TY - JOUR A1 - Zou, T. A1 - Nonappa, N. A1 - Khavani, M. A1 - Vuorte, M. A1 - Penttilä, P. A1 - Zitting, A. A1 - Valle-Delgado, J. J. A1 - Elert, Anna Maria A1 - Silbernagl, Dorothee A1 - Balakshin, M. A1 - Sammalkorpi, M. A1 - Österberg, M. T1 - Experimental and Simulation Study of the Solvent Effects on the Intrinsic Properties of Spherical Lignin Nanoparticles N2 - Spherical lignin nanoparticles (LNPs) fabricated via nanoprecipitation of dissolved lignin are among the most attractive biomass-derived nanomaterials. Despite various studies exploring the methods to improve the uniformity of LNPs or seeking more application opportunities for LNPs, little attention has been given to the fundamental aspects of the solvent effects on the intrinsic properties of LNPs. In this study, we employed a variety of experimental techniques and molecular dynamics (MD) simulations to investigate the solvent effects on the intrinsic properties of LNPs. The LNPs were prepared from softwood Kraft lignin (SKL) using the binary solvents of aqueous acetone or aqueous tetrahydrofuran (THF) via nanoprecipitation. The internal morphology, porosity, and mechanical properties of the LNPs were analyzed with electron tomography (ET), small-angle X-ray scattering (SAXS), atomic force microscopy (AFM), and intermodulation AFM (ImAFM). We found that aqueous acetone resulted in smaller LNPs with higher uniformity compared to aqueous THF, mainly ascribing to stronger solvent−lignin interactions as suggested by MD simulation results and confirmed with aqueous 1,4-dioxane (DXN) and aqueous dimethyl sulfoxide (DMSO). More importantly, we report that both LNPs were compact particles with relatively homogeneous density distribution and very low porosity in the internal structure. The stiffness of the particles was independent of the size, and the Young’s modulus was in the range of 0.3−4 GPa. Overall, the fundamental understandings of LNPs gained in this study are essential for the design of LNPs with optimal performance in applications. KW - Lignin KW - Electron tomography KW - Intermodulation AFM KW - Modulus KW - SAXS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546948 DO - https://doi.org/10.1021/acs.jpcb.1c05319 SN - 1520-5207 VL - 125 IS - 44 SP - 12315 EP - 12328 PB - ACS AN - OPUS4-54694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zosef, M. A1 - Fahmy, Alaa A1 - El Hotaby, W. A1 - Hassan, A. A1 - Khalil, A. A1 - Anis, B. T1 - High performance graphene-based PVF foam for lead removal from water N2 - The synthesis and optimization of superior and eco-friendly sorbents for Pb(II) pose a great challenge in the field of water treatment. The sorbent was developed by introducing graphene oxide (GO) into the matrix of polyvinyl formaldehyde (PVF) foam. The immobilization of GO in PVF results in significant increase in the maximum adsorption capacity (Qt) of GO powder for Pb(II), from ≈800 to ≈1730 mg g−1 in the case of GO/PVF foam. As compared with GO powder in Pb(II) aqueous solutions, PVF matrix keeps GO sheets stable without any agglomeration. The large surface area of GO sheet allows the abundant oxygenated functional groups on its surface to participate effectively in the Pb(II) adsorption process, leading to the huge increase of the Qt. Adsorption isotherms and kinetic studies indicated that the sorption process of Pb(II) on GO/PVF was done on heterogenous surface by ion-exchange reaction. The GO/PVF foam showed an excellent reusability for more than 10 cycles with almost the same efficiency and without any significant change in its physical properties. KW - Water treatment KW - Graphene oxide KW - Lead ions KW - Polyvinyl formaldehyde foam KW - Superior sorbent PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523013 DO - https://doi.org/10.1016/j.jmrt.2020.08.011 VL - 9 IS - 5 SP - 11861 EP - 11875 PB - Elsevier B.V. AN - OPUS4-52301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zorn, R. A1 - Yin, Huajie A1 - Lohstroh, W. A1 - Harrison, W. A1 - Budd, P.M. A1 - Pauw, Brian Richard A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Anomalies in the low frequency vibrational density of states for a polymer with intrinsic microporosity - the Boson peak of PIM-1 N2 - Polymers with intrinsic microporosity are promising candidates for the active separation layer in gas separation membranes. Here, the vibrational density of states (VDOS) for PIM-1, the prototypical polymer with intrinsic microporosity, is investigated by means of inelastic neutron scattering. The results are compared to data measured for a more conventional high-performance polyimide used in gas separation membranes (Matrimid). The measured data show the characteristic low frequency excess contribution to VDOS above the Debye sound wave level, generally known as the Boson peak in glass-forming materials. In comparison to the Boson peak of Matrimid, that of PIM-1 is shifted to lower frequencies. This shift is discussed considering the microporous, sponge-like structure of PIM-1 as providing a higher compressibility at the molecular scale than for conventional polymers. For an annealed PIM-1 sample, the Boson peak shifts to higher frequencies in comparison to the un-annealed sample. These changes in the VDOS of the annealed PIM-1 sample are related to changes in the microporous structure as confirmed by X-ray scattering. KW - Polymers KW - Boson peak KW - Neutron scattering KW - Physical aging KW - Polymer of intrinsic microporosity PY - 2018 DO - https://doi.org/10.1039/C7CP07141H SN - 1463-9076 SN - 1463-9084 VL - 20 IS - 3 SP - 1355 EP - 1363 PB - The Royal Society of Chemistry AN - OPUS4-43808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zorn, R. A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed Aejaz A1 - Wolf, M. A1 - Alentiev, D. A1 - Bermeshev, M. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Low frequency vibrational density of state of highly permeable super glassy polynorbornenes – The Boson peak N2 - Inelastic incoherent neutron time-of flight scattering was employed to measure the low frequency density of states for a series of addition polynorbornenes with bulky side groups. The rigid main chain in combination with the bulky side groups give rise to a microporosity of these polymers in the solid state. The microporosity characterized by the BET surfaces area varies systematically in the considered series. Such materials have some possible application as active separation layer in gas separation membranes. All investigated materials show excess contributions to the Debye type density of states characteristic for glasses known as Boson peak. The maximum position of the Boson peak shifts to lower frequency values with increasing microporosity. Data for PIM-1 and Matrimid included for comparison are in good agreement to this dependency. This result supports the sound wave interpretation of the Boson peak. KW - Polynorbornes KW - Neutron Scattering PY - 2020 DO - https://doi.org/10.1039/d0cp03360j SN - 1463-9076 VL - 22 IS - 33 SP - 18381 EP - 18387 PB - Royal Chemical Society AN - OPUS4-51165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zorn, R. A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed Aejaz A1 - Malpass-Evans, R. A1 - McKeown, N. A1 - Tyagi, M. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Low frequency vibrations and diffusion in disordered polymers bearing an intrinsic microporosity as revealed by neutron scattering N2 - The microscopic diffusion and the low frequency density of states (VDOS) of PIM-EATB(CH3) are investigated by inelastic and quasi-elastic neutron scattering where also the demethylated counterpart of PIM-EA-TB(H2) is considered. These intrinsic microporous polymers are characterized by large BET surface area values of several hundred m2/g and pore sizes between 0.5 and 2 nm. Detailed comparison is made to the archetype of polymers of intrinsic microporosity, PIM-1, and polynorbornenes also bearing a microporosity. Due to the wavelength of neutrons, the diffusion and vibrations can be addressed on microscopic length and time scales. From the inelastic neutron scattering experiments the low frequency density of states (VDOS) is estimated which shows excess contributions to the Debye-type VDOS known as Boson peak. It was found that the maximum frequency of the Boson peak decreases with increasing microporosity characterized by the BET surface area. However, besides the BET surface area, additional factors such as the backbone stiffness govern the maximum frequency of the Boson peak. Further the mean squared displacement related to microscopic motions was estimated from elastic fixed window scans. At temperatures above 175 K, the mean squared displacement PIM-EA-TB(CH3) is higher than that for the demethylated counterpart PIM-EA-TB(H2). The additional contribution found for PIM-EATB(CH3) is ascribed to the rotation of the methyl group in this polymer because the only difference between the two structures is that PIM-EA-TB(CH3) has methyl groups where PIM-EA-TB(H2) has none. A detailed comparison of the molecular dynamics is also made to that of PIM-1 and the microporous polynorbornene PTCNSi1. The manuscript focuses on the importance of vibrations and the localized molecular mobility characterized by the microscopic diffusion on the gas Transport in polymeric separation membranes. In the frame of the random gate model localized fluctuations can open or close bottlenecks between pores to enable the diffusion of gas molecules. KW - Polymer of intrisic microporosity KW - Neutron scattering KW - Boson peak KW - Methyl group rotation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538490 DO - https://doi.org/10.3390/cryst11121482 VL - 11 IS - 12 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-53849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zorn, R. A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed Aejaz A1 - Malpass-Evans, R. A1 - McKeown, N. A1 - Jalarvo, N. A1 - Tyagi, M. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Microscopic molecular mobility of high-performance polymers of intrinsic microporosity revealed by neutron scattering – bend fluctuations and signature of methyl group rotation N2 - Polymers of intrinsic microporosity exhibit a combination of high gas permeability and reasonable permselectivity, which makes them attractive candidates for gas separation membrane materials. The diffusional selective gas transport properties are connected to the molecular mobility of these polymers in the condensed state. Incoherent quasielastic neutron scattering was carried out on two polymers of intrinsic microporosity, PIM-EA-TB(CH3) and its demethylated counterpart PIM-EA-TB(H2), which have high Brunauer–Emmett–Teller surface area values of 1030 m2 g-1 and 836 m2 g-1, respectively. As these two polymers only differ in the presence of two methyl groups at the ethanoanthracene unit, the effect of methyl group rotation can be investigated solely. To cover a broad dynamic range, neutron time-of-flight was combined with neutron backscattering. The demethylated PIM-EA-TB(H2) exhibits a relaxation process with a weak intensity at short times. As the backbone is rigid and stiff this process was assigned to bendand-flex fluctuations. This process was also observed for the PIM-EA-TB(CH3). A further relaxation process is found for PIM-EA-TB(CH3), which is the methyl group rotation. It was analyzed by a jump-diffusion in a three-fold potential considering also the fact that only a fraction of the present hydrogens in PIM-EATB(CH3) participate in the methyl group rotation. This analysis can quantitatively describe the q dependence of the elastic incoherent structure factor. Furthermore, a relaxation time for the methyl group rotation can be extracted. A high activation energy of 35 kJ mol-1 was deduced. This high activation energy evidences a strong hindrance of the methyl group rotation in the bridged PIM-EA-TB(CH3) structure. KW - Polymers of Intrinsic Microporosity KW - Neutron Scattering PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604114 DO - https://doi.org/10.1039/d4sm00520a SP - 1 EP - 11 PB - RSC AN - OPUS4-60411 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zorn, R. A1 - Lohstroh, W. A1 - Zamponi, M. A1 - Harrison, W. A1 - Budd, P. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Molecular mobility of a polymer of intrinsic microporosity revealed by quasielastic neutron scattering N2 - Quasielastic neutron scattering by employing a combination of time-of-flight and backscattering techniques is carried out to explore the molecular mobility of a polymer of intrinsic microporosity (PIM-1) at microscopic time scales in comparison with a high-performance polyimide. Molecular fluctuations can change the structure of the temporary network of micropores and open or close pathways for gas molecules. Therefore, the investigation might help to understand the selectivity of PIMs in gas separation processes. The performed neutron scattering experiments provide evidence for a low-temperature relaxation process, which was assigned to methyl group rotation. This methyl group rotation was analyzed in terms of jump diffusion in a three-fold potential. The analysis results in a fraction of methyl groups which are immobilized. For PIM-1 it was found that the fraction of immobilized methyl groups decreases with increasing temperature up to 350 K. At higher temperatures the number of immobilized methyl group increases gain due to an underlying relaxation process. This motional process on a somewhat larger length scale might lead to a reversible structural rearrangement which partially hinders the strongly localized methyl group rotation. In addition, it was found that the activation energy for the methyl group rotation for PIM-1 and the polyimide is significantly higher than for conventional polymers. KW - Polymer of intrinsic microporosity KW - Quasielastic neutron scattering PY - 2020 DO - https://doi.org/10.1021/acs.macromol.0c00963 SN - 0024-9297 SN - 1520-5835 VL - 53 IS - 15 SP - 6731 EP - 6739 PB - American Chemical Society CY - Washington, DC AN - OPUS4-51147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Müller, Bernd R. A1 - Laquai, René A1 - Kupsch, Andreas A1 - Wieder, Frank A1 - Benemann, Sigrid A1 - Wilbig, Janka A1 - Günster, Jens A1 - Bruno, Giovanni T1 - Microstructural characterization of AP40 apatite-wollastonite glass-ceramic N2 - The microstructure of an apatite-wollastonite (code name AP40) glass-ceramic is analyzed in this study by combining 2D microscopy, phase analysis, X-ray absorption and synchrotron X-ray refraction computed tomography (XCT and SXRCT, respectively). It is shown that this combination provides a useful toolbox to characterize the global microstructure in a wide scale range, from sub-micrometer to millimeter. The material displays a complex microstructure comprising a glassy matrix with embedded fluorapatite and wollastonite small crystals. In this matrix, large (up to 200 μm) spike-shaped structures are distributed. Such microstructural features are oriented around a central sphere, thereby forming a structure resembling a sea urchin. A unique feature of SXRCT, in contrast to XCT, is that internal interfaces are visualized; this allows one to show the 3D distribution of these urchins with exceptionally good contrast. Furthermore, it is revealed that the spike-shaped structures are not single crystals, but rather composed of sub-micrometric crystals, which are identified as fluorapatite and diopside phases by SEM-EDX analysis. KW - Glass-ceramic KW - X-ray refraction KW - Computed tomography KW - Microstructure PY - 2023 DO - https://doi.org/10.1016/j.ceramint.2022.12.130 SN - 0272-8842 VL - 49 IS - 8 SP - 12672 EP - 12679 PB - Elsevier Science CY - Amsterdam AN - OPUS4-57452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zietzschmann, F. A1 - Dittmar, S. A1 - Splettstößer, L. A1 - Hunsicker, J. A1 - Dittmann, Daniel A1 - Meinel, F. A1 - Rößler, A. A1 - Metzger, S. A1 - Jekel, M. A1 - Ruhl, A. S. T1 - Fast empirical lab method for performance projections of large-scale powdered activated carbon re-circulation plants N2 - Powdered activated carbon (PAC) for organic micro-pollutant (OMP) removal can be applied effectively on wastewater treatment plant (WWTP) effluents by using re-circulation schemes, accumulating the PAC in the system. This technique is complex because several factors are unknown: (i) the PAC concentration in the system, (ii) specific and average contact times of PAC particles, and (iii) PAC particle loadings with target compounds/competing water constituents. Thus, performance projections (e.g. in the lab) are very challenging. We sampled large-scale PAC plants with PAC sludge re-circulation on eight different WWTPs. The PAC plant-induced OMP removals were notably different, even when considering PAC concentrations in proportion to background organic sum parameters. The variability is likely caused by differing PAC products, varying water composition, differently effective plant/re-circulation operation, and variable biodegradation. Plant PAC samples and parts of the PAC plant influent samples were used in laboratory tests, applying multiples (0.5, 1, 2, 4) of the respective large-scale “fresh” PAC doses, and several fixed contact times (0.5, 1, 2, 4, 48 h). The aimwas to empirically identify suitable combinations of lab PAC dose (as multiples of the plant PAC dose) and contact time, which represent the PAC plant performances in removing OMPs (for specific OMPs at single locations, and for averages of different OMPs at all locations). E.g., for five well adsorbing, little biodegradable OMPs, plant performances can be projected by using a lab PAC dose of twice the respective full-scale PAC dose and 4 h lab contact time (standard deviation of 13 %-points). KW - Adsorption KW - Powdered activated carbon KW - Organic micro-pollutant KW - Trace organic contaminant PY - 2019 DO - https://doi.org/10.1016/j.chemosphere.2018.10.055 VL - 215 SP - 563 EP - 573 PB - Elsevier Ltd. AN - OPUS4-46957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhao, H. A1 - Chakraborty, Poulami A1 - Ponge, D. A1 - Hickel, Tilmann A1 - Sun, B. A1 - Wu, C.-H. A1 - Gault, B. A1 - Raabe, D. T1 - Hydrogen trapping and embrittlement in high-strength Al alloys N2 - Ever more stringent regulations on greenhouse gas emissions from transportation motivate efforts to revisit materials used for vehicles. High-strength aluminium alloys often used in aircrafts could help reduce the weight of automobiles, but are susceptible to environmental degradation. Hydrogen ‘embrittlement’ is often indicated as the main culprit; however, the exact mechanisms underpinning failure are not precisely known: atomic-scale analysis of H inside an alloy remains a challenge, and this prevents deploying alloy design strategies to enhance the durability of the materials. Here we performed near-atomic-scale analysis of H trapped in second-phase particles and at grain boundaries in a high-strength 7xxx Al alloy. We used these observations to guide atomistic ab initio calculations, which show that the co-segregation of alloying elements and H favours grain boundary decohesion, and the strong partitioning of H into the second-phase particles removes solute H from the matrix, hence preventing H embrittlement. Our insights further advance the mechanistic understanding of H-assisted embrittlement in Al alloys, emphasizing the role of H traps in minimizing cracking and guiding new alloy design. KW - Atomistic models KW - Hydrogen KW - Metals and alloys KW - Mechanical properties PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543631 DO - https://doi.org/10.1038/s41586-021-04343-z SN - 1476-4687 VL - 602 IS - 7897 SP - 437 EP - 441 PB - Nature Publ. Group CY - London AN - OPUS4-54363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -