TY - CONF A1 - Taffe, Alexander A1 - Wiggenhauser, Herbert T1 - Validation for Thickness Measurement in Civil Engineering with Ultrasonic Echo T2 - 9th European Conference on NDT T2 - 9th European Conference on NDT : ECNDT Berlin 2006 CY - Berlin, Germany DA - 2006-09-25 KW - NDT-CE KW - Validation KW - Uncertainty of measurement KW - GUM KW - DIN 17025 KW - Ultrasonic-echo KW - Thickness measurement KW - Foundations PY - 2006 SN - 3-931381-86-2 SP - 1(?) EP - 8(?) PB - European Federation for Non-Destructive Testing CY - Berlin AN - OPUS4-13689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beutel, R. A1 - Reinhardt, H.-W. A1 - Grosse, C. U. A1 - Glaubitt, A. A1 - Krause, Martin A1 - Maierhofer, Christiane A1 - Algernon, Daniel A1 - Wiggenhauser, Herbert A1 - Schickert, M. T1 - Performance Demonstration of Non-Destructive Testing Methods T2 - 9th European Conference on NDT T2 - 9th European Conference on NDT CY - Berlin, Germany DA - 2006-09-25 KW - NDT-CE KW - Concrete KW - Ultrasonic echo KW - Impact-echo KW - Radar KW - Concrete cover of tendon ducts KW - Thickness measurement KW - Concrete slabs PY - 2006 SN - 3-931381-86-2 SP - 1(?) EP - 9(?) PB - European Federation for Non-Destructive Testing CY - Berlin AN - OPUS4-14382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Procop, Mathias A1 - Radtke, Martin A1 - Krumrey, M. A1 - Hasche, K. A1 - Schädlich, S. A1 - Frank, W. T1 - Electron probe microanalysis (EPMA) measurement of thin-film thickness in the nanometre range JF - Analytical and bioanalytical chemistry N2 - The thickness of thin films of platinum and nickel on fused silica and silicon substrates has been determined by EPMA using the commercial software STRATAGEM for calculation of film thickness. Film thickness ranged in the order 10 nm. An attempt was made to estimate the confidence range of the method by comparison with results from other methods of analysis. The data show that in addition to the uncertainty of the spectral intensity measurement and the complicated fitting routine, systematic deviation caused by the underlying model should be added. The scattering in the results from other methods does not enable specification of a range of uncertainty, but deviations from the real thickness are estimated to be less than 20%. KW - Electron probe microanalysis KW - EPMA KW - Thin films KW - Thickness measurement KW - X-rays PY - 2002 DO - https://doi.org/10.1007/s00216-002-1514-5 SN - 1618-2642 SN - 1618-2650 VL - 374 SP - 631 EP - 634 PB - Springer CY - Berlin AN - OPUS4-7090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bente, Klaas A1 - Rus, J. A1 - Mooshofer, H. A1 - Gaal, Mate A1 - Grosse, C.U. T1 - Broadband air-coupled ultrasound emitter and receiver enable simultaneous measurement of thickness and speed of sound in solids JF - Sensors N2 - Air-coupled ultrasound sensors have advantages over contact ultrasound sensors when a sample should not become contaminated or influenced by the couplant or the measurement has to be a fast and automated inline process. Thereby, air-coupled transducers must emit high-energy pulses due to the low air-to-solid power transmission ratios (10−3 to 10−8). Currently used resonant transducers trade bandwidth—a prerequisite for material parameter analysis—against pulse energy. Here we show that a combination of a non-resonant ultrasound emitter and a non-resonant detector enables the generation and detection of pulses that are both high in amplitude (130 dB) and bandwidth (2 µs pulse width). We further show an initial application: the detection of reflections inside of a carbon fiber reinforced plastic plate with thicknesses between 1.7 mm and 10 mm. As the sensors work contact-free, the time of flight and the period of the in-plate reflections are independent parameters. Hence, a variation of ultrasound velocity is distinguishable from a variation of plate thickness and both properties are determined simultaneously. The sensor combination is likely to find numerous industrial applications necessitating high automation capacity and opens possibilities for air-coupled, single-side ultrasonic inspection. KW - Thermoacoustic emitter KW - Optical microphone KW - Air-coupled ultrasound KW - Local resonance KW - Thickness measurement KW - Thickness resonance PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569533 DO - https://doi.org/10.3390/s23031379 VL - 23 IS - 3 SP - 1379 PB - MDPI AN - OPUS4-56953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Krause, Martin A1 - Dérobert, X. A1 - Hugenschmidt, J. A1 - Moczko, A. A1 - Niederleithinger, Ernst A1 - Taffe, Alexander ED - L. Binda, ED - M. di Prisco, ED - R. Felicetti, T1 - Benchmark for thickness measurement of concrete elements T2 - 1st International RILEM Conference - on Site Assessment of Concrete, Masonry and Timber Structures (SACoMaTiS 2008), Proceedings T2 - 1st International RILEM Conference, on Site Assessment of Concrete, Masonry and Timber Structures (SACoMaTiS 2008) CY - Varenna, Italy DA - 2008-09-01 KW - Thickness measurement KW - Radar KW - Ultrasonic Echo KW - Impact-Echo and Low Strain Techniques PY - 2008 SN - 978-2-35158-062-2 VL - 1 IS - PRO 59 SP - 357 EP - 366 PB - RILEM Publications AN - OPUS4-18030 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -