TY - JOUR A1 - Kuner, Maximilian A1 - Lisec, Jan A1 - Mauch, Tatjana A1 - Konetzki, J. A1 - Haase, H. A1 - Koch, Matthias T1 - Quantification of Ergot Alkaloids via Lysergic Acid Hydrazide—Development and Comparison of a Sum Parameter Screening Method JF - Molecules N2 - Ergot alkaloids are a group of mycotoxins occurring in products derived from various grasses (e.g., rye) and have been regulated in the EU recently. The new maximum levels refer to the sum of the six most common ergot alkaloids in their two stereoisomeric forms in different food matrices. Typically, these twelve compounds are individually quantified via HPLC-MS/MS or -FLD and subsequently summed up to evaluate food safety in a time-consuming process. Since all these structures share the same ergoline backbone, we developed a novel sum parameter method (SPM) targeting all ergot alkaloids simultaneously via lysergic acid hydrazide. After extraction and clean-up, in analogy to the current European standard method EN 17425 (ESM) for ergot alkaloid quantitation, the samples were derivatized by an optimized hydrazinolysis protocol, which allowed quantitative conversion after 20 min at 100 °C. The new SPM was evaluated against another established HPLC-FLD-based method (LFGB) and the HPLC-MS/MS-based ESM using six naturally contaminated rye and wheat matrix reference materials. While the SPM provided comparable values to the ESM, LFGB showed deviating results. Determined recovery rates, limits of detection and quantification of all three employed methods confirm that the new SPM is a promising alternative to the classical approaches for ergot alkaloid screening in food. KW - Ergot alkaloids KW - Sum Parameter KW - Mycotoxins KW - Derivatization KW - Hydrazinolysis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573968 DO - https://doi.org/10.3390/molecules28093701 SN - 0015-2684 VL - 28 IS - 9 SP - 3701 PB - MDPI CY - Basel AN - OPUS4-57396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reinmuth-Selzle, K. A1 - Tchipilov, Teodor A1 - Backes, A. T. A1 - Tscheuschner, Georg A1 - Tang, K. A1 - Ziegler, K. A1 - Lucas, K. A1 - Pöschl, U. A1 - Fröhlich-Nowoisky, J. A1 - Weller, Michael G. T1 - Determination of the protein content of complex samples by aromatic amino acid analysis, liquid chromatography-UV absorbance, and colorimetry JF - Analytical and Bioanalytical Chemistry N2 - Fast and accurate determination of the protein content of a sample is an important and non-trivial task of many biochemical, biomedical, food chemical, pharmaceutical, and environmental research activities. Different methods of total protein determination are used for a wide range of proteins with highly variable properties in complex matrices. These methods usually work reasonably well for proteins under controlled conditions, but the results for non-standard and complex samples are often questionable. Here, we compare new and well-established methods, including traditional amino acid analysis (AAA), aromatic amino acid analysis (AAAA) based on the amino acids phenylalanine and tyrosine, reversed-phase liquid chromatography of intact proteins with UV absorbance measurements at 220 and 280 nm (LC-220, LC-280), and colorimetric assays like Coomassie Blue G-250 dye-binding assay (Bradford) and bicinchoninic acid (BCA) assay. We investigated different samples, including proteins with challenging properties, chemical modifications, mixtures, and complex matrices like air particulate matter and pollen extracts. All methods yielded accurate and precise results for the protein and matrix used for calibration. AAA, AAAA with fluorescence detection, and the LC-220 method yielded robust results even under more challenging conditions (variable analytes and matrices). These methods turned out to be well-suited for reliable determination of the protein content in a wide range of samples, such as air particulate matter and pollen. KW - Air particulate matter KW - Aromatic amino acid analysis KW - Atmospheric aerosol KW - Chemical protein modification KW - Derivatization KW - Nitration KW - Nitrotyrosine KW - LC-UV absorbance KW - Pollen extract KW - Protein quantification KW - Protein test KW - Kjeldahl KW - Tyrosine KW - Phenylalanine KW - Hydrolysis KW - Bradford KW - BCA test KW - 280 nm KW - Air filter samples KW - Fluorescence KW - HPLC KW - Chromatography KW - Protein content KW - 150th anniversary of BAM KW - Topical collection: Analytical Methods and Applications in the Materials and Life Sciences PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545924 UR - https://pubmed.ncbi.nlm.nih.gov/35320366/ DO - https://doi.org/10.1007/s00216-022-03910-1 SP - 1 EP - 14 PB - Springer Nature Limited CY - New York, Heidelberg AN - OPUS4-54592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mönch, Bettina A1 - Becker, Roland A1 - Jung, Christian A1 - Nehls, Irene T1 - The homogeneity testing of EtG in hair reference materials: A high-throughput procedure using GC-NCI-MS JF - Forensic science international N2 - The validation of a robust quantification procedure for EtG in hair using GC–NCI–MS is presented. Aqueous extraction is followed by complete lyophylization of the extract and derivatization with pentafluoropropionic anhydride (PFPA) under controlled temperature and duration. Clean-up of extracts was dispensable and standard single quadrupole MS displayed sufficient selectivity and sensitivity. The method displayed a wide linearity range and enabled LOD of 0.68 pg/mg, LOQ of 2.4 pg/mg, and precision below 8.12%. Since EtG was seen to display prolonged stability in the aqueous extracts and after derivatization with PFPA this straightforward procedure allows a routine throughput of large quantities of samples with little proneness to procedural scatter of results. The method was applied to demonstrate the homogeneity of two hair reference materials with mean EtG contents of 8.48 pg/mg and 22.0 pg/mg. Aside from the application in homogeneity studies of hair reference materials predominantly in the concentration range of 10–50 pg/mg the method was also designed for daily routine quantification of real-world sample with regard to drinking behavior assessment. KW - Extraction KW - Derivatization KW - High-throughput analysis KW - Reference materials KW - Homogeneity KW - Measurement uncertainty PY - 2013 DO - https://doi.org/10.1016/j.forsciint.2013.01.018 SN - 0379-0738 SN - 1872-6283 VL - 226 IS - 1-3 SP - 202 EP - 207 PB - Elsevier Ltd. CY - Amsterdam [u.a.] AN - OPUS4-27998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Janine A1 - Lischka, Susanne A1 - Piechotta, Christian T1 - Analysis of arsenic species in fish after derivatization by GC-MS JF - Talanta N2 - The derivatization of organoarsenic compounds by different reagents like thioglycolates or dithiols and the subsequent analysis by GC–MS as a molecular specific technique was investigated and described. The possible derivatization reagents methyl- and ethylthioglycolate (TGM and TGE), 1,3-propane- and 1,5-pentanedithiol (PDT and PeDT), which transfer the polar and nonvolatile analytes dimethylarsenate (DMA), monomethylarsonate (MMA), arsenite and arsenate into volatile compounds, were evaluated. The application for real samples like fish material was also studied. In addition the gas chromatographic separation and resolution was optimized and experiments were carried out to determine the highest derivatization rates. Derivatization reagents were evaluated in terms of quantity and stability of the formed chemical species. All derivatization products were characterized by mass spectrometry in order to identify the separated arsenic species. The most efficient conversion of DMA and MMA was observed by using ethylthioglycolate as derivatization agent. Finally, the derivatization procedure and the GC–MS-method were validated to determine linearity, precision, selectivity, analytical limiting values and recoveries. For the proposed method a limit of detection (LOD) of 5.8 pg for DMA and 14.0 pg for MMA was found. The accuracy was established by comparing the mean value measured for DMA in the certified reference material BCR-627 (tuna fish) with the certified one. MMA was not quantified in marine samples due to its low content. In shrimp samples DMA was not detectable. For codfish a DMA-content of 0.20±0.004 mg kg-1, for 'Surströmming' an amount of 0.38±0.02 mg kg-1 and for herring, which showed the highest amount of DMA, a content of 1.15±0.03 mg kg-1 was determined. KW - Arsenic species analysis KW - Monomethylarsonate KW - Dimethylarsenate KW - Derivatization KW - Gas chromatography KW - Mass spectrometry PY - 2012 DO - https://doi.org/10.1016/j.talanta.2012.10.021 SN - 0039-9140 VL - 101 SP - 524 EP - 529 PB - Elsevier CY - Amsterdam AN - OPUS4-26931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Girard-Lauriault, Pierre-Luc A1 - Illgen, René A1 - Ruiz, J.-C. A1 - Wertheimer, M. R. A1 - Unger, Wolfgang T1 - Surface functionalization of graphite and carbon nanotubes by vacuum-ultraviolet photochemical reactions JF - Applied surface science N2 - Graphite and multiwall carbon nanotube surfaces were functionalized by vacuum-ultraviolet induced photochemistry in NH3 or O2, in order to introduce amino- (NH2) or hydroxyl (OH) functionalities, respectively. Modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), which showed significant incorporation of nitrogen (N) and oxygen (O) at the materials’ surface. While high-resolution XP spectra did not yield much specific information about the incorporated functional groups, chemical derivatization with 4-trifluoromethyl benzaldehyde and trifluoroacetic anhydride accompanied by XPS enabled quantification of NH2 and OH groups, respectively. Using near edge X-ray absorption fine structure spectroscopy, we assessed the conservation of the aromatic structure following functionalization treatments. KW - Carbon nanotubes KW - Graphite KW - Vacuum ultraviolet photochemistry KW - Surface functionalization KW - Amino groups KW - Hydroxyl KW - Derivatization PY - 2012 DO - https://doi.org/10.1016/j.apsusc.2012.03.012 SN - 0169-4332 SN - 1873-5584 VL - 258 IS - 22 SP - 8448 EP - 8454 PB - North-Holland CY - Amsterdam AN - OPUS4-26233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Siegel, David A1 - Merkel, Stefan A1 - Koch, Matthias A1 - Nehls, Irene T1 - Quantification of the Alternaria mycotoxin tenuazonic acid in beer JF - Food chemistry N2 - Tenuazonic acid (TA) is a major water soluble Alternaria mycotoxin. In the present work, a method for the quantification of TA in beer by liquid chromatography-ion-trap multistage mass spectrometry after derivatization with 2,4-dinitrophenylhydrazine is described. The method is based on a rapid workup procedure and features a LOD of 2 µg/kg without preconcentration using 400 mg of sample. Validation was performed for a working range of 8-500 µg/kg. A total of 43 beers of different brewing styles (pilsener, wheat beer, bock beer, dark beer and alcohol free beer) was analysed. TA was detected in 37 samples, 16 samples were above the LOQ. An average content of 11 µg/kg was found, the highest incidence being 175 ± 13 µg/kg. To our knowledge, this is the first report on the occurrence of TA in beer and beverages in general. KW - Tenuazonic acid KW - Mycotoxin KW - Beer KW - 2,4-Dinitrophenylhydrazine KW - Derivatization KW - Liquid chromatography/electrospray ionisation ion-trap multistage mass Spectrome PY - 2010 DO - https://doi.org/10.1016/j.foodchem.2009.10.070 SN - 0308-8146 VL - 120 IS - 3 SP - 902 EP - 906 PB - Elsevier CY - Amsterdam [u.a.] ; Jena AN - OPUS4-21372 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Siegel, David A1 - Rasenko, Tatjana A1 - Koch, Matthias A1 - Nehls, Irene T1 - Determination of the Alternaria mycotoxin tenuazonic acid in cereals by high-performance liquid chromatography-electrospray ionization ion-trap multistage mass spectrometry after derivatization with 2,4-dinitrophenylhydrazine JF - Journal of chromatography A N2 - Tenuazonic acid (TA) is a major Alternaria mycotoxin. In the present work a novel approach for the detection of TA in cereals by liquid chromatography–ion-trap multistage mass spectrometry after derivatization with 2,4-dinitrophenylhydrazine is described. The product of the derivatization reaction and its major MS2 fragments were characterised by Fourier transform-ion cyclotron resonance tandem mass spectrometry. Without preconcentration, the established method features a limit of detection of 10 µg/kg using 2 g of sample in a rapid workup procedure. Accuracy, precision and linearity were evaluated in the working range of 50–5000 µg/kg. TA was detected in 13 and quantified in 3 out of 27 cereal samples obtained from a local supermarket, the average content being 49 µg/kg (highest incidence: 851 ± 41 µg/kg). KW - Tenuazonic acid KW - 2,4-Dinitrophenylhydrazine KW - Derivatization KW - Liquid chromatography-electrospray ionization ion-trap multistage mass spectrome KW - Cereals PY - 2009 DO - https://doi.org/10.1016/j.chroma.2009.03.063 SN - 0021-9673 VL - 1216 IS - 21 SP - 4582 EP - 4588 PB - Elsevier CY - Amsterdam AN - OPUS4-19382 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yegen, E. A1 - Lippitz, Andreas A1 - Treu, Dieter A1 - Unger, Wolfgang T1 - Derivatization of amino groups by pentafluorobenzaldehyde (PFB) as observed by XPS and NEXAFS spectroscopy on spin coated 4,4'-methylenebis(2,6-diethylaniline) films JF - Surface and interface analysis N2 - A toluene solution of 4,4´-methylenebis(2,6-diethylaniline) was spin coated on Si wafers. The samples were derivatized with pentafluorobenzaldehyde (PFB) in order to determine the primary amino groups on the surface. XPS C 1s and N 1s and C and N K-edge NEXAFS of underivatized and derivatized films were carefully analyzed. The result was that after 10 min of exposure the gas-surface reaction was already completed. A reasonable derivatization reaction yield in the order of 90% is derived from the experiments. This number correlates well to a reaction yield obtained by a wet chemical approach. KW - Amino groups KW - Derivatization KW - PFB KW - XPS KW - NEXAFS PY - 2008 DO - https://doi.org/10.1002/sia.2685 SN - 0142-2421 SN - 1096-9918 VL - 40 IS - 3-4 SP - 176 EP - 179 PB - Wiley CY - Chichester AN - OPUS4-17193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -