TY - JOUR A1 - Höhne, Patrick A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Advancing spray granulation by ultrasound atomization JF - International Journal of Applied Ceramic Technology N2 - The influence of the atomization technique on the suitability of granules for dry pressing is the focus of the presented investigations. Therefore, destabilized alumina, zirconia, and zirconia toughened alumina (ZTA) slurries were spray dried and the obtained granules were used to fabricate green and finally sintered bodies for evaluation. Granules made in a laboratory spray dryer with a two-fluid nozzle served as a reference. An ultrasonic atomizer was integrated into the same spray dryer and the influence on the granule properties was evaluated. Untapped bulk density, granule size distribution, and flowability are among the evaluated granule-related properties as well as the granule yield which is used as an indicator of the process efficiency. Yield and flowability as most important granule properties are clearly improved when atomization is realized with ultrasound. The investigated sinter body properties include porosity, sinter body density, and biaxial strength and are as well positively affected by switching the atomization technique to ultrasound. Therefore, the Approach to improve the compressibility of granules by ultrasonic atomization, which leads to an improved microstructure, density, and strength of sintered bodies, has proven to be successful for single-component ceramics (alumina and zirconia) as well as for the multicomponent ceramic ZTA. KW - Alumina KW - Granules KW - Spray drying KW - Ultrasound KW - Zirconia KW - Zirconia-toughened alumina PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510696 DO - https://doi.org/10.1111/ijac.13534 VL - 17 IS - 5 SP - 2212 EP - 2219 AN - OPUS4-51069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Woydt, Mathias A1 - Habig, Karl-Heinz T1 - High temperature tribology of ceramics JF - Tribology International KW - Ceramics KW - Alumina KW - Zirconia KW - Friction KW - Wear KW - Sliding PY - 1989 SN - 0301-679X SP - 75 EP - 90 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-2446 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pereira, Raíssa Monteiro A1 - Lohbauer, Ulrich A1 - Schulbert, Christian A1 - Göken, Mathias A1 - Wurmshuber, Michael A1 - Campos, Tiago Bastos Moreira A1 - Thim, Gilmar Patrocínio A1 - Mieller, Björn A1 - Belli, Renan T1 - Instantiations of Multiscale Kinship in Pressing‐Defect Distributions in Yttria‐Stabilized Zirconias by Powder Partitioning JF - Advanced Engineering Materials N2 - Modern dry pressing of ceramic powders using spray‐dried granulates cannot avoid the occurrence of defects related to persisting inter‐ and intra‐granulate interstitial voids. These constitute the parent defect size population limiting the application of polycrystalline ceramics in high‐stress conditions. The mitigation of such defects could widen the range of application in technical and biomedical engineering, reduce the safety range for design, and extend the lifetime of components. Herein, the Weibull size‐effect on strength in size‐partitioned Yttria‐stabilized zirconias (YSZ) feedstocks is used to explore the viability of changing the density distribution of granulate sizes as an effective strategy to obtain a denser particle packing that could reduce the size distribution of strength‐limiting pressing defects. In a direct assessment of critical defect size using multiscale strength testing with a dataset of ≈1300 values, the success of such an approach in increasing the strength reliability for small volume components is demonstrated, along with its ultimate failure in altering the defect size distribution in sintered YSZ ceramics across several length scales. Finally, it is shown that granule morphology (spherical or dimpled) fails to affect the defect density and size distribution in YSZ ceramics. KW - Zirconia KW - Strength KW - Toughness KW - Weibull distribution KW - Defect population PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602697 DO - https://doi.org/10.1002/adem.202400139 SN - 1438-1656 SP - 1 EP - 17 PB - Wiley VHC-Verlag AN - OPUS4-60269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabe, T. A1 - Kalinka, Gerhard A1 - Mieller, Björn T1 - Manufacturing and deformation behavior of alumina and zirconia helical springs at room temperature JF - Journal of the American Ceramic Society N2 - Ceramic helical springs with identical dimensions were produced by hard machining from alumina, alumina toughened zirconia (ATZ), and tetragonal zirconia polycrystals (TZP) stabilized with different oxides. According to the results of the spring constant determination under deformation rates of 3 mm/min, the deformation behavior of all ceramic springs obeys to Hook’s law. However, variation of the deformation rate, tests under constant load, and spring recovery behavior revealed differences in the deformation behavior of alumina, TZP, and ATZ springs. Alumina springs exhibited time-independent deformation in all tests. In contrast, anelastic deformation at room temperature was demonstrated in all springs containing TZP. This deformation is completely reversible over a period of several days. Anelastic behavior is particularly pronounced in Y-TZP springs, whereas Ce-TZP springs exhibit comparatively very low but still reliably detectable anelasticity. Oxygen vacancies in the TZP ceramic are considered the most likely explanation for the anelastic behavior of TZP springs at room temperature. KW - Alumina KW - Creep KW - Elastic properties KW - Zirconia PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571858 DO - https://doi.org/10.1111/jace.19085 SN - 0002-7820 SP - 1 EP - 14 PB - Wiley-Blackwell CY - Oxford [u.a.] AN - OPUS4-57185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liens, A. A1 - Reveron, H. A1 - Douillard, T. A1 - Blanchard, N. A1 - Lughi, V. A1 - Sergo, V. A1 - Laquai, René A1 - Müller, Bernd R. A1 - Bruno, Giovanni A1 - Schomer, S. A1 - Fürderer, T. A1 - Adolfsson, E. A1 - Courtois, N. A1 - Swain, M. A1 - Chevalier, J. T1 - Phase transformation induces plasticity with negligible damage in ceria-stabilized zirconia-based ceramics JF - Acta Materialia N2 - Ceramics and their composites are in general brittle materials because they are predominantly made up of ionic and covalent bonds that avoid dislocation motion at room temperature. However, a remarkable ductile behavior has been observed on newly developed 11 mol.% ceria-stabilized zirconia (11Ce-TZP) composite containing fine alumina (8 vol.% Al2O3) and elongated strontium hexa-aluminate (8 vol.% SrAl12O19) grains. The as-synthesized composite also has shown full resistance to Low Temperature Degradation (LTD), relatively high strength and exceptionally high Weibull modulus, allowing its use in a broader range of biomedical applications. In this study, to deepen the understanding of plastic deformation in Ce-TZP based composites that could soon be used for manufacturing dental implants, different mechanical tests were applied on the material, followed by complete microstructural characterization. Distinct from pure Ce-TZP material or other zirconia-based ceramics developed in the past, the material here studied can be permanently strained without affecting the Young modulus, indicating that the ductile response of tested samples cannot be associated to damage occurrence. This ductility is related to the stress-induced tetragonal to monoclinic (t-m) zirconia phase transformation, analogue to Transformation-Induced Plasticity (TRIP) steels, where retained austenite is transformed to martensite. The aim of this study is to corroborate if the observed plasticity can be associated exclusively to the zirconia t-m phase transformation, or also to microcraking induced by the transformation. The t-m transformed-zones produced after bending and biaxial tests were examined by X-ray refraction and SEM/TEM coupled with Raman. The results revealed that the observed elastic-plastic behavior occurs without extensive microcracking, confirming a purely elastic-plastic behavior driven by the phase transformation (absence of damage). KW - Zirconia KW - Ceria KW - Ceramic matrix composite KW - Plasticity KW - Phase transformation KW - X-Ray Refraction PY - 2020 UR - http://www.sciencedirect.com/science/article/pii/S1359645419307177 DO - https://doi.org/10.1016/j.actamat.2019.10.046 SN - 1359-6454 VL - 183 SP - 261 EP - 273 PB - Elsevier Ltd. AN - OPUS4-49740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Belli, R. A1 - Hurle, K. A1 - Schürrlein, J. A1 - Petschelt, A. A1 - Werbach, K. A1 - Peterlik, H. A1 - Rabe, Torsten A1 - Mieller, Björn A1 - Lohbauer, U. T1 - Relationships between fracture toughness, Y2O3 fraction and phase content in modern dental Yttria-doped zirconias JF - Journal of the European Ceramic Society N2 - The relationship between fracture toughness and Yttria content in modern zirconia ceramics was revised. For that purpose, we evaluated here 10 modern Y2O3-stabilized zirconia (YSZ) materials currently used in biomedical applications, namely prosthetic and implant dentistry. The most relevant range between 2-5 mol% Y2O3 was addressed by selecting from conventional opaque 3 mol% YSZ up to more translucent compositions (4-5 mol% YSZs). A technical 2YSZ was used to extend the range of our evaluation. The bulk mol% Y2O3 concentration was measured by X-Ray Fluorescence Spectroscopy. Phase quantification by Rietveld refinement considered two tetragonal phases or an additional cubic phase. A first-account of the fracture toughness (KIc) of the pre-sintered blocks is given, which amounted to 0.4 – 0.7 MPa√m. In the fully-densified state, an inverse power-law behavior was obtained between KIc and bulk mol% Y2O3 content, whether using only our measurements or including literature data, challenging some established relationships. A linear relationship between KIc and the fraction of the transformable t-phase was established within the range of 30–70 vol%. KW - Ceramics KW - Dental KW - Zirconia KW - Fracture toughness KW - X-ray-diffraction KW - Power law PY - 2021 DO - https://doi.org/10.1016/j.jeurceramsoc.2021.08.003 VL - 41 IS - 15 SP - 7771 EP - 7782 PB - Elsevier Ltd. AN - OPUS4-53107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beranic Klopcic, S. A1 - Pribosic, I. A1 - Kosmac, T. A1 - Ploska, Ute A1 - Berger, Georg T1 - The Reactivity of CaTi4(PO4)6 with Alumina and Y-TZP Ceramics JF - Key engineering materials KW - Calcium titanium phosphate KW - Alumina KW - Zirconia PY - 2008 SN - 1013-9826 VL - 361-363 SP - 787 EP - 790 PB - Trans Tech Publ. CY - Aedermannsdorf AN - OPUS4-15901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reveron, H. A1 - Serrano-Munoz, Itziar A1 - Kupsch, Andreas A1 - Müller, B.R. A1 - Chevalier, J. A1 - Bruno, Giovanni T1 - Transformation-induced plasticity in zirconia during tensile loading: A combined microscopy and synchrotron X-ray refraction study JF - Materials Letters N2 - The stress-induced tetragonal to monoclinic (t-m) zirconia phase transformation can provide a certain degree of plasticity to Ceria-stabilized (Ce-TZP) zirconia-based composites. Characterizing and monitoring this phase transition on a millimeter-size range, within the bulk and in-situ remains a challenge. In this work, the mechanical behavior of Ce-TZP based composite was studied in tension, combining microscopy and synchrotron Xray refraction techniques. In contrast with microscopy methods, which only provide surface information, X-ray refraction radiography (SXRR) allowed the visualization of all the transformation bands, over the entire length and thickness of tested specimens, opening up new avenues for in-situ stress-induced t-m transformation studies. KW - Zirconia KW - Ceria KW - Composite KW - Phase transformation KW - Plasticity KW - Synchrotron X-ray refraction PY - 2024 DO - https://doi.org/10.1016/j.matlet.2024.136445 SN - 0167-577X SN - 1873-4979 VL - 366 SP - 1 EP - 4 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-59977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brzezinka, Klaus-Werner A1 - Trunschke, A. A1 - Hoang, D. L. A1 - Radnik, J. A1 - Brückner, A. A1 - Lieske, H. T1 - Transition metal oxide/carbon composite catalysts for n-alkane aromatization: Structure and catalytic properties JF - Applied catalysis / A N2 - Nanocrystalline particles of high temperature pretreated titania, zirconia or hafnium oxide, embedded in a carbon matrix, have been found to catalyze the aromatization of n-octane into ethylbenzene (EB) and o-xylene (OX) with high selectivity. The carbon matrix itself is catalytically not active, but seems to co-operate with the transition metal oxides in such a way that the various metal oxide/carbon composite materials exhibit equal selectivity patterns. In detail, the carbon component stabilizes a high dispersion of the oxides during the high temperature pretreatment procedure. This thermal treatment results in a destruction of surface acidity of the oxides, which would otherwise be responsible for undesirable consecutive and parallel reactions. Moreover, the carbon component is involved in the deep dehydrogenation of alkanes to multiple unsaturated alkenes. This is explained by the ability of surface carbon atoms to interact with hydrogen. The bulk and surface structure of the catalysts have been characterized by XRD, specific surface area measurements, XPS, UPS, Raman spectroscopy, in situ ESR and DRIFT spectroscopy. KW - Aromatization KW - Dehydrocyclization KW - n-Octane KW - Monofunctional catalysts KW - Zirconia KW - Titania KW - Oxide/carbon composites PY - 2001 DO - https://doi.org/10.1016/S0926-860X(00)00736-5 SN - 0926-860X SN - 1873-3875 VL - 208 IS - 1-2 SP - 381 EP - 392 PB - Elsevier CY - Amsterdam AN - OPUS4-1083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wäsche, Rolf A1 - Klaffke, Dieter A1 - Steinborn, Gabriele ED - Bartz, Wilfried J. T1 - Tribological investigations on infiltrated zirconia T2 - 15th International colloquium tribology - Automotive and industrial lubrication T2 - 15th International colloquium tribology - Automotive and Industrial Lubrication CY - Ostfildern, Germany DA - 2006-01-17 KW - Friction KW - Wear infiltration KW - Zirconia KW - Alcaline earth fluorides PY - 2006 SN - 3-924813-62-0 SP - 1(?) EP - 7(?) CY - Ostfildern AN - OPUS4-12165 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -