TY - CONF A1 - Ciornii, Dmitri A1 - Hodoroaba, Vasile-Dan A1 - Altmann, Korinna T1 - Validation of microplastics detection methods and proficiency testing: Suitable microplastic reference materials for interlaboratory comparison N2 - Since microplastics (MPs) can be found everywhere and are becoming a problem of high concern, it is necessary to understand their physico-chemical properties. To obtain reliable analytical data a set of validated methods for sampling, sample preparation, detection, and data evaluation are needed. To meet these needs an interlaboratory comparison (ILC) with 84 participants worldwide has been organized under the international pre-standardisation platform VAMAS (www.vamas.org/twa45/) as Project 2 “Development of standardized methodologies for characterisation of microplastics with microscopy and spectroscopy methods” within the Technical Working Area TWA 45 “Micro and Nano Plastics in the Environment”. In this ILC thermo-analytical methods (Py-GC/MS and TED-GC/MS) and vibrational methods (µ-Raman and µ-FTIR) have been tested and compared by providing a set of microplastic representative test materials and measurement protocols developed at BAM. The defined measurands were: particle number concentration, particle size distribution (PSD), and polymer identity and mass content. To increase the statistical quality, 6 samples were shipped together with blank samples. Hence, the ILC provides information on precision and accuracy of the results obtained with different methods as well as strengths and limitations of the proposed protocols. T2 - SETAC 34th Meeting CY - Seville, Spain DA - 05.05.2024 KW - ILC KW - Microplastic KW - Method validation KW - Stakeholder KW - Reference materials KW - Polyethylene KW - Polyethylene Terephtalate PY - 2024 AN - OPUS4-60039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Hodoroaba, Vasile-Dan A1 - Benismail, Nizar A1 - Altmann, Korinna T1 - Interlaboratory comparisons for obtaining reliable data on microplastic detection methods N2 - Since microplastics (MPs) can be found everywhere and are becoming a problem of high concern, it is necessary to understand their occurrence and fate in the environment. However, to obtain data of high quality is very challenging, since measurement operating procedures differ from laboratory to laboratory. Currently, there are no standardized methods to analyze microplastics. One promissing possibility to adress standardization of the methodology and operating procedures are interlaboratory comparisons (ILCs). In this contribution we report the first results of an ILC on microplastic detection methods organized under the pre-stantdardisation plattform of VAMAS (www.vamas.org/twa45/) as Project 2 “Development of standardized methodologies for characterisation of microplastics with microscopy and spectroscopy methods”, within the Technical Working Area TWA 45 “Micro and Nano Plastics in the Environment”. The ILC has gathered 84 participants all over the world representing all continents. BAM, as the project leader, produced a set of reference microplastic materials, which have been distributed to all the participants together with the measurement protocols and reporting data templates. T2 - SETAC 34th Meeting CY - Seville, Spain DA - 05.05.2024 KW - ILC KW - Microplastic KW - Py-GC/MS KW - Polyethylene KW - µ-Raman KW - µ-FTIR KW - Polyethylene Terephtalate KW - TED-GC/MS PY - 2024 AN - OPUS4-60038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Altmann, Korinna A1 - Hodoroaba, Vasile-Dan T1 - Getting reliable data on microplastic detection methods by means of ILC N2 - There is an urgent demand for reliable data on microplastic analysis, particularly on its physico-chemical properties as well as validated methodology to obtain such data. Through interlaboratory comparisons (ILCs) it becomes possible to assess accuracy and precision of methods by involving many laboratories around the world. At BAM, my tasks focused around organisation of an ILC on physico-chemical characterisation of microplastic detection methods under the international pre-standardisation platform VAMAS (www.vamas.org/twa45/) as Project 2 “Development of standardized methodologies for characterisation of microplastics with microscopy and spectroscopy methods” under the Technical Working Area TWA 45 “Micro and Nano Plastics in the Environment”. With a proud number of 84 participants this ILC is able to provide superior statistical results. Thermoanalytical (Py-GC/MS and TED-GC/MS) and vibrational (µ-IR and µ-Raman) methods were asked for identification and quantification of microplastic test samples according to mass or particle number. Preliminary results indicate which methods show a higher accuracy and precision and reveal some sample preparation ideas which work best for microplastics characterisation. At the end of the ILC an overall plausibility of the results will be assessed. T2 - CUSP Early Career Researchers Meeting CY - Online meeting DA - 21.11.2023 KW - Micro- and Nanoplastics KW - Interlaboratory comparison KW - Microplastic reference materials PY - 2023 AN - OPUS4-59056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Waniek, Tassilo A1 - Braun, Ulrike A1 - Altmann, Korinna A1 - Hodoroaba, Vasile-Dan T1 - Interlaboratory Comparisons – ILCs (2022-2023) N2 - To obtain reliable data on micro- and nanoplastics (MPs, NPs) BAM (Federal Institute for Materials Research and Testing) is organizing interlaboratory comparisons (ILCs). Main focus is detection and physico-chemical characterisation. The accuracy and precision of the results of different laboratories and comparability of the results among the participants are addressed. The ILCs will be performed in the following order: i) ILC #1: Detection and Characterisation of MPs (1-1000 µm) and ii) ILC #2: Detection and Characterisation of NPs (< 1 µm). For the ILC #1 the parameters to be analysed are: particle size distribution, shape, mass content, particle concentration, with thermoanalytic (Py-GC/MS, TED-GC/MS) and spectroscopy (µ-Raman, µ-FTIR) methods. For the ILC #2 the parameters are: particle size distribution, shape, particle concentration, with methods such as spectroscopical (Raman), Electron Microscopies (SEM, AFM), etc. Exact measurands and methods are still under discussion. BAM will provide test materials of well-known stability and homogeneity. ILC participants will include partners of the CUSP (the European research cluster to understand the health impacts of micro- and nanoplastics), and any other institutions over the world. The ILCs will take place under the international pre-standardisation platform VAMAS, new Technical Working Area 35 “Micro and Nano Plastics in the Environment” (http://www.vamas.org/twa45/). T2 - Progressing Together: 2nd CUSP Annual Meeting at the JRC (Ispra) CY - Ispra, Italy DA - 08.06.2022 KW - ILC KW - Micro- and nanoplastics KW - VAMAS KW - Analytical methods PY - 2022 AN - OPUS4-55097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Hodoroaba, Vasile-Dan A1 - Altmann, Korinna T1 - Micro- and Nanoplastics: from physico-chemical properties to reference products N2 - In this presentation we demonstrate the importance of physico-chemical properties (pc) of micro- and nanoplastic particles (MNPs). These properties determine interaction between MNPs and cells or living organisms. To perform accurate experiments for acquiring pc information it is essential to develop well-characterized and understood plastic reference materials. Such reference materials can be used in interlaboratory comparisons (ILCs). BAM is organizing under VAMAS two ILCs, on micro- and nanoplastics to obtain reliable results and methodologies for pc characterization of MNPs. By gaining profound knowledge on pc properties it becomes possible to estimate the impact of MNPs on the humans and environment and therefore to translate the knowledge to the level of regulation. T2 - CUSP early-stage researchers meeting CY - Online meeting DA - 08.11.2022 KW - Micro- and nanoplastics KW - Plastic reference materials KW - Interlaboratory Comparisons PY - 2022 AN - OPUS4-56330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Knigge, Xenia A1 - Radnik, Jörg A1 - Thünemann, Andreas A1 - Hodoroaba, Vasile-Dan A1 - Altmann, Korinna T1 - Identification of toxicologically relevant functional groups on micro- and nanoplastic particles’ surface by means of X-Ray photoelectron spectroscopy N2 - Microplastic and nanoplastic particles (MNP) are spread all over the world in various types, shapes and sizes making it very challenging to accurately analyse them. Each sampling procedure, sample preparation method and detection technique needs suitable reference materials to validate the method for accurate results. Furthermore, the effects of these MNPs should be evaluated by risk and hazard assessment with test particles close to reality. To better understand MNP behavior and aid in clarification of their interactions with organisms, we produced several MNP materials by top-down procedure and characterized their properties. Since surface properties mostly determine particles’ toxicity, the aim of the present study was to determine which functional groups are present on MNPs and how the surface can be affected by the production process and particle’s environment. T2 - SETAC 34th Meeting CY - Seville, Spain DA - 05.05.2024 KW - Microplastics KW - Nanoplastics KW - Polypropylene KW - XPS KW - SEM PY - 2024 AN - OPUS4-60037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chudoba, T. A1 - Schwenk, D. A1 - Reinstädt, P. A1 - Griepentrog, Michael T1 - High-Precision Calibration of Indenter Area Function and Instrument Compliance N2 - The accuracy and comparability of nanoindentation results depend significantly on the calibration of area function and instrument compliance. The area function results should not depend on the reference material used or on the calibration method (direct or indirect). This has been investigated for 18 different Berkovich tips. A novel calibration method is proposed that confirms the material independence of the area function and gives a force-dependent instrument compliance function. An agreement between direct and indirect calibration could only be achieved by considering a radial displacement correction. Further, it is shown that the transition range from a spherical cap to the correct face angle of the pyramid can extend to a depth of more than 250 nm. A better parameter for the indenter than the tip radius is the offset of the contact radius to the radius of an ideal tip at a depth where the correct face angle is reached. KW - Nanoindentation KW - Calibration KW - Indenter area function KW - Instrument compliance PY - 2022 DO - https://doi.org/10.1007/s11837-022-05291-3 SN - 1047-4838 VL - 74 IS - 6 SP - 2179 EP - 2194 PB - Springer AN - OPUS4-55849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Christopher, I A1 - Michalchuk, Adam A1 - Pulham, C. A1 - Morrison, C. T1 - Towards Computational Screening for New Energetic Molecules: Calculation of Heat of Formation and Determination of Bond Strengths by Local Mode Analysis N2 - The reliable determination of gas-phase and solid-state heats of formation are important considerations in energetic materials research. Herein, the ability of PM7 to calculate the gas-phase heats of formation for CNHO-only and inorganic compounds has been critically evaluated, and for the former, comparisons drawn with isodesmic equations and Atom equivalence methods. Routes to obtain solid-state heats of formation for a range of singlecomponent molecular solids, salts, and co-crystals were also evaluated. Finally, local vibrational mode analysis has been used to calculate bond length/force constant curves for seven different chemical bonds occurring in CHNO-containing molecules, which allow for rapid identification of the weakest bond, opening up great potential to rationalise decomposition pathways. Both metrics are important tools in rationalising the design of new energetic materials through computational screening processes. KW - Energetic materials KW - Density functional theory PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530371 DO - https://doi.org/10.3389/fchem.2021.726357 VL - 9 SP - 726357 AN - OPUS4-53037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chowdhary, S. A1 - Schmidt, R. F. A1 - Sahoo, A. K. A1 - tom Dieck, T. A1 - Hohmann, T. A1 - Schade, B. A1 - Brademann-Jock, Kerstin A1 - Thünemann, Andreas A1 - Netz, R. R. A1 - Gradzielski, M. A1 - Koksch, B. T1 - Rational design of amphiphilic fluorinated peptides: evaluation of self-assembly properties and hydrogel formation N2 - Advanced peptide-based nanomaterials composed of self-assembling peptides (SAPs) are of emerging interest in pharmaceutical and biomedical applications. The introduction of fluorine into peptides, in fact, offers unique opportunities to tune their biophysical properties and intermolecular interactions. In particular, the degree of fluorination plays a crucial role in peptide engineering as it can be used to control the characteristics of fluorine-specific interactions and, thus, peptide conformation and self-assembly. Here, we designed and explored a series of amphipathic peptides by incorporating the fluorinated amino acids (2S)-4-monofluoroethylglycine (MfeGly), (2S)-4,4-difluoroethylglycine (DfeGly) and (2S)-4,4,4-trifluoroethylglycine (TfeGly) as hydrophobic components. This approach enabled studying the impact of fluorination on secondary structure formation and peptide self-assembly on a systematic basis. We show that the interplay between polarity and hydrophobicity, both induced differentially by varying degrees of side chain fluorination, does affect peptide folding significantly. A greater degree of fluorination promotes peptide fibrillation and subsequent formation of physical hydrogels in physiological conditions. Molecular simulations revealed the key role played by electrostatically driven intra-chain and inter-chain contact pairs that are modulated by side chain fluorination and give insights into the different self-organization behaviour of selected peptides. Our study provides a systematic report about the distinct features of fluorinated oligomeric peptides with potential applications as peptide-based biomaterials. KW - Small-angle X-ray scattering KW - SAXS KW - Amyloid PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553504 DO - https://doi.org/10.1039/D2NR01648F SN - 2040-3364 VL - 14 IS - 28 SP - 10176 EP - 10189 PB - Royal Society of Chemistry AN - OPUS4-55350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chowdhary, S. A1 - Moschner, J. A1 - Mikolajczak, D. J. A1 - Becker, M. A1 - Thünemann, Andreas A1 - Kästner, Claudia A1 - Klemczak, D. A1 - Stegemann, A.-K. A1 - Böttcher, C. A1 - Metrangolo, P. A1 - Netz, R. R. A1 - Koksch, B. T1 - The Impact of Halogenated Phenylalanine Derivatives on NFGAIL Amyloid Formation N2 - The hexapeptide hIAPP22–27 (NFGAIL) is known as a crucial amyloid core sequence of the human islet amyloid polypeptide (hIAPP) whose aggregates can be used to better understand the wild‐type hIAPP′s toxicity to β‐cell death. In amyloid research, the role of hydrophobic and aromatic‐aromatic interactions as potential driving forces during the aggregation process is controversially discussed not only in case of NFGAIL, but also for amyloidogenic peptides in general. We have used halogenation of the aromatic residue as a strategy to modulate hydrophobic and aromatic‐aromatic interactions and prepared a library of NFGAIL variants containing fluorinated and iodinated phenylalanine analogues. We used thioflavin T staining, transmission electron microscopy (TEM) and small‐angle X‐ray scattering (SAXS) to study the impact of side‐chain halogenation on NFGAIL amyloid formation kinetics. Our data revealed a synergy between aggregation behavior and hydrophobicity of the phenylalanine residue. This study introduces systematic fluorination as a toolbox to further investigate the nature of the amyloid self‐assembly process. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle KW - Nanostructure KW - Peptide KW - Amyloid PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518632 DO - https://doi.org/10.1002/cbic.202000373 VL - 21 IS - 24 SP - 3544 EP - 3554 PB - Wiley CY - Weinheim AN - OPUS4-51863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -