TY - JOUR
A1 - Homann, Christian
A1 - Peeters, Régis
A1 - Mirmajidi, Hana
A1 - Berg, Jessica
A1 - Fay, Michael
A1 - Rodrigues, Lucas Carvalho Veloso
A1 - Radicchi, Eros
A1 - Jain, Akhil
A1 - Speghini, Adolfo
A1 - Hemmer, Eva
T1 - Rapid microwave-assisted synthesis of morphology-controlled luminescent lanthanide-doped Gd2O2S nanostructures
N2 - Gadolinium oxysulfide (Gd2O2S) is an attractive material of demonstrated suitability for a variety of imaging applications, leveraging its magnetic, scintillating, and luminescent properties, particularly when doped with optically active lanthanide ions (Ln3+). For many of these applications, control over size and morphology at the nanoscale is crucial. This study demonstrates the rapid microwave-assisted Synthesis of colloidal Ln2O2S (Ln = Gd and dopants Yb, Er, Tb) nanostructures in as little as 20 min. Structural characterization using X-ray diffraction analysis (XRD), Raman spectroscopy, as well as Transmission electron microscopy (TEM), including elemental mapping via energy dispersive X-ray spectroscopy (EDS), unveiled the key role of elemental sulphur (S8) in the reaction mixtures for materials growth. By systematically varying the Ln-to-S ratio from 1 : 0.5 to 1 : 15, controlled morphologies ranging from triangular nanoplatelets to berry- and flower-like shapes were achieved. Doping with Er3+/Yb3+ endowed the nano-triangles with upconverting and near-infrared emitting properties. Tb3+-doped Gd2O2S exhibited the characteristic green Tb3+ emission under UV excitation, while also showing X-ray excited optical luminescence (XEOL), rendering the material interesting as a potential nano-scintillator.
KW - Upconversion
KW - Microwave-assisted synthesis
KW - Synthesis
KW - Fluorescence
KW - Nano
KW - Particle
KW - NIR
KW - XRD
KW - X-ray fluoressence
KW - Morphology control
KW - Raman
PY - 2025
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647907
DO - https://doi.org/10.1039/D5TC01646K
SN - 2050-7526
VL - 13
IS - 35
SP - 18492
EP - 18507
PB - Royal Society of Chemistry (RSC)
AN - OPUS4-64790
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Rabin, Ira
ED - Binder, J.
T1 - The marginal notes of Tosefta MS Erfurt
N2 - Manuscript Erfurt 12 of the Tosefta (now Berlin, Staatsbibliothek, Ms. or. fol. 1220) is one of three major textual witnesses of the Tosefta. This manuscript has over 80 marginal notes which have not merited scholarly attention. This article presents a comprehensive analysis of all the marginal notes, including an evaluation of their ink composition, a palaeographic assessment of the scripts, as well as a philological assessment of their contents. Combining these methodologies differentiates between the glosses of the scribe and those added by later hands and identifies their provenance, allowing us to trace the history of the manuscript via the emendations that took place in the scholarly communities in which the manuscript was studied. One of the important outcomes of the research is an early dating of the manuscript to eleventh-century Italy, overturning the scholarly view which dates the manuscript to twelfth-century Rhineland
KW - Hebrew Manuscripts
KW - Ink
KW - NIR
KW - XRF
PY - 2025
DO - https://doi.org/10.3828/jjs.2025.76.2.272
SN - 0022-2097
VL - 76
IS - 2
SP - 272
EP - 300
AN - OPUS4-64770
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Kossatz, Philipp
A1 - Mezhov, Alexander
A1 - Andresen, Elina
A1 - Prinz, Carsten
A1 - Schmidt, Wolfram
A1 - Resch-Genger, Ute
T1 - Assessing the Applicability of Lanthanide-Based Upconverting Nanoparticles for Optically Monitoring Cement Hydration and Tagging Building Materials
N2 - Chemically stable, lanthanide-based photon upconversion micro- and nanoparticles (UCNPs) with their characteristic multicolor emission bands in the ultraviolet (UV), visible (vis), near-infrared (NIR), and short-wave infrared (SWIR) arepromising optical reporters and barcoding tags. To assess the applicability of UCNPs for the monitoring of early stage cement hydration processes and as authentication tags for cementitious materials, we screened the evolution of the luminescence of Selfmade core-only NaYF4:Yb,Er UCNPs and commercial μm-sized Y2O2S:Yb,Er particles during the first stages of cement hydration, which largely determines the future properties of the hardened material. Parameters explored from the UCNP side included particle size, morphology, surface chemistry or coating, luminescence properties, and concentration in different cement mixtures. From the cement side, the influence of the mineral composition of the cement matrix was representatively examined for ordinary Portland cement (OPC) and its constituents tricalcium aluminate (C3A), tricalcium silicate (C3S), and gypsum at different water to cement ratios. Based on reflection and luminescence measurements, enabling online monitoring, which were complemented by XRD and isothermal heat-flow calorimetric measurements to determine whether the incorporation of these particles could impair cement hydration processes, well suited lanthanide particle reporters could be identified as well as application conditions. In addition, thereby the reporter influence on cement hydration kinetics could be minimized while still preserving a high level of information content. The best performance for the luminescence probing of changes during early stage cement hydration processes was observed for 25 nm-sized oleate (OA)-coated UCNPs added in a concentration of 0.1 wt %. Higher UCNP amounts of 1.0 wt % delayed cement hydration processes size- and surface coatingspecifically in the first 24 h. Subsequent luminescence stability screening studies performed over a period of about one year support the applicability of UCNPs as optical authentication tags for construction materials.
KW - Quality assurance
KW - Fluorescence
KW - Nano
KW - Particle
KW - Synthesis
KW - Quantum yield
KW - NIR
KW - Mechanism
KW - Characterization
KW - XRD
KW - Calorimetry
KW - Advanced material
KW - Cement
KW - Monitoring
KW - Surface
KW - Size
KW - Lifetime
KW - Barcode
KW - Lanthanide
KW - Upconversion
KW - Encoding
KW - Method
PY - 2025
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-638318
DO - https://doi.org/10.1021/acsomega.5c02236
SN - 2470-1343
VL - 10
IS - 29
SP - 31587
EP - 31599
PB - ACS Publications
CY - Washington, DC
AN - OPUS4-63831
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Osiopova, Viktoriia
A1 - Tavernaro, Isabella
A1 - Ge, L.
A1 - Kitzmann, W. R.
A1 - Heinze, K.
A1 - Reithofer, M. R.
A1 - Resch-Genger, Ute
T1 - Complete protection of NIR-luminescent molecular rubies from oxygen quenching in air by L-arginine-mediated silica nanoparticles
N2 - The application of emerging luminophores such as near-infrared (NIR) emissive complexes based on earth-abundant chromium as central ion and triplet-triplet annihilation upconversion (TTA-UC) systems in air as optical reporters for bioimaging or photonic materials for energy conversion requires simple and efficient strategies for their complete protection from uminescence quenching by oxygen. Therefore, we explored the influence of sol–gel synthesis routes on the oxygen protection efficiency of the resulting core and core/shell silica nanoparticles (SiO2 NPs), utilizing the molecular ruby-type luminophores CrPF6 ([Cr(ddpd)2](PF6)3; ddpd = N,N'-dimethyl-N,N'-dipyridin-2-ylpyridin-2,6-diamine) and CrBF4 ([Cr(ddpd)2](BF4)3) with their oxygendependent, but polarity-, proticity-, viscosity-, and concentration-independent luminescence as optical probes for oxygen permeability. The sol–gel chemistry routes we assessed include the classical Stöber method and the underexplored Larginine approach, which relies on the controlled hydrolysis of tetraethoxysilane (TEOS) in a biphasic cyclohexane/water system with the catalyst L-arginine. As demonstrated by luminescence measurements of air- and argon-saturated dispersions of CrPF6- and CrBF4-stained SiO2 NPs of different size and particle architecture, utilizing the luminescence decay kinetics of argon-saturated solutions of CrPF6 and CrBF4 in acetonitrile (ACN) as benchmarks, only SiO2 NPs or shells synthesized by the L-arginine approach provided complete oxygen protection of the CrIII complexes under ambient conditions. We ascribe the different oxygen shielding efficiencies of the silica networks explored to differences in density and surface chemistry of the resulting nanomaterials and coatings, leading to different oxygen permeabilities. Our Larginine based silica encapsulation strategy can open the door for the efficient usage of oxygen-sensitive luminophores and TTA-UC systems as optical reporters and spectral shifters in air in the future.
KW - Quality assurance
KW - Fluorescence
KW - Quantification
KW - Advanced materials
KW - Nano
KW - Quantum yield
KW - NIR
KW - Characterization
KW - Electron microscopy
KW - Silica
KW - Synthesis
KW - Oxygen sensing
KW - Surface
KW - Doping
KW - Lifetime
KW - Cr(III) complex
KW - Shielding
KW - Sensing
PY - 2025
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-638271
DO - https://doi.org/10.26599/NR.2025.94907241
SN - 1998-0000
VL - 18
IS - 3
SP - 1
EP - 13
PB - SciOpen
AN - OPUS4-63827
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Andreato, E.
A1 - Panov, N.
A1 - Artiga, A.
A1 - Osipova, Viktoriia
A1 - Resch-Genger, Ute
A1 - Ximendes, E.
A1 - Molina, P.
A1 - Canton, P.
A1 - Marin, R.
T1 - Indium-Based Fluoride Nanoparticles Doped with Chromium for Near-Infrared Luminescence
N2 - Transition metal (TM) and rare earth (RE) ion-doped nanoparticles (NPs) are photoluminescent materials of technological relevance in bioimaging, sensing, and light conversion. Fluoride NPs are particularly attractive in this context, since they combine low-energy phonons, high chemical stability, optical transparency, size, and architecture tunability. Yet, nearly all reported colloidal fluoride NPs (e.g., NaYF4 and LiYF4) can only be efficiently doped with RE3+ and not with luminescent TM ions. Herein, we contribute to filling this gap in materials science by reporting Na3InF6 NPs doped with Cr3+ as a model luminescent TM ion. We unveil the heat-driven NP formation mechanism, which involves a cubic-to-monoclinic phase conversion, similarly to the cubic-tohexagonal phase conversion in NaYF4. Reaction temperatures above 225 °C and reaction time have a limited impact on the NP morphology, while the amount of fluoride precursor and oleylamine grants control over the NP size. After verifying that Na3InF6 NPs show negligible cytotoxicity toward U-87 cell line, we study the optical properties of these NPs upon Cr3+ doping.
Temperature-dependent photoluminescence measurements indicate that Cr3+ ions experience a weak crystal field in the Na3InF6 host lattice, while their photoluminescence lifetime varies linearly in the 20−50 °C range. These results set the ground for further studies of photoluminescent TM-doped fluoride NPs, toward their applications in bioimaging, sensing, and light-converting devices.
KW - Quality assurance
KW - Fluorescence
KW - Traceability
KW - Nano
KW - Particle
KW - Synthesis
KW - Quantum yield
KW - NIR
KW - Mechanism
KW - Characterization
KW - XRD
KW - Phase transition
KW - Ligand
KW - Surface
KW - Doping
KW - Lifetime
PY - 2025
DO - https://doi.org/10.1021/acs.chemmater.4c03335
SN - 1520-5002
SP - 1
EP - 14
PB - American Chemical Society
AN - OPUS4-63073
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Richter, Maria
A1 - Güttler, Arne
A1 - Pauli, Jutta
A1 - Vogel, K.
A1 - Homann, Christian
A1 - Würth, Christian
A1 - Resch-Genger, Ute
T1 - Extending certified spectral fluorescence standards for the calibration and performance validation of fluorescence instruments to the NIR—closing the gap from 750 to 940 nm with two novel NIR dyes
N2 - Fluorescence techniques such as fluorescence spectroscopy, microfluorometry, and fluorescence microscopy, providing spectral, intensity, polarization, and lifetime information, are amongst the most broadly utilized analytical methods in the life and materials sciences. However, the measured fluorescence data contain sample- and instrument-specific contributions, which hamper their comparability across instruments and laboratories. Comparable, instrument-independent fluorescence data require the determination of the fluorescence instrument’s wavelength-dependent spectral responsivity, also termed emission correction curve, for the same instrument settings as those used for the fluorescence measurements as a prerequisite for the subsequent correction of the measured instrument-specific data. Such a spectral correction is essential for the performance comparison of different fluorescent labels and reporters, quantitative fluorescence measurements, the determination of the fluorescence quantum yield, and the spectroscopic measure for the fluorescence efficiency of a fluorophore. Simple-to-use tools for obtaining emission correction curves are chromophore-based reference materials (RMs), referred to as fluorescence standards, with precisely known, preferably certified instrument-independent fluorescence spectra. However, for the increasingly used near-infrared (NIR) wavelength region >700 nm, at present, no spectral fluorescence standards are available. To close this gap, we developed two novel spectral fluorescence standards, BAM F007 and BAM-F009, with broad emission bands from about 580 to 940 nm in ethanolic solution. These liquid fluorescence standards currently under certification, which will be released in 2025, will expand the wavelength range of the already available certified Calibration Kit BAM F001b-F005b from about 300–730 to 940 nm. In this research article, we will detail the criteria utilized for dye and matrix selection and the homogeneity and stability tests accompanying dye certification as well as the calculation of the wavelength-dependent uncertainty budgets of the emission spectra BAM F007 and BAM-F009, determined with the traceably calibrated BAM reference spectrofluorometer. These fluorescence standards can provide the basis for comparable fluorescence measurements in the ultraviolet, visible, and NIR for the fluorescence community.
KW - Quality assurance
KW - Reference material
KW - Fluorescence
KW - Dye
KW - Traceability
KW - Metrology
KW - Calibration
KW - Reference data
KW - Reference product
KW - Digital certificate
KW - NIR
KW - Instrument performance validation
PY - 2025
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626317
DO - https://doi.org/10.1007/s00216-024-05723-w
SN - 1618-2650
SP - 1
EP - 15
PB - Springer
AN - OPUS4-62631
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Wang, Cui
A1 - Ebel, Kenny
A1 - Heinze, Katja
A1 - Resch-Genger, Ute
A1 - Bald, Ilko
T1 - Quantum Yield of DNA Strand Breaks under Photoexcitation of a Molecular Ruby
N2 - Photodynamic therapy (PDT) used for treating cancer relies on the generation of highly reactive oxygen species, for example, singlet oxygen 1O2, by light-induced excitation of a photosensitizer (PS) in the presence of molecular oxygen, inducing DNA damage in close proximity of the PS. Although many precious metal complexes have been explored as PS for PDT and received clinical approval, only recently, the potential of photoactive complexes of nonnoble metals as PS has been discovered. Using the DNA origami technology that can absolutely quantify DNA strand break cross sections, we assessed the potential of the luminescent transition metal complex [Cr(ddpd)2]3+ (ddpd=N,N’-dimethyl-N,N’-dipyridine-2-ylpyridine-2,6-diamine) to damage DNA in an air-saturated aqueous environment upon UV/Vis illumination. The quantum yield for strand breakage, that is, the ratio of DNA strand breaks to the number of absorbed photons, was determined to 1–4%, indicating efficient transformation of photons into DNA strand breaks by [Cr(ddpd)2]3+.
KW - Fluorescence
KW - Synthesis
KW - Production
KW - Optical spectroscopy
KW - Ligand
KW - Photophysics
KW - Cr(III)
KW - Mechanism
KW - NIR
KW - PDT
KW - Singlet oxygen
KW - DNA
KW - Origami
KW - Quantum yield
PY - 2023
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573631
DO - https://doi.org/10.1002/chem.202203719
SP - 1
EP - 7
AN - OPUS4-57363
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Stein, L.
A1 - Wang, Cui
A1 - Förster, C.
A1 - Resch-Genger, Ute
A1 - Heinze, K.
T1 - Bulky ligands protect molecular ruby from oxygen quenching
N2 - Chromium(III) complexes can show phosphorescence from the spin-flip excited doublet states 2E/2T1 in the near-infrared with high photoluminescence quantum yields and extremely long lifetimes in the absence of dioxygen. The prototype molecular ruby, [Cr(ddpd)2]3+ (ddpd = N,N’-dimethyl-N,N’-dipyridine-2-ylpyridine-2,6-diamine), has a photoluminescence quantum yield and a luminescence lifetime of 13.7% and 1.1 ms in deaerated acetonitrile, respectively. However, its luminescence is strongly quenched by 3O2 via an efficient Dexter-type energy transfer process. To enable luminescence applications of molecular rubies in solution under aerobic conditions, we explored the potential of sterically demanding ddpd ligands to shield the chromium(III) center from O2 using steady state and time-resolved photoluminescence spectroscopy. The structures of the novel complexes with sterically demanding ligands were investigated by single crystal X-ray diffraction and quantum chemically by density functional theory calculations. The O2 sensitivity of the photoluminescence was derived from absolutely measured photoluminescence quantum yields and excited state lifetimes under inert and aerobic conditions and by Stern–Volmer analyses of these data. Optimal sterically shielded chromium(III) complexes revealed photoluminescence quantum yields of up to 5.1% and excited state lifetimes of 518 μs in air-saturated acetonitrile, underlining the large potential of this ligand design approach to broaden the applicability of highly emissive chromium(III) complexes.
KW - Fluorescence
KW - Synthesis
KW - Production
KW - Optical spectroscopy
KW - Ligand
KW - Photophysics
KW - Cr(III)
KW - Mechanism
KW - NIR
KW - Sensor
KW - Oxygen
PY - 2022
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570807
DO - https://doi.org/10.1039/d2dt02950b
VL - 51
IS - 46
SP - 17664
EP - 17670
PB - The Royal Society of Chemistry
CY - Berlin
AN - OPUS4-57080
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Wander, Lukas
A1 - Lommel, Lukas
A1 - Braun, Ulrike
A1 - Meyer, Klas
A1 - Paul, Andrea
T1 - Development of a Low-Cost Method for Quantifying Microplastics in Soils and Compost Using Near-Infrared Spectroscopy
N2 - Near-infrared (NIR) spectroscopy is a promising candidate for low-cost, nondestructive, and highthroughput mass quantification of microplastics in environmental samples. Widespread application of the technique is currently hampered mainly by the low sensitivity of NIR spectroscopy compared to thermoanalytical approaches commonly used for this type of analysis. This study shows how the application of NIR spectroscopy for mass quantification of microplastics can be extended to smaller analyte levels by combining it with a simple and rapid microplastic enrichment protocol. For this purpose, the widely used flotation of microplastics in a NaCl solution, accelerated by centrifugation, was chosen which allowed to remove up to 99 % of the matrix at recovery rates of 83–104 %. The spectroscopic measurements took place directly on the stainless-steel filters used to collect the extracted particles to reduce sample handling to a minimum. Partial least squares regression (PLSR) models were used to identify and quantify the extracted microplastics in the mass range of 1–10 mg.
The simple and fast extraction procedure was systematically optimized to meet the requirements for the quantification of microplastics from common PE-, PP-, and PS-based packaging materials with a particle size < 1 mm found in compost or soils with high natural organic matter content (> 10 % determined by loss on ignition). Microplastics could be detected in model samples at a mass fraction of 1 mg g-1. The detectable microplastic mass fraction is about an order of magnitude lower compared to previous studies using NIR spectroscopy without additional enrichment. To emphasize the cost-effectiveness of the method, it was implemented using some of the cheapest and most
compact NIR spectrometers available.
KW - Mikroplastik
KW - NIR
KW - Sensor
KW - Kompost
KW - Multivariat
PY - 2022
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552605
DO - https://doi.org/10.1088/1361-6501/ac5e5f
VL - 33
IS - 7
SP - 1
EP - 13
PB - IOP Publishing Ltd.
CY - Bristol
AN - OPUS4-55260
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Fa, X.
A1 - Lin, Sh.
A1 - Yang, J.
A1 - Shen, Ch.
A1 - Liu, Y.
A1 - Gong, Y.
A1 - Qin, A.
A1 - Ou, Jun
A1 - Resch-Genger, Ute
T1 - −808 nm-activated Ca2+ doped up-conversion nanoparticles that release no inducing liver cancer cell (HepG2) apoptosis
N2 - Anear-infrared (NIR) light-triggered release method for nitric oxide (NO) was developed utilizing core/shell NaYF4: Tm/Yb/Ca@NaGdF4:Nd/Yb up-conversion nanoparticles (UCNPs) bearing a mesoporous silica (mSiO2) shell loaded with theNOdonor S-nitroso-N-acetyl-DL-penicillamine (SNAP). To avoid overheating in biological samples, Nd3+ was chosen as a sensitizer, Yb3+ ions as the bridging sensitizer, andTm3+ ions as UV-emissive activator while co-doping with Ca2+ was done to enhance the luminescence of the activatorTm3+.NOrelease from SNAP was triggered by an NIR-UV up-conversion process, initiated by 808nmlight absorbed by the Nd3+ ions.NOrelease was confirmed by the Griess method. Under 808nmirradiation, the viability of the liver cancer cell line HepG2 significantly decreased with increasing UCNPs@mSiO2-SNAP concentration. For a UCNPs@mSiO2-SNAP concentration of 200 μgml−1, the cell survival probability was 47%. These results demonstrate that UCNPs@mSiO2-SNAP can induce the release of apoptosis-inducingNOby NIR irradiation.
KW - Nano
KW - Nanomaterial
KW - Upconversion nanoparticle
KW - Lanthanide
KW - Photoluminescence
KW - Quantum yield
KW - Photophysics
KW - Lifetime
KW - Sensor
KW - Excitation power density
KW - Brightness
KW - NIR
KW - Mechanism
KW - Triggered
KW - Release
KW - Cell
KW - PDT
KW - Dye
KW - Therapy
KW - Surface
KW - Coating
PY - 2022
DO - https://doi.org/10.1088/2050-6120/ac5524
VL - 10
IS - 2
SP - 1
EP - 9
PB - IOP Publishing
AN - OPUS4-54842
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -