TY - JOUR A1 - Barik, Birendra Kumar A1 - Chaurasia, Prashant Kumar A1 - De, Amitava T1 - Rapid estimation of temperature field and bead profile for wire arc directed energy deposition using an analytical heat conduction model N2 - A prior estimation of the temperature field and bead profile can help fabricate dimensionally consistent and structurally sound parts using wire arc directed energy deposition (DED-Arc). We present here a three-dimensional analytical heat transfer model with a volumetric heat source to compute the transient temperature field and melt pool dimensions for DED-Arc. The analytical model considers the thermal conductivity and volumetric heat capacity as a linear function of temperature. In contrast to assuming a pre-defined deposited track profile, the same is scaled from the analytically computed melt pool dimensions into the substrate. The computed deposit profiles of single and multiple tracks and layers are validated extensively with the corresponding experimentally measured results for a range of DED-Arc process conditions. KW - Additive manufacturing KW - Analytical model KW - Heat conduction analysis KW - Volumetric heat source KW - Deposit profile PY - 2025 DO - https://doi.org/10.1177/13621718251398070 SN - 1362-1718 SP - 1 EP - 14 PB - SAGE Publications AN - OPUS4-64836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Srinivasan, Krishnanand A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Laser Metal Deposition of Rene 80—Microstructure and Solidification Behavior Modelling N2 - New developments in nickel-based superalloys and production methods, such as the use of additive manufacturing (AM), can result in innovative designs for turbines. It is crucial to understand how the material behaves during the AM process to advance the industrial use of these techniques. An analytical model based on reaction–diffusion formalism is developed to better explain the solidification behavior of the material during laser metal deposition (LMD). The well-known Scheil–Gulliver theory has some drawbacks, such as the assumption of equilibrium at the solid–liquid interface, which is addressed by this method. The solidified fractions under the Scheil model and the pure equilibrium model are calculated using CALPHAD simulations. A differential scanning calorimeter is used to measure the heat flow during the solid–liquid phase transformation, the result of which is further converted to solidified fractions. The analytical model is compared with all the other models for validation. KW - Laser metal deposition KW - Solidification behavior KW - Additive manufacturing KW - Analytical model KW - Nickel‐based superalloy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612095 DO - https://doi.org/10.3390/mi15101234 SN - 2072-666X VL - 15 IS - 10 SP - 1 EP - 14 PB - MDPI AN - OPUS4-61209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernegger, Raphael A1 - Maierhofer, Christiane A1 - Altenburg, Simon T1 - Quantification of delaminations in semitransparent solids using pulsed thermography and mathematical 1D models N2 - Material defects in fiber reinforced polymers such as delaminations can rapidly degrade the material properties or can lead to the failure of a component. Pulse thermography (PT) has proven to be a valuable tool to identify and quantify such defects in opaque materials. However, quantification of delaminations within semitransparent materials is extremely challenging. We present an approach to quantify delaminations within materials being semitransparent within the wavelength ranges of the optical excitation sources as well as of the infrared (IR) camera. PT experimental data of a glass fiber reinforced polymer with a real delamination within the material were reconstructed by one dimensional (1D) mathematical models. These models describe the heat diffusion within the material and consider semitransparency to the excitation source as well to the IR camera, thermal losses at the samples surfaces and a thermal contact resistance between the two layers describing the delamination. By fitting the models to the PT data, we were able to determine the depth of the delamination very accurately. Additionally, we analyzed synthetic PT data from a 2D simulation with our 1D-models to show how the thermal contact resistance is influenced by lateral heat flow within the material. KW - Pulsed thermography KW - Quantification KW - Numerical simulation KW - Analytical model KW - Semitransparent KW - GFRP KW - Delamination PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505766 DO - https://doi.org/10.1007/s10765-020-02642-7 VL - 41 IS - 5 SP - Article number: 67 PB - Springer AN - OPUS4-50576 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernegger, Raphael A1 - Altenburg, Simon A1 - Roellig, Mathias A1 - Maierhofer, Christiane T1 - Applicability of a 1D analytical model for pulse thermography of laterally heterogeneous semitransparent materials N2 - Pulse thermography (PT) has proven to be a valuable non-destructive testing method to identify and quantify defects in fiber-reinforced polymers. To perform a quantitative defect characterization, the heat diffusion within the material as well as the material parameters must be known. The heterogeneous material structure of glass fiber-reinforced polymers (GFRP) as well as the semitransparency of the material for optical excitation sources of PT is still challenging. For homogeneous semitransparent materials, 1D analytical models describing the temperature distribution are available. Here, we present an analytical approach to model PT for laterally inhomogeneous semitransparent materials.We show the validity of the model by considering different configurations of the optical heating source, the IR camera, and the differently coated GFRP sample. The model considers the lateral inhomogeneity of the semitransparency by an additional absorption coefficient. It includes additional effects such as thermal losses at the samples surfaces, multilayer systems with thermal contact resistance, and a finite duration of the heating pulse. By using a sufficient complexity of the analytical model, similar values of the material parameters were found for all six investigated configurations by numerical fitting. KW - Absorption coefficient KW - Analytical model KW - GFRP KW - Heterogeneous KW - Pulse thermography KW - Semitransparent PY - 2018 DO - https://doi.org/10.1007/s10765-018-2362-7 SN - 0195-928X SN - 1572-9567 VL - 39 IS - 3 SP - Article 39, ICPPP 19, 1 EP - 17 PB - Springer International Publishing AG AN - OPUS4-44003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altenburg, Simon A1 - Weber, H. A1 - Krankenhagen, Rainer T1 - Thickness determination of semitransparent solids using flash thermography and an analytical model N2 - As groundwork for thickness determination of polymeric surface protection systems for concrete, we present a method for measuring the thickness of isolated semitransparent solids using flash thermography both in transmission and reflection configuration. Since standard models do not capture semitransparency, an advanced analytical model by Salazar et al. is applied. Physical material parameters are deduced by fitting experimental data from samples of well-known thickness. Using those, the thickness of samples of the material can be obtained by fitting, as demonstrated for different semitransparent polymer materials. KW - Analytical model KW - Concrete KW - Semitransparency KW - Surface protection KW - Thermography KW - Thickness PY - 2017 DO - https://doi.org/10.1080/17686733.2017.1331655 SN - 1768-6733 SN - 2116-7176 VL - 15 IS - 1 SP - 95 EP - 105 PB - Taylor and Francis CY - Abingdon, UK AN - OPUS4-40468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -