst. CY - Seoul AN - OPUS4-20815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -