TY - JOUR A1 - Schlögl, Johanna A1 - Goldammer, Ole A1 - Bader, Julia A1 - Emmerling, Franziska A1 - Riedel, Sebastian T1 - Introducing AFS ([Al(SO3F)3]x) – a thermally stable, readily available, and catalytically active solid Lewis superacid JF - Chemical Science N2 - This paper introduces the thermally stable, solid Lewis superacid aluminium tris(fluorosulfate) (AFS), that is easy-to-synthesize from commercially available starting materials. Its applicability, e.g. in catalytic C–F bond activations, is shown. KW - Lewis Acid KW - C-F activation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601001 DO - https://doi.org/10.1039/D4SC01753F SN - 2041-6520 SP - 1 EP - 7 PB - Royal Society of Chemistry (RSC) AN - OPUS4-60100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manoharan, Deepak A1 - Ranjan, Subham A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit A1 - Takamizawa, Satoshi A1 - Ghosh, Soumyajit T1 - Elasto-plastic behaviour with reversible thermosalient expansion in acrylonitrile-based organic crystals JF - Journal of Materials Chemistry C N2 - Crystalline materials that exhibit reversible mechanical responses upon exposure to external stimuli have garnered significant attention owing to their potential applications in various fields. Herein, we report a crystal of (2Z,2′Z)-2,2′-(1,4-phenylene)bis(3-(4-bromophenyl)acrylonitrile) (DSBr), which displays simultaneous elasto-plastic behaviour and reversible thermosalient effects. While elasto-plastic behaviour is attributed to underlying packing features, reversible thermosalient expansion is attributed to uniaxial expansion mediated by heat. Exceptional length increase and contraction upon cooling is due to the restorative nature of weak interactions through a cooperative effect. The cooperative movement of molecules is reflected in the unidirectional expansion of the habit plane. Thermosalient reversible expansion–contraction in elasto-plastic crystals have not been discussed in the literature so far. Detailed analysis reported herein provides a comprehensive understanding of the underlying mechanism of flexibility and thermosalient responses. This crystal's unique blend of reversible thermal expansion with flexibility holds substantial promise for applications in flexible thermal actuators. KW - Materials Chemistry KW - General Chemistry PY - 2024 DO - https://doi.org/10.1039/D3TC04272C SN - 2050-7526 SP - 1 EP - 11 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goswami, Juli Nanda A1 - Haque, Najirul A1 - Seikh, Asiful H. A1 - Bhattacharya, Biswajit A1 - Emmerling, Franziska A1 - Bar, Nimai A1 - Ifseisi, Ahmad A. A1 - Biswas, Surajit A1 - Dolai, Malay T1 - Carboxylative cyclization of propargyl alcohols with carbon dioxide for the synthesis of α-alkylidene cyclic carbonates in presence of Co(III) schiff base complex catalyst JF - Journal of Molecular Structure N2 - A cobalt(III) complex, [Co(L)3](DMF) (1) of Schiff base ligand HL, 2-((E)-(benzylimino)methyl)-4-bromophenol is prepared and single crystal X-ray structural analysis have also been performed. The structures of complex 1 showed hexa-coordinated mononuclear systems that adopt octahedral geometry. The complex has also exhibited the supramolecular networks through non-covalent interactions like H-bonding, C–Hπ stacking. Moreover, the complex 1 is very effective in the catalytic fixation of carbon dioxide in propergyl alcohols to produce α-alkylidene cyclic carbonates. The catalytic production of α-alkylidene cyclic carbonates have been carried out through carboxylative cyclization of propargyl alcohols using CO2 balloon of 1 atm pressure at 80 ◦C. Solvent free condition (green synthesis) made this catalytic protocol eco-friendly towards the environment. Utilizing various substrates of propargyl alcohols moderate to high percentage yield (62–95%) of respective α-alkylidene cyclic carbonates product have been isolated over this catalytic reaction. Besides, the theoretical calculations (DFT) was performed for the prediction of probable mechanism of the catalytic reaction KW - Catalytic fixation of carbon dioxide KW - Carboxylative cyclization of propargyl alcohols KW - Cobalt (III) Schiff base complex KW - X-ray crystal analysis PY - 2024 DO - https://doi.org/10.1016/j.molstruc.2023.136868 SN - 0022-2860 VL - 1296 IS - Part 1 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-58947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stawski, Tomasz A1 - Karafiludis, Stephanos A1 - Pimentel, Carlos A1 - Montes-Hernández, German A1 - Kochovski, Zdravko A1 - Bienert, Ralf A1 - Weimann, Karin A1 - Emmerling, Franziska A1 - Scoppola, Ernesto A1 - Van Driessche, Alexander E.S. T1 - Solution-driven processing of calcium sulfate: The mechanism of the reversible transformation of gypsum to bassanite in brines JF - Journal of Cleaner Production N2 - Here, we show that calcium sulfate dihydrate (gypsum) can be directly, rapidly and reversibly converted to calcium sulfate hemihydrate (bassanite) in high salinity solutions (brines). The optimum conditions for the efficient production of bassanite in a short time (<5 min) involve the use of brines with c(NaCl) > 4 M and maintaining a temperature, T > 80 °C. When the solution containing bassanite crystals is cooled down to around room temperature, eventually gypsum is formed. When the temperature is raised again to T > 80 °C, bassanite is rapidly re-precipitated. This contrasts with the better-known behaviour of the bassanite phase in low-salt environments. In low-salinity aqueous solutions, bassanite is considered to be metastable with respect to gypsum and anhydrite, and therefore gypsum-to-bassanite conversion does not occur in pure water. Interestingly, the high-salinity transformation of gypsum-to-bassanite has been reported by many authors and used in practice for several decades, although its very occurrence actually contradicts numerical thermodynamic predictions regarding solubility of calcium sulfate phases. By following the evolution of crystalline phases with in situ and time-resolved X-ray diffraction/scattering and Raman spectroscopy, we demonstrated that the phase stability in brines at elevated temperatures was inaccurately represented in the thermodynamic databases. Most notably for c(NaCl) > 4 M, and T > 80 °C gypsum becomes readily more soluble than bassanite, which induces the direct precipitation of the latter from gypsum. The fact that these transformations are controlled by the solution provides extensive opportunities for precise manipulation of crystal formation. Our experiments confirmed that bassanite remained the sole crystalline phase for many hours before reverting into gypsum. This property is extremely advantageous for practical processing and efficient crystal extraction in industrial scenarios. KW - Industrial and Manufacturing Engineering KW - Strategy and Management KW - General Environmental Science KW - Renewable Energy, Sustainability and the Environment KW - Building and Construction KW - Calcium sulfate KW - Gypsum KW - Bassanite KW - Scattering KW - Raman KW - In situ KW - Synchrotron KW - BESSY KW - MySpot PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594698 UR - https://www.sciencedirect.com/science/article/pii/S0959652624004591#appsec1 DO - https://doi.org/10.1016/j.jclepro.2024.141012 SN - 0959-6526 VL - 440 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-59469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zuffa, Caterina A1 - Cappuccino, Chiara A1 - Casali, Lucia A1 - Emmerling, Franziska A1 - Maini, Lucia T1 - Liquid reagents are not enough for liquid assisted grinding in the synthesis of (AgBr)(n-pica) n JF - Physical Chemistry Chemical Physics N2 - This study investigates the mechanochemical reactions between AgBr 3-picolylamine and 4-picolylamine. The use of different stoichiometry ratios of the reagents allows [(AgBr)(n-pica)]n and [(AgBr)2(n-pica)]n to be obtained, and we report the new structures of [(AgBr)2(3-pica)]n and [(AgBr)2(4-pica)]n which are characterized by the presence of the following: (a) infinite inorganic chains, (b) silver atom coordinated only by bromide atoms and (c) argentophilic interactions. Furthermore, we studied the interconversion of [(AgBr)(n-pica)]n/[(AgBr)2(n-pica)]n by mechanochemical and thermal properties. The in situ experiments suggest that [(AgBr)(3-pica)]n is kinetically favoured while [(AgBr)2(3-pica)]n is converted into [(AgBr)(3-pica)]n only with a high excess of the ligand. Finally, the liquid nature of the ligands is not sufficient to assist the grinding process, and the complete reaction is observed with the addition of a small quantity of acetonitrile. KW - Mechanochemistry KW - Complex PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594755 DO - https://doi.org/10.1039/d3cp04791a SN - 1463-9076 SP - 1 EP - 10 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinekamp, Christian A1 - Kneiske, Sönke A1 - Guilherme Buzanich, Ana A1 - Ahrens, Mike A1 - Braun, Thomas A1 - Emmerling, Franziska T1 - A fluorolytic sol-gel route to access an amorphous Zr fluoride catalyst: A useful tool for C-F bond activation JF - Catalysis Science & Technology N2 - A route to a ZrF4 catalyst active in room temperature Friedel–Crafts and dehydrofluorination reactions was developed via a fluorolytic sol–gel route, which was followed by a postfluorination step using a stream of CHClF2. The behaviour of different Zr(IV) precursors in a sol–gel reaction with anhydrous isopropanol/HF solution was investigated. The subsequent post-fluorination step was optimised in its temperature ramp and confirmed the necessity of a fluorination of the generated xerogels to obtain catalytic activity. The process is discussed in the context of the analysis of the materials using Brunauer–Emmett–Teller analysis (BET), powder X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The local structure of the amorphous catalyst was elucidated by extended X-ray absorption fine structure spectroscopy (EXAFS). KW - Catalysis KW - Heterogeneous catalysis KW - C-F bond activation KW - Postfluorination PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593433 DO - https://doi.org/10.1039/D3CY01439H SN - 2044-4761 SP - 1 EP - 8 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nag, Sayak A1 - Emmerling, Franziska A1 - Tothadi, Srinu A1 - Bhattacharya, Biswajit A1 - Ghosh, Soumyajit T1 - Distinct photomechanical responses of two new 1,3-dimethylbarbituric acid derivative crystals JF - CrystEngComm N2 - We demonstrate two distinct photomechanical responses (i.e. photomechanical bending and photosalient bursting) of two new 1,3-dimethylbarbituric acid derivative crystals based on tailoring their substituents and the modulation of their spacers. KW - Crystal engineering KW - Fexible crystals PY - 2024 DO - https://doi.org/10.1039/D4CE00233D SP - 1 EP - 12 PB - Royal Society of Chemistry (RSC) AN - OPUS4-60141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cakir, Cafer Tufan A1 - Bogoclu, Can A1 - Emmerling, Franziska A1 - Streli, Christina A1 - Guilherme Buzanich, Ana A1 - Radtke, Martin T1 - Machine learning for efficient grazing-exit x-ray absorption near edge structure spectroscopy analysis: Bayesian optimization approach JF - Machine Learning: Science and Technology N2 - In materials science, traditional techniques for analyzing layered structures are essential for obtaining information about local structure, electronic properties and chemical states. While valuable, these methods often require high vacuum environments and have limited depth profiling capabilities. The grazing exit x-ray absorption near-edge structure (GE-XANES) technique addresses these limitations by providing depth-resolved insight at ambient conditions, facilitating in situ material analysis without special sample preparation. However, GE-XANES is limited by long data acquisition times, which hinders its practicality for various applications. To overcome this, we have incorporated Bayesian optimization (BO) into the GE-XANES data acquisition process. This innovative approach potentially reduces measurement time by a factor of 50. We have used a standard GE-XANES experiment, which serve as reference, to validate the effectiveness and accuracy of the BO-informed experimental setup. Our results show that this optimized approach maintains data quality while significantly improving efficiency, making GE-XANES more accessible to a wider range of materials science applications. KW - Machine Learning KW - GE-XANES KW - Bayesian Optimization PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603955 DO - https://doi.org/10.1088/2632-2153/ad4253 VL - 5 IS - 2 SP - 1 EP - 12 PB - IOP Publishing AN - OPUS4-60395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Das, Prasenjit A1 - Chakraborty, Gouri A1 - Friese, Nico A1 - Roeser, Jérôme A1 - Prinz, Carsten A1 - Emmerling, Franziska A1 - Schmidt, Johannes A1 - Thomas, Arne T1 - Heteropolyaromatic Covalent Organic Frameworks via One-Pot Multicomponent Reactions JF - Journal of the American Chemical Society N2 - Multicomponent reactions (MCRs) offer a platform to create different chemical structures and linkages for highly stable covalent organic frameworks (COFs). As an illustrative example, the multicomponent Povarov reaction generates 2,4-phenylquinoline from aldehydes and amines in the presence of electron-rich alkenes. In this study, we introduce a new domino reaction to generate unprecedented 2,3-phenylquinoline COFs in the presence of epoxystyrene. This work thus presents, for the first time, structural isomeric COFs produced by multicomponent domino and Povarov reactions. Furthermore, 2,3-phenylquinolines can undergo a Scholl reaction to form extended aromatic linkages. With this approach, we synthesize two thermally and chemically stable MCR-COFs and two heteropolyaromatic COFs using both domino and in situ domino and Scholl reactions. The structure and properties of these COFs are compared with the corresponding 2,4-phenylquinoline-linked COF and imine-COF, and their activity toward benzene and cyclohexane sorption and separation is investigated. The position of the pendant phenyl groups within the COF pore plays a crucial role in facilitating the industrially important sorption and separation of benzene over cyclohexane. This study opens a new avenue to construct heteropolyaromatic COFs via MCR reactions. KW - COF PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604038 DO - https://doi.org/10.1021/jacs.4c02551 SP - 1 EP - 9 PB - American Chemical Society (ACS) AN - OPUS4-60403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -