TY - JOUR A1 - Schilling, Markus A1 - Marschall, Niklas A1 - Niebergall, Ute A1 - Wachtendorf, Volker A1 - Böhning, Martin T1 - Unveiling Effects of Biodiesel and Diesel on Environmental Stress Cracking of PE-HD N2 - The behavior of high‐density polyethylene with respect to resistance against environmental stress cracking (ESC) is usually regarded as an inherent material property being specific for respective types of PE‐HD and tested using standardized methods, conditions, and also standard testing liquids (usually aqueous surfactant solutions). On the other hand, for practical applications the ESC behavior of those polymeric materials, commonly used for pipes or containers, in contact with other liquids (e.g., fuels) is often of relevant interest, but for a reasonable assessment, where consistent benchmark data for a direct comparison are often missing, it is essential to determine the actually prevailing failure mode and classify it related to crack propagation or other mechanisms. Using the well‐established Full Notch Creep Test, which favorably allows for a detailed microscopic fracture surface analysis after failure, the behavior of two typical PE‐HD types for container applications is investigated in biodiesel and diesel and compared to a standard surfactant solution. This enables a clear identification of characteristic features of the interaction of biodiesel and diesel as sorptive fuels in contact with the polymer, revealing the complex interplay of sorption and plasticization as well as ESC inducing effects on PE‐HD, which could be clearly shown for both fuels. KW - Biodiesel KW - Confocal laser scanning microscopy (LSM) KW - Diesel KW - Full notch creep test (FNCT) KW - Plasticization PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-650525 DO - https://doi.org/10.1002/pen.70239 SN - 0032-3888 SP - 1 EP - 16 PB - Wiley CY - Hoboken (NJ) AN - OPUS4-65052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hölck, Ole A1 - Böhning, Martin A1 - Heuchel, M. A1 - Siegert, M.R. T1 - Gas-induced structural changes in polymeric membrane materials combining experiment, phenomenological models and simulation KW - Polymer KW - Gas transport KW - Dilation KW - Plasticization KW - Free volume molecular modelling PY - 2006 DO - https://doi.org/10.1016/j.desal.2006.03.283 SN - 0011-9164 VL - 200 IS - 1-3 SP - 166 EP - 168 PB - Elsevier CY - Amsterdam AN - OPUS4-13730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heuchel, M. A1 - Böhning, Martin A1 - Hölck, Ole A1 - Siegert, M.R. A1 - Hofmann, D. T1 - Atomistic Packing Models for Experimentally Investigated Swelling States Induced by CO2 in Glassy Polysulfone and Poly(ether sulfone) N2 - Atomistic packing models have been created, which help to better understand the experimentally observed swelling behavior of glassy polysulfone and poly (ether sulfone), under CO2 gas pressures up to 50 bar at 308 K. The experimental characterization includes the measurement of the time-dependent volume dilation of the polymer samples after a pressure step and the determination of the corresponding gas concentrations by gravimetric gas-sorption measurements. The models obtained by force-field-based molecular mechanics and molecular dynamics methods allow a detailed atomistic analysis of representative swelling states of polymer/gas systems, with respect to the dilation of the matrix. Also, changes of free volume distribution and backbone mobility are accessible. The behavior of gas molecules in unswollen and swollen polymer matrices is characterized in terms of sorption, diffusion, and plasticization. KW - Molecular modeling KW - Volume dilation KW - Gas sorption KW - Poly(ether sulfones) KW - Free volume KW - Swelling KW - Molecular dynamics KW - Diffusion KW - Plasticization PY - 2006 DO - https://doi.org/10.1002/polb.20844 SN - 0887-6266 SN - 1099-0488 VL - 44 IS - 13 SP - 1874 EP - 1897 PB - Wiley CY - Hoboken, NJ AN - OPUS4-12398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -