TY - JOUR A1 - Sunder, S. A1 - Jauregui Rozo, Maria A1 - Deshpande, H. A1 - Neyer, A. A1 - Papaiya, V. A1 - Meinel, Dietmar A1 - Schartel, Bernhard A1 - Ruckdäschel, H. T1 - Char to the Rescue: Processing and Transfer of Flame-Retardant Epoxy Resins, Adjusting the Fire Behavior and Post-Fire Structural Integrity of Glass Fiber Composites N2 - Epoxy (EP) glass fiber reinforced composites (GFRCs) are extensively used in structural applications due to their excellent thermal and mechanical properties, but their inherent flammability limits fire-safe deployment. While numerous studies examine the flame retardancy of resins or individual composite systems, comprehensive studies evaluating simultaneous improvements in flame retardancy and post-fire mechanical integrity, specifically through prepreg processing, remain challenging. This study investigates the effectiveness and transferability of phosphorus-based flame retardant (FR) systems to diglycidyl ether of bisphenol A (DGEBA) and EP novolac resin matrices and their corresponding bidirectional glass fiber composites via prepregs. The FRs are chosen based on varying modes of action: ammonium polyphosphate with inorganic silicate (APP/InSi) primarily acts in the condensed phase (CP), and aluminum diethyl phosphinate with zinc hydroxystannate (AldietPO2/ZHS) is known to demonstrate both gas-phase (GP) and CP activity. Fire residues are tailored to compensate for structural defects from fire exposure. EP novolac, with higher aromaticity and cross-linking, possesses better inherent flame resistance compared to DGEBA. The novolac composites containing AldietPO2/ZHS simultaneously showed the highest retention of flexural properties after fire exposure and the best fire safety index. The experimental values of the post-fire flexural properties in the composites calibrated damage parameters in two theoretical models. KW - Composites KW - DGEBA KW - Epoxy novolac KW - Post-fire KW - Prepregs PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-643752 DO - https://doi.org/10.1002/pol.20250692 SN - 2642-4169 SN - 2642-4150 VL - 63 IS - 20 SP - 4295 EP - 4309 PB - Wiley AN - OPUS4-64375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lapenna, M. A1 - Tsamos, Athanasios A1 - Faglion, F. A1 - Fioresi, R. A1 - Zanchetta, F. A1 - Bruno, Giovanni T1 - Vision GNN (ViG) architecture for a fine‑tuned segmentation of a complex Al–Si metal matrix composite XCT volume N2 - In this paper, we implement a vision graph neural network (ViG) architecture to segment microstructures in X-ray computed tomography 3D data. Our ViG architecture is first trained on a synthetic augmented dataset, and then fine-tuned on experimental data to obtain an improved segmentation. Successively, we assess the accuracy of the segmentation on manually-labeled experimental slices. We exemplarily use the approach on a complex microstructure: a metal matrix composite, reinforced with two ceramic phases, intermetallic inclusions and a silicon network, in order to show the generality of our method. ViG model proves to be more efficient than U-Nets in adapting to new data when fine-tuned on a small portion of the experimental data. The fine-tuned ViG shows comparable performance to U-Nets, while largely reducing the number of trainable parameters, with the potential of greater adaptability and efficiency. KW - X-ray Computed tomography KW - Machine Learning KW - Virtual XCT KW - Segmentation KW - Composites PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-630593 DO - https://doi.org/10.1007/s10853-025-10834-5 SN - 1573-4803 VL - 60 SP - 6907 EP - 6921 PB - Springer AN - OPUS4-63059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tabaka, Weronika A1 - Schartel, Bernhard T1 - Less is More: Optimised Fire Performance in Glass Fibre-reinforced Polybutylene Terephthalate Laminates with Concentrated Flame Retardant Top Layer N2 - To achieve optimum fire performance while maintaining mechanical integrity, flame retardants (FR) were strategically concentrated in the surface layer of a two-layer glass fibre-reinforced polybutylene terephthalate (PBT) laminate structure. Three potentially synergistic FR systems were selected to improve the fire performance of glass fibre-reinforced PBT: boehmite (AlOOH) with melamine polyzinc phosphate (MPZnP), aluminium diethyl phosphinates (AlPi) with melamine cyanurate (MC), and expandable graphite (EG) with melamine polyphosphate (MPP). Limited Oxygen Index (LOI) and UL-94 testing highlighted the influence of laminate architecture on flammability. The cone calorimeter results showed that increasing the FR concentration in the top layer significantly reduced both the peak heat release rate (PHRR) and the maximum average rate of heat emission (MARHE), with improvements depending on the specific FR system used. The laminate L-PBT/GF/AlOOH/MPZnP with a 2:2 thickness ratio showed outstanding performance, achieving a 45 % reduction in MARHE compared to composites with uniform FR distribution. This result showcases the superior thermal barrier properties and synergistic behaviour of AlOOH and MPZnP. The fire performance of laminates containing AlPi and MC was strongly influenced by the distribution and concentration of AlPi/MC. The EG/MPP system was found to be highly effective, forming a protective intumescent layer that significantly reduced both HRR and MARHE, demonstrating the effectiveness of strategically concentrating FR in the top layer. KW - Glass fibres KW - PBT KW - Flame retardants KW - Composites KW - Laminates KW - Fire behaviour KW - Flammability PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626381 DO - https://doi.org/10.1016/j.jcomc.2025.100577 SN - 2666-6820 VL - 16 SP - 1 EP - 15 PB - Elsevier B.V. AN - OPUS4-62638 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jauregui Rozo, Maria A1 - Sunder, S: A1 - Ruckdäschel, H. A1 - Schartel, Bernhard T1 - Char, gas, and action: Transfer of the flame-retardant modes of action in epoxy resins and their fiber-reinforced composites N2 - Flame retardants are often developed for epoxy resins and then transferred into their fiber-reinforced composites with uncertain results. Understanding this transfer in detail represents a critical scientific challenge. This study systematically compares epoxy resins with their glass-fiber reinforced composites, focusing on bisphenol A diglycidyl ether with the hardener dicyandiamide, the flame retardants melamine polyphosphate, ammonium polyphosphate, and silane ammonium polyphosphate, along with inorganic silicate. The research investigates changes in pyrolysis (thermogravimetry), flammability (UL 94, limiting oxygen index), and fire behavior (cone calorimeter) while also examining the flame-retardant modes of action and overall fire performance. The findings reveal that alterations in the amount of fuel, thermal properties, melt flow, and protective layer significantly impact ignition, flammability, and fire load, with a critical reduction in carbonaceous char within the composites preventing intumescence. This study quantifies the effects and provides a fundamental scientific understanding of the complex transfer process of flame retardants from resins to composites, offering essential insights that are of major importance for developing more effective flame-retardant materials. KW - Glas fibers KW - Epoxy resins KW - Fire behavior KW - Flammability KW - Composites KW - Flame retardants PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-615371 DO - https://doi.org/10.1016/j.polymertesting.2024.108610 SN - 0142-9418 SN - 1873-2348 VL - 140 PB - Elsevier Ltd. AN - OPUS4-61537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sunder, S. A1 - Jauregui Rozo, Maria A1 - Inasu, S. A1 - Schartel, Bernhard A1 - Ruckdäschel, H. T1 - Investigating the changing dynamics of processing, temperature-based mechanics, and flame retardancy in the transfer of ammonium polyphosphate/inorganic silicate flame retardants from epoxy resins to glass fiber composites N2 - Although numerous investigations study the improvement of flame retardancy of epoxy resins using additives, maintaining the flame retardant (FRs) modes of action present in the resins upon transfer to composites is challenging. In this study, ammonium polyphosphate (APP) and inorganic silicate (InSi) are loaded at 10%, 30%, and 50% by weight, in a diglycidyl ether of bisphenol A (DGEBA) resin cured with dicyandiamide and transferred to bidirectional (BD) glass fiber (GF) composites. Although a 50% loading of the FRs impacts the curing kinetics of the resin system, the effect on the glass transition temperature of the resin system remains negligible compared to reactive FRs in the state of the art integrated into the resin's chemical structure. Increasing the FR content improved the heat release characteristics in both the resins and composites. However, the charring mode of action is completely suppressed in the formulation with 10% APP + InSi. A 30% concentration of the FRs restored the charring action in the composite and the GFs provide increased protective layer action upon transfer to the composites. This study highlights the importance of accounting for the changing dynamics related to processing and flame retardancy upon transferring FRs from resins to composites. KW - Composites KW - Flame retardance KW - Resins KW - Synthesis and processing techniques PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-610484 DO - https://doi.org/10.1002/app.55988 SN - 1097-4628 VL - 141 IS - 39 SP - 1 EP - 18 PB - Wiley CY - New York, NY AN - OPUS4-61048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Theiler, Geraldine A1 - Gradt, Thomas T1 - Comparison of the sliding behavior of several polymers in gaseous and liquid hydrogen N2 - The development of hydrogen technologies entails high safety requirements in distribution and dispensing infrastructure. Therefore, it is necessary to pursue research on material compatibility in hydrogen, especially for critical parts with tribological issues. The focus of this study is to evaluate the influence of hydrogen on a wider range of commercially available polymer materials. Thereby, the friction and wear behavior of different grades of TPE, POM, PA66, PA12, PPA, PEEK, PPS, PTFE, PAI, PI and PBI were investigated against a rotating steel disk (AISI 304). Filled and unfilled polymers from different suppliers were evaluated at room temperature in air, vacuum and hydrogen gas (H2) as well as in liquid hydrogen at - 253°C (LH2). The sliding behavior of the polymer materials is discussed by means of surface analyses, whereby special attention is paid to the formation of a transfer film. According to the results at ambient temperature, the effect of hydrogen environment on the tribological behavior of neat polymers may be related to lack of moisture, but also to saturated hydrocarbons in gaseous hydrogen. In liquid hydrogen, the best tribological performances were achieved with neat PA polymers as well as PPS and PI composites. KW - Polymers KW - Composites KW - Sliding wear KW - Hydrogen KW - Cryogenic temperature PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597123 DO - https://doi.org/10.2474/trol.18.217 SN - 1881-2198 VL - 18 IS - 5 SP - 217 EP - 231 PB - Japanese Society of Tribologists AN - OPUS4-59712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Barzegar, M. A1 - Pasadas, D. J. A1 - Ribeiro, A. L. A1 - Ramos, H. G. A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis T1 - Polar Coordinate for Damage Imaging of Adhesively Bonded Plates Using Ultrasonic Guided Waves and Laser Doppler Vibrometer Measurements N2 - Wavefield measurements by a scanning laser Doppler vibrometer are generally carried out in a cartesian coordinate. As a piezoelectric transducer generates Lamb waves following radial paths, the use of a polar coordinate can be a suitable alternative to the use of a cartesian coordinate. Therefore, in the proposed method, using a single transducer placed on the center of the specimen, the measured wavefields are transformed into polar coordinates, making several identical radial line inspections from the center in a direction of incident waves. Taking advantage of the properties of the polar coordinates, a signal processing technique is proposed through a frequency-wavenumber filtering process in these coordinates. In this technique, by using proper filters, unwanted wave modes of the incident wave along with all reflected waves are filtered out. In addition, the conventional features of RMS and Euclidean distance are adapted for the polar coordinate system to image the bonded plate. The proposed signal processing and damage imaging are first introduced through a numerical simulation. Then, the performance of the proposed technique is presented by experimental measurements of two specimens including adhesively bonded carbon fiber-reinforced plastic composite plates and bonded aluminum plates. KW - Lamb waves KW - Composites KW - Disbond PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573386 DO - https://doi.org/10.1109/TIM.2023.3267528 SN - 0018-9456 VL - 72 SP - 1 EP - 11 PB - IEEE CY - Piscataway Township, New Jersey, USA AN - OPUS4-57338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bettge, Dirk A1 - Hinrichsen, G. T1 - Continuous Manufacturing of Composites of High-Performance Polyethylene Fibres N2 - Unidirectional composites of high-strength polyethylene fibres and epoxy resin matrix were continuously produced by a die drawing process. In order to increase the adhesion between fibre and matrix, the fibre surface was treated with a low-pressure oxygen plasma. KW - Polyethylene Fibres KW - Composites PY - 1993 DO - https://doi.org/10.1016/0266-3538(93)90042-F VL - 47 IS - 2 SP - 131 EP - 136 PB - Elsevier Science Publishers Ltd. AN - OPUS4-56490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silbernagl, Dorothee A1 - Ghasem Zadeh Khorasani, Media A1 - Cano Murillo, Natalia A1 - Elert, Anna Maria A1 - Sturm, Heinz ED - Glatzel, T. T1 - Bulk chemical composition contrast from attractive forces in AFM force spectroscopy N2 - A key application of atomic force microscopy (AFM) is the measurement of physical properties at sub-micrometer resolution. Methods such as force–distance curves (FDCs) or dynamic variants (such as intermodulation AFM (ImAFM)) are able to measure mechanical properties (such as the local stiffness, kr) of nanoscopic heterogeneous materials. For a complete structure–property correlation, these mechanical measurements are considered to lack the ability to identify the chemical structure of the materials. In this study, the measured attractive force, Fattr, acting between the AFM tip and the sample is shown to be an independent measurement for the local chemical composition and hence a complete structure–property correlation can be obtained. A proof of concept is provided by two model samples comprised of (1) epoxy/polycarbonate and (2) epoxy/boehmite. The preparation of the model samples allowed for the assignment of material phases based on AFM topography. Additional chemical characterization on the nanoscale is performed by an AFM/infrared-spectroscopy hybrid method. Mechanical properties (kr) and attractive forces (Fattr) are calculated and a structure–property correlation is obtained by a manual principle component analysis (mPCA) from a kr/Fattr diagram. A third sample comprised of (3) epoxy/polycarbonate/boehmite is measured by ImAFM. The measurement of a 2 × 2 µm cross section yields 128 × 128 force curves which are successfully evaluated by a kr/Fattr diagram and the nanoscopic heterogeneity of the sample is determined. KW - AFM force spectroscopy KW - Composites KW - Principle component analysis KW - Structure–property correlation KW - Van der Waals forces PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520175 DO - https://doi.org/10.3762/bjnano.12.5 SN - 2190-4286 VL - 12 IS - 5 SP - 58 EP - 71 PB - Beilstein Institute CY - Frankfurt am Main AN - OPUS4-52017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cano Murillo, Natalia A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Hahn, Marc Benjamin A1 - Hodoroaba, Vasile-Dan A1 - Sturm, Heinz T1 - Nanomechanical study of polycarbonate/boehmite nanoparticles/epoxy ternary composite and their interphases N2 - Thermoplastic modified thermosets are of great interest especially due to their improved fracture toughness. Comparable enhancements have been achieved by adding different nanofillers including inorganic particles such as nanosized boehmite. Here, we present a nanomechanical study of two composite systems, the first comprising a polycarbonate (PC) layer in contact with epoxy resin (EP) and the second consisting of a PC layer containing boehmite nanoparticles (BNP) which is also in contact with an EP layer. The interaction between PC and EP monomer is tested by in situ Fourier transformed infrared (FT-IR) analysis, from which a reaction induced phase separation of the PC phase is inferred. Both systems are explored by atomic force microscopy (AFM) force spectroscopy. AFM force-distance curves (FDC) show no alteration of the mechanical properties of EP at the interface to PC. However, when a PC phase loaded with BNP is put in contact with an epoxy system during curing, a considerable mechanical improvement exceeding the rule of mixture was detected. The trend of BNP to agglomerate preferentially around EP dominated regions and the stiffening effect of BNP on EP shown by spatial resolved measurements of Young's modulus, suggest the effective presence of BNP within the EP phase. KW - Composites KW - Mechanical properties KW - Nanoparticles KW - Thermoplastics KW - Thermosets PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515965 DO - https://doi.org/10.1002/app.50231 SN - 0021-8995 SN - 1097-4628 VL - 138 IS - 12 SP - 1 EP - 11 PB - Wiley CY - New York, NY AN - OPUS4-51596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -